用户名: 密码: 验证码:
混凝土断裂及阻裂理论的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土是一种由硬化水泥浆基体、骨料及基体与骨料间的过渡区组成的多相复合材料,其承载力及性质取决于各项的性质和它们之间的相互作用。水泥净浆和水泥砂浆是混凝土的基体成分,了解它们的基本断裂特性对于研究和提高混凝土材料的断裂性能具有十分重要的意义。由于混凝土的非均匀多相性,其内部不可避免存在空隙、微裂缝等缺陷,而且混凝土的抗拉强度远小于抗压强度,自身存在收缩和徐变,这些都是混凝土裂缝产生的主要原因。由于各种因素造成的混凝土开裂,使得实际工程中很多结构都是带裂缝工作的。近现代大量的试验研究和工程实践都表明:混凝土结构开裂几乎是不可避免的,在现有的经济和技术水平下科学的要求是将混凝土的裂缝控制在有害程度允许的范围内。基于此,本文首先研究了混凝土基体材料水泥净浆和水泥砂浆的断裂特性,随后通过在混凝土内部不同位置布置钢筋和在外部浇注UHTCC止裂带两种方式分别研究了它们对混凝土的阻裂作用。具体工作如下:
     (1)通过对156根不同强度、不同尺寸及不同初始缝高比的水泥净浆、水泥砂浆和混凝土三点弯曲梁试件的断裂试验,得到了荷载一裂缝口张开位移(P-CMOD)全曲线,采用全桥式应变片法测得了试件的起裂荷载,计算得到了起裂韧度的实测值,并分析了各试验参数对断裂韧度的影响。结果表明,水泥净浆的断裂过程并不是人们传统所认为的脆性断裂——一经起裂便失稳破坏,而是像混凝土一样在断裂过程中也要经过一个稳定的裂缝扩展过程才会达到失稳破坏。双K断裂模型也适用于水泥净浆和水泥砂浆等混凝土基体材料,且试件尺寸和初始缝高比对它们的双K断裂参数几乎没有影响,因此可以作为判定水泥净浆和水泥砂浆材料裂缝起裂、稳定扩展及失稳扩展的断裂模型。
     (2)采用幂函数和指数函数拟合法分别对试验测得的水泥净浆和水泥砂浆的P-δ曲线反弯点后的部分作了修正,得到了水泥净浆和水泥砂浆完整的断裂能,且所得到的断裂能没有尺寸效应。
     (3)进行了无任何阻裂措施的素混凝土三点弯曲切口梁的断裂试验,利用布置在试件上的全桥应变片和半桥应变片监测裂缝的扩展长度,测得了各测点处的开裂应变。根据所用混凝土的实际特性重新确定了非线性软化本构关系中的参数,并分析了该参数对起裂韧度理论值的影响,为下一步的阻裂研究奠定了基础。
     (4)通过在跨中预制缝的混凝土三点弯曲梁内的三种不同位置分别布置钢筋,研究了钢筋在混凝土裂缝扩展过程中的限裂作用。通过对裂缝扩展过程的分析发现,钢筋混凝土的断裂过程与素混凝土一样也可分为三个阶段:裂缝的起裂、稳定扩展和失稳扩展。因此,在引入适用于钢筋混凝土的起裂韧度K_(Ic)~(ini)和失稳韧度K_(Ic)~(un)两个断裂参数后,利用双K断裂准则对钢筋混凝土三点弯曲梁的裂缝扩展过程进行了描述,并通过试验对双K判定准则的适用性进行了验证。根据无量纲形式的BE CMOD/P与a/D之间的函数关系重新确定了钢筋混凝土三点弯曲梁裂缝长度的计算公式,并验证了计算公式的准确性,分析了不同裂缝长度计算公式对临界裂缝尖端张开位移的影响。
     (5)在混凝土三点弯曲切口梁的受拉面浇注UHTCC作为止裂带,研究其在混凝土裂缝扩展过程中的限裂作用,分析了UHTCC应变硬化特性对混凝土裂缝扩展过程的影响,根据界面变形一致的假定,忽略了UHTCC未开裂区域的弹性变形,提出了UHTCC总裂缝宽度w_u的确定方法,并由此得到了σ-w_u的简化模型,根据该简化模型便可以确定任意时刻UHTCC内的应力值。通过对UHTCC止裂带加固的混凝土三点弯曲切口梁裂缝扩展全过程的分析,引入适用于UHTCC加固混凝土三点弯曲梁的起裂韧度K_(Ic)~(ini)和失稳韧度K_(Ic)~(un)两个断裂参数,利用双K断裂准则对其裂缝扩展过程进行了描述,并通过试验对双K判定准则的适用性进行了验证。根据每根试件的实际裂缝扩展情况重新确定了适用于各试件的裂缝长度计算公式,并通过试验验证了所得公式的准确性。
Concrete is a composite material,which can be properly represented by three phases in microstrueture:cement paste,aggregate as well as interfacial transition zone between them, the bearing capacity and property of which depends on the property of each component and interaction between them.As the matrix compositions of concrete,fracture properties of cement paste and mortar have great influence on researching and improving the fracture performance of concrete.Due to heterogeneous and multiphase of concrete,there inevitably exits gaps and micro-cracks within it,and there are some inherent characteristics of concrete, such as low tensile strength,shrinkage and creep,etc.These are the main reasons for concrete cracks.Concrete cracking caused by various factors makes many structures in actual project work with cracks.A large number of recent studies and engineering practices show that cracking of concrete structures is almost inevitable.In the existing level of.economic and technical,requirement of science is to control concrete cracks within the harmful degree. Therefore,the fracture properties of cement paste and mortar are studied firstly,and then resistance to crack propagation of concrete are researched by placing reinforcing bar at different positions in concrete and pouring Ultra High Toughness Cementitious Composite (UHTCC) on tension face of concrete.Details of the present study are introduced as follows:
