用户名: 密码: 验证码:
细乳液聚合制备有机—无机杂化纳米微胶囊
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微胶囊是一种具有特殊结构和形态的物质。根据要求在其内部可封装功能化合物,制成具有缓释功能的高分子材料。目前大部分微胶囊的壳层都是以聚合物或聚合物杂化、无机材料(如SiO_2和TiO_2)、无机-聚合物交替为壳,如何将高分子材料和无机材料通过化学反应使之进行微观杂化,使微胶囊的壳层兼具有机无机材料的优点,又显示出新的性能,具有巨大的潜在应用价值。
     本文结合原位聚合封装非溶剂烷烃法、苯乙烯(St)与含有特殊官能团Si-OR的甲基丙烯酸-3-三甲氧基硅丙酯(MPS)聚合的杂化方法,利用细乳液聚合分散技术,在正辛烷/单体亚微液滴上通过乙烯基自由基共聚和硅氧烷的水解-缩合反应,无需去核过程,就一步合成了有机-无机杂化微胶囊。将细乳液聚合与传统乳液聚合进行对比,发现液滴成核有利于微胶囊的形成,而胶束成核和均相成核不能形成微胶囊,从而提出了细乳液聚合制备微胶囊的可能性。
     细乳液聚合的主要场所是稳定的单体亚微液滴,生成的聚合物不溶于正辛烷/单体混合液滴。通过对热力学判据铺展系数S_i和单位面积吉布斯自由能值G的理论计算,聚合物在液滴表面发生了相分离,并对正辛烷进行包覆,形成微胶囊。MPS的加入和乳化剂SDS在临界胶束浓度以下时都有利于微胶囊的形成。实验结果也证实了微胶囊的形成。
     研究了单体加料顺序和细乳液聚合工艺条件对微胶囊形态的影响。结果表明:超声分散后加入单体,得到数量较少