     (1) Fracture tests are performed by 156 three-point bending beams of cement paste and mortar with different sizes,different strengths and different ratios of the notch length to beam depth.Complete load versus crack mouth opening displacement(P-CMOD) curves are directly obtained;the initial cracking loads are determined by using resistant strain gauges which make up a full-bridge circuit;the measured values of initial fracture toughness are calculated,and the influences of test parameters on fracture toughness are analysed.The results show that cement paste is not an ideal brittle material,and there also exist a nonlinear fracture process and a steady crack propagation stage before unstable fracture.Double-K fracture model is also suitable for cement paste and mortar,and there are no size effects on the double-K fracture paramenters.Therefore,the Double-K fracture model can be used to predict crack initiation,steady crack propagation and unstable fracture of cement paste and mortar.
     (2) A fit is made for the tail of the P-δcurves using power and exponential function, respectively,so complete fracture energy of cement paste and mortar are obtained,and the fracture energy are size-independent.
     (3) Fracture tests of concrete three-point bending notched beams without any crack control measures are carried out.The full-bridge strain gauges and the half-bridge strain gauges that arranged on specimence are used to monitor the length of crack propagation and measure the cracking strain of each measuring point.According to the actual characteristics of concrete used in tests,the paramenters in the nonlinear softening stress deformation relation are redetermined,and the influence of the parameters on theoretical values of initial fracture toughness is analysed.
     (4) Concrete three point bending notched beams with reinforcing bar placed at three different positions are used to study the effect of reinforcing bar on crack propagation of concrete.Through the analysis of crack propagation process,it is found that fracture process of reinforced concrete can be divided into three stages:crack initiation,stable extension,and unstable failure.Therefore,the initial fracture toughness K_(Ic)~(ini) and the unstable toughness K_(Ic)~(un) of reinforced concrete are introduced.Double-K fracture criteria are used for describing the whole process of crack propagation of reinforced concrete three-point bending notched beams, then applicability of the criteria is verified by tests.Formulas for calculating crack length of reinforced concrete three-point bending notched beams are reestablished based on the functional relation between nondimensional parameters BE CMOD/P and a/D and the accuracy of the calculation formulas is proved.The effect of different formulas for calculating crack length on the critical crack tip opening displacement is discussed.
     (5) UHTCC is poured on tension face of concrete three point bending notched beams as crack control strip to study the control action of UHTCC on crack propagation of concrete. The influence of strain hardening properties of UHTCC on crack propagation process of concrete is analyzed.Basing on the assumption that interface deformation is consistent and neglecting the elastic deformation of non-cracking regions of UHTCC,a method for determining total crack width of UHTCC is proposed and a simplified model ofσ-w_u is obtained subsequently.According to the simplified model,stress value of UHTCC at arbitrary hour can be determined.Through the analysis of whole process of crack propagation of concrete three-point bending notched beams retrofired with UHTCC,the initial fracture toughness K_(Ic)~(ini) and the unstable toughness K_(Ic)~(un) of concrete three-point bending beams retrofitted with UHTCC were introduced,and the double-K fracture criteria are used for describing the whole process of crack propagation of it,then applicability of the criteria is verified by tests.Formula for calculating crack length of each specimen is established based on practical situation of crack expansion,and the accuracy of the formulas is verified.
引文
[1]于骁中等.岩石和混凝土断裂力学.中南工业大学出版社.1991,12.
    [2]Griffith A A.The phenomena of rupture and flow in solids.Phil.Trans.Roy.Soc.Series A221,1921,163-168.
    [3]Orowan E O.In fatigue and fracture of metals.Murray,W M.Ed,Wilcy,New York,1950,139-367.
    [4]Irwin G R.Analysis of stresses and strains near the end of a crack traversing a plate.Journal of Applied Mechanics,1957,24(4):361-364.
    [5]Rice J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks.Journal of Applied Mechanics,1968,35:379-386.
    [6]Hutchinson J W.Singular behavior at the end of a tensile crack in a hardening material.Journal of Mechanics and Physics of Solids,1968,1:13-31.
    [7]Rice J R,Rosengren G R.Plane strain deformation near a crack tip in a power-hardening material,Journal of Mechanics and Physics of Solids,1968,1:1-12.
    [8]Dugdule D S.Yielding of steel sheets containing slits.Journal of Mechanics and Physics of Solids,1960,8(2):100-104.
    [9]Kaplan M F.Crack propagation and the fracture of concrete.Journal of American Concrete Institute,1961,58(5):591-610.
    [10]Hillerborg A,Modeer M,Petersson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Research,1976,6:773-782.
    [11]Bazant Z P,Oh B H.Crack band theory for fracture of concrete.Materials and Structures,1983,16(93):155-177.
    [12]Jenq Y S,Shahs P.A fracture toughness criterion for concrete.Engineering Fracture Mechanics,1985,21(5):1055-1069.
    [13]Jenq Y S,Shah S P.Two Parameter Fracture Model for Concrete.Journal of Engineering Mechanics,1985,111(10):1227-1241.
    [14]Bazant Z P,Kazemi M T.Determination of fracture energy,process zone length and brittleness number from size effect,with application to rock and concrete.International Journal of Fracture,1990,44(2):111-131.
    [15]Swartz S E,Go C G.Validity of compliance calibration to cracked concrete beams in bending.Experimental Mechanics,1984,24(2):129-134.
    [16]Swartz S E,Refai T M E.Influence of size on opening mode fracture parameters for precracked concrete beams in bending.Proceedings of SEM-RILEM International Conference on Fracture of Concrete and Rock(Edited by S.P.Shah and S.E.Swartz),Houston,Texas,1987:242-254.
    [17]Karihaloo B L,Nallathambi P.An improved effective crack model for the determination of fracture toughness of concrete.Cement and Concrete Research,1989,19(4):603-610.
    [18]Karihaloo B L,Nallathambi P.Effective Crack Model for the Determination of Fracture Toughness K_(1c)~s of Concrete.Engineering Fracture Mechanics,1990,35(4/5):637-645.
    [19]徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则.土木工程学报,1992,25(2):32-38.
    [20]Xu S L,Reinhardt H W.Determination of double-K fracture parameters in standard three-point bending notched beams.Fracture Mechanics of Concrete Structures,Proc.of FPAMCOS-3(Edited by Mihashi,H.and Rokugo,K.),Aedificatio Publishers,Freiburg,Germany,1998,1:431-440.
    [21]Xu S,Reinhardt H.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅰ:experimental investigation of crack propagation.International Journal of Fracture,1999,98(2):111-149.
    [22]Xu S,Reinhardt H.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅱ:analytical evaluating and practical measuring methods for three-point bending notched beams.International Journal of Fracture,1999,98(2):151-177.
    [23]Xu S,Reinhardt H.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part Ⅲ:compact tension specimens and wedge splitting specimens.International Journal of Fracture,1999,98(2):179-193.
    [24]Xu S,Reinhardt H.A simplified method for determining double-K fracture parameters for three-point bending tests.International Journal of Fracture,2000,104(2):181-209.
    [25]Xu S,Reinhardt H.Crack extension resistance and fracture properties of quasi-brittle softening materials like concrete based on the complete process of fracture.International Journal of Fracture,1998,92(1):71-99.
    [26]Reinhardt H,Xu S.Crack extension resistance based on the cohesive force in concrete.Engineering Fracture Mechanics,1999,64(5):563-587.
    [27]赵艳华,徐世娘,吴智敏.混凝土结构裂缝扩展的双G准则.土木工程学报,2004,37(10):13-18.
    [28]Zhao Y,Xu S.Determination of double-G energy fracture criterion for concrete materials.Proceedings of the Fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures(ed.Li etal.),USA,2004,1:431-438.
    [29]RILEM TC-501 FMC.Determination of the fracture energy of mortar and concrete by means of three-point-bend tests on notched beams.Materials and Structures,1985,18:285-290.
    [30]RILEM TC-89 PMT.Determination of the fracture parameters(K_(1c)~s and CTODc) of plain concrete using three-point bend tests.Materials and Structures,1990,23:457-460.
    [31]RILEM TC-89 FMT.Size-effect method for determining fracture energy and process zone size of concrete.Materials and Structures,1990,23:461-465.
    [32]Swartz S E,Refai T.In Proceeding of SEM/RILEM International conference on fracture of concrete and rock.Houston,Texas,1987:403-417.
    [33]Swartz S E,Refai T.In Proceeding of International workshop on fracture toughness and fracture energy-test methods for concrete and rock.Sendal,Japan,1988.
    [34]Jenq Y S,Shah S P.Features of mechanics of quasi-brittle crack propagation in concrete.International Journal of Fracture,1991,51(1):103-120.
    [35]吴智敏,徐世烺,王金来等.三点弯曲梁法研究砼K断裂参数及其尺寸效应.水力发电学报,2000,4:16-24.
    [36]刘佳毅.混凝土双K断裂参数及其尺寸效应.大连理工大学硕士学位论文,2000.
    [37]吴智敏,徐世烺,刘佳毅.光弹贴片法研究裂缝扩展和双K断裂参数的尺寸效应.水利学报,2001,4:34-39.
    [38]吴智敏,徐世烺,卢喜经等.试件初始缝长对混凝土双K断裂参数的影响.水利学报,2000,4:35-39.
    [39]吴智敏,徐世烺,刘红艳等.骨料最大粒径对砼双K断裂参数的影响.大连理工大学学报,2000,40(3):358-361.
    [40]吴智敏,徐世烺,丁一宁等.砼非标准三点弯曲梁试件的双K断裂参数.中国工程科学,2001,4:76-81.
    [41]徐世烺,周厚贵,高洪波等.各种级配大坝混凝土双K断裂参数实验研究.土木工程学报,2006,39(11):64-76.
    [42]徐世烺,卜丹,张秀芳.不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定.土木工程学报,2008,41(2):70-76.
    [43]赵志方。徐世烺,周厚贵.混凝土软化本构关系对双K断裂参数的影响.工程力学,2002,19(4):149-154.
    [44]赵志方,徐世烺.混凝土软化本构曲线形状对双K断裂参数的影响.土木工程学报,2001,34(5):29-34
    [453 Wang J M,Zhang X F,Xu S L.The Experimental Determination of Double-K Fracture Parameters of Concrete under Water Pressure,Fracture Mechanics of Concrete and Concrete Structures,A.Carpinteri et al(eds),Ia-FraMCos,2007,1:279-284.
    [46]DL/T 5332-2005,水工混凝土断裂试验规程[S].中国:中国电力出版社,2006.
    [47]Navalurkar R,Hsu C.Fracture analysis of high strength concrete members.Journal of Materials in Civil Engineering,2001,13(3):185-193.
    [48]Raghu P B,Bharatkumar B,Ramachandra M D et al.Fracture mechanics model for analysis of plain and reinforced high-performance concrete beams.Journal of Engineering Mechanics,ASCE,2005,131(8):831-838.
    [49]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用.土木工程学报,2008,41(6):45-60.
    [50]Li V C.Engineered Cementitious Composites-Tailored Composites Through Micromechanical Modeling[C],Fiber Reinforced Concrete:Present and the Future edited by N.Banthia,A.Bentur,A.and A.Mufti,Canadian Society for Civil Engineering,Montreal,1998:64-97.
    [51]Kong H J,Bike S G,Li V C.Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization.Cement and Concrete Composites,2003,25(3):301-309.
    [52]Kong H J,Bike S G,Li V C.Constitutive rheological control to develop a self-consolidating engineered cementitious composite reinforced with hydrophilic poly(vinyl alcohol) fibers.Cement and Concrete Composites,2003,25(3):333-341.
    [53]Kim Y Y,Kong H J,Li V C.Design of engineered cementitious composite(ECC) suitable for vet-mix shotcreting.Materials Journal,ACI,2003,100(6):511-518.
    [54]Kim Y Y,Fischer G,Lim Y M et al.Mechanical performance of sprayed engineered cementitious composite(ECC) using wet-mix shotcreting process for repair.Materials Journal,ACI,2004,101(1):42-49.
    [55]Li V C,Leung C K Y.Steady state and multiple cracking of short random fiber composites.Journal of Engineering Mechanics,ASCE,1992,188(11):2246-2264.
    [56]Li V C,Fischer G,Kim Y,et al.Durable link slabs for jointless bridge decks based on strain-hardening cementitious composites.Research Report RC-1438.Michigan:University of Michigan,2003.
    [57]Li V C.Advances in ECC Research.ACI Special Publication on Concrete:Material Science to Applications,2002,206(23):373-400.
    [58]Li V C,Mishra D K,Wu H C.Matrix design for pseudo strainhardening fiber reinforced cementitious composites.Materials and Structures,1995,28(10):586-595.
    [59]Li V C,Wang S,Wu H C.Tensile strain-hardening behavior of PVA-ECC.Materials Journal,ACI,2001,98(6):483-492.
    [60]Li Y C,Obla K H.Effect of fiber length variation on tensile properties of carbon fiber cement composites.Composites Engineering,1994,4(9):947-964.
    [61]Li V C,Wu H C.Maalej M et al.Tensile behavior of cement based composites with random discontinuous steel fibers.Journal of the American Ceramic Society,1996,79(1):74-78.
    [62] Fukuyama H, Suwada H, Ilseung Y. HPFRCC damper for structural control. Proceedings of the JCI International Workshop on ductile Fiber Reinforced Cementitious Composites (DFRCC). Tokyo: Japan Concrete Institute, 2002: 219- 228.
    [63] Maalej M, Zhang J, Quek S T et al. High-velocity impact resistance of hybrid-fiber engineered cementitious composites. Li V C et al (eds). Proceedings of FRAMCOS- 5, Colorado: International Association for Fracture Mechanics of Concrete and Concrete Structures, 2004: 1051- 1058.
    [64] Kong H J. Electrosteric stabilization of heteroflocculating suspensions and its application to the processing of self- compacting engineered cementitious composites [dissertation]. Michigan: University of Michigan, 2001.
    [65] Stang H, Li V C. Extrusion of ECC- material. Reinhardt H, Naaman A (eds). Proceedings of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC-3), New York: Chapman &Hull, 1999: 203- 212.
    [66] Wang S, Li V C. Lightweight ECC. HPFRCC-4. Michigan: University of Michgan, 2003: 379-390.
    [67] Li V C, Lepech M, Wang S et al. Development of green ECC for sustainable infrastructure systems. Wang K (eds). Proceedings of International Workshop on Sustainable Development and Concrete Technology. Iowa: Iowa State University, 2004: 181- 192.
    [68] Martinola G, Bauml M F, Wittmann F H. Modified ECC applied as an effective chloride barrier. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites. Tokyo: Japan Concrete Institute, 2002: 171- 180.
    [69] Li V C, Lim Y M, Chan Y W. Feasibility study of a passive smart self-healing cementitious composite. Composites Part B: Engineering (UK), 1998: 819- 827.
    
    [70] http://www. engineeredcomposites. com/Applications/retaining_wall. html[0L].
    
    [71] Rokogo K, Kanda T. Presentation "Recent HPFRCC R&D Progress in Japan" Proceedings of International Workshop on HPFRCC in Structural Applications, Bagneux: RILEM Publications SARL, 2005:23-26.
    [72] Hiroshi Inaguma et al, Experimental Study on Crack-Bridging ability of ECC for Repair under Train Loading, Proceedings of Int' 1 workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA, May, 23-26, 2005.
    [73] ECC Technology Network. Patch repair of viaduct [EB/OL]. http://www. engineeredcompoaites. com/Applications/viaduct, html
    [74] Kuraray Co. Ltd. Steel/ECC composites bridge deck [EB/OL]. http://www. engineeredcompoaites. com/Applications/mihara_bridge. html
    
    [75] http:/www. engineeredcomposites. com/Applications/coupling_beam. html[OL].
    
    [76] http://ace-mrl. engin. umich. edu/NewFiles/projects/linkslab_timeline. html.
    [77]Kojima,N Sakata,T Kanda et al.Application of Direct Sprayed ECC for Retrofitting Dam Structure Surface Application for Mitaka-Dam.In Concrete J.,Japan Concrete Institute(JCI 464),2004,42(5):135-139.
    [78]ECC Technology Network.Repair of Mitaka Dam[EB/OL].http://www.engineeredcomposites.com/Applications/mitaka_dam.html.
    [79]徐世烺.混凝土双K断裂参数计算理论及规范化测试方法.三峡大学学报(自然科学版),2002,24(1):1-8.
    [80]张君,王林,孙明等.粗细骨料比例和水泥石强度对混凝土断裂参数的影响.工程力学,2004,21(1):136-142.
    [81]Chang T P,Taso K L,Lin B R.Effect of aggregate on fracture properties of high-performance concrete.In:Mihashi,H.and Rokugo,K.,editors,Fracture Mechanics of Concrete Structures,Proc.of FRAMCOS-3.Freiburg:Aedificatio Publishers,1998:151-160.
    [82]Lee K M,An K S.Factors influencing fracture toughness of mortar-aggregate interface in concrete.In:Mihashi,H.and Rokugo,K.,editors,Fracture Mechanics of Concrete Structures,Proc.of FRAMCOS-3.Freiburg:Aedificatio Publishers,1998:193-202.
    [83]Buyukozturk O,Hearing B.Crack propagation in concrete composites influenced by interface fracture parameters.International Journal of Solids and Structures,1998,35(31-32):4055-4066.
    [84]Amparano F E,Xi Y P,Rob Y S.Experimental study on the effect of aggregate content on fracture behavior of concrete.Engineering Fracture Mechanics,2000,67(1):65-84.
    [85]Hassanzadeh M.The influence of the type of coarse aggregates on the fracture mechanical properties of high performance concrete.In:Mihashi,H.and Rokugo,K.,editors,Fracture Mechanics of Concrete Structures,Proc.of FRAMCOS-3.Freiburg:Aedificatio Publishers,1998:161-170.
    [86]EL-Sayed K M,Fuinea G V,Rocco C et al.Influence of aggregate shape on the fracture behavior of concrete.In:Mihashi,H.and Rokugo,K.,editors,Fracture Mechanics of Concrete Structures,Proc.of FRAMCOS-3.Freiburg:Aedificatio Publishers,1998:171-181.
    [87]Feng N Q,Ji X H,Zhuang Q F et al.Effect of concrete materials on fracture performance.In:Wittmann,F H,editors,Fracture Mechanics of Concrete Structures,Proc.of FRAMCOS-2.Freiburg:Aedificatio Publishers,1995:119-124.
    [88]Zhu Y,Xu S L,Zhao Y H.Fracture properties of cement paste and mortar:an experimental investigation.In:A.Carpinteri et al editors,Fracture Mechanics of Concrete and Concrete Structures,Proc.of FRAMCOS-6.2007,1:249-255.
    [89]Zhu Y,Xu S L.Experimental Study on fracture properties of eementitious materials,Key Engineering Materials,2007,348-349:157-160.
    [90]Petersson P.E,Hillerborg,A.Crack growthand formation of fracture zones in concrete and similar materials,Report TVEM-1006.University of Lund.1981.
    [91]陈篪,蔡其巩,王仁智.《工程断裂力学》.国防工业出版社,1978.
    [92]Alaee F J,Karihaloo B L,Fracture Model for Flexural Failure of Beams Retrofitted with CARDIFRC.journal of Engineering Mechanics,2003,129(9):1028-1038.
    [93]Carpinteri A,Massabo R,Continuous vs.Discontinuous Bridged-crack Model for Fiber-reinforced Materials in Flexure.International Journal of Solids Structures,1997,34(18):2321-2338.
    [94]卢喜经.混凝土疲劳断裂及其尺寸效应研究:(硕士学位论文).大连:大连理工大学,2000.
    [95]徐世烺,赵国藩.混凝土裂缝的稳定扩展过程与临界裂缝张开位移.水利学报,1989,(4):33-44.
    [96]徐世烺,赵国藩.光弹性贴片法研究混凝土裂缝扩展过程.水力发电学报,1991,3:8-18.
    [97]张东,刘娟淯,陈兵等.关于三点弯曲法确定混凝土断裂能的分析.建筑材料学报,1999,2(3):2.6-211.
    [98]Wittmann F H.Size Effect of Fracture Energy of Concrete.Engineering Fracture mechanics,1990,35(1/2/3):107-115.
    [99]Reinhardt H W,Cornelissen H A W,Hordijik Dirk A.Tensile tests and failure analysis of concrete,Journal of Structure Engineering,ASCE,1986,112:2462-2477.
    [100]SHILANG XU,Determination of parameters in the bilinear,Reinhardt's nonlinear and exponentially nonlinear softening curves and their physical meanings.Werkstoffe und Werkstoffpr(u|¨)fung in bauwesen,Hamburg,Libri BOD,1999:410-424.
    [101]Reinhardt H W,Shilang Xu.Crack extension resistance based on the cohesive force in concrete.Engineering Fracture Mechanics 1999,64,563-587.
    [102]Shilang Xu,Reinhardt,H W.Crack extension resistance and fracture properties of quasi-brittle softening material like concrete based on the complete process of fracture.International Journal of Fracture,1998,92(1):71-99.
    [103]赵艳华.混凝土断裂过程中的能量分析研究:(博士学位论文).辽宁:大连理工大学,2002.
    [104]Bosco C,Carpinteri A.Fracture behavior of beam cracked across reinforcement.Theoretical and Applied Fracture Mechanics,1992,17(1):61-68.
    [105]Bosco C,Carpinteri A.Fracture mechanics evaluation of minimum reinforcement in concrete structures.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 347.
    [106]Bosco C,Carpinteri A,Debernardi P.Minimum reinforcement in high-strength concrete.Journal of Structural Engineering,ASCE,1990,116(2):427-437.
    [107]Baluch M,Azad A,Ashmawi W.Fracture mechanics application to reinforced concrete members in flexure.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 413.
    [108]Ferro G,Carpinteri A,Ventura G.Minimum reinforcement in concrete structures and material/structural instability.International Journal of Fracture,2007,146(4):213-231.
    [109]Hawkins N,Hjorteset K.Minimum reinforcement requirements for concrete flexural members.International Workshop on the Applications of Fracture Mechanics to Reinforced Concrete,1992,p 379.
    [110]杨树桐.基于断裂力学的钢筋、FRP与混凝土界面力学特性研究:(博士学位论文).大连:大连理工大学,2008.
    [111]Azad A,Mirza M,Chan P.Fracture energy of weakly reinforced concrete beams.Fatigue and Fracture of Engineering Materials and Structures,1989,12(1):9-18.
    [112]Ruiz G,Elices M,Planas J.Experimental study of fracture of lightly reinforced concrete beams.Materials and Structures,1998,31(214):683-691.
    [113]杨松林,钟平,张建民.配筋方式对堆石坝面板裂缝扩展的影响.水力发电学报,2005,24(5):45-48.
    [114]Yu R,Ruiz G.Explicit finite element modeling of static crack propagation in reinforced concrete.International Journal of Fracture,2006,141(3-4):357-372.
    [115]魏显峰,段树金,齐永顺.少筋混凝土梁三点弯曲断裂过程的数值模型.石家庄铁道学院学报,2006,19(4):56-59.
    [116]林延杰,魏显峰,齐永顺.少筋混凝土结构断裂数值模拟.建筑施工,2007,29(1):33-35.
    [117]陈德培,徐道远,向振贤.钢筋混凝土构件的断裂韧度.河海大学学报,1988,16(1):52-62.
    [118]赵晓华,薛国亚,宋启根.带裂缝钢筋混凝土板的断裂力学分析.东南大学学报,1994,24(3):8-12.
    [119]章定国,徐道远,周先贵.低配筋混凝土断裂韧度的变化.河海大学学报,1990,18(2):88-92.
    [120]吴中伟,廉惠珍.高性能混凝土.北京:中国铁道出版社,1999.
    [121]王铁梦.工程结构裂缝控制.北京:中国建筑工业出版社,1997.
    [122]关喜才.钢筋混凝土及其粘钢加固构件裂缝机理分析.武汉水利电力学院学报,1992,25(6):694-699.
    [123]周翔.粘钢加固法在铁路框架桥加固中的应用.中国水运,2007,5(6):71-73.
    [124]Hussain M,Sharif A,Basenbul I A,et al.Flexural behaviour of precracked reinforced concrete beams strengthened externally by steel plates.ACI Struct.J.,1995,92(1):14-22.
    [125]Jones R,Swamy R N,and Charif A.Plate separation andanchorage of reinforced concrete beams strengthened by epoxy-bonded steel plates.Engineering Structures,1988,66(5):85-94.
    [126]Ziraba N,Baluch M H,Basunbul I A,et al.Guidelines toward the design of RC beams with external plates.ACI Struct.J.,1994,91(6):639-646.
    [127]Wu Z J,Davies J.Mechanical analysis of a cracked beam reinforced with an external FRP plate.Composite Structures,2003,62(2):139-143.
    [128]Wu Z J,Bailey C.Fracture resistance of a cracked concrete beam post-strengthened with FRP sheets.International Journal of Fracture,2005,135(1-4):35-49.
    [129]Wu Z J,Ye J.Strength and fracture resistance of FRP reinforced concrete flexural members.Cement and Concrete Composites,2003,25(2):253-261.
    [130]Alaee F,Karihaloo B.Retrofitting of Reinforced Concrete Beams with CARDIFRC.Journal of Composites for Construction,ASCE,2003,7(3):174-186.
    [131]Kuraray Co.Ltd.About PVA fibers:applications:structural[EB/OL].http://kuraray-am.com/pvaf/structural_case.php
    [132]Maalej M,Li V C.Flexural/Tensile Strength Ratio in Engineered Cementitious Composites.Journal of Materials in Civil Engineering,ASCE,1994,6(4):513-528.
    [133]Li V C,Wu H C.Pseudo strain-hardening design in cementitious composites.Proceedings of High performance fiber reinforced cement composites.Edited by Reinhardt H W and Naaman A E.1992:371-387.
    [134]徐世烺.南水北调工程超高韧性绿色ECC新型材料研究及应用,南水北调工程建设重大关键技术研究及应用项目研究结题报告.大连理工大学,2007,1-307.
    [135]徐世烺.混凝土结构裂缝形成与发展机理及控制技术。国家自然科学基金重点项目结题报告.大连理工大学,2009,1-310。
    [136]李贺东.超高韧性水泥基复合材料试验研究:(博士学位论文).大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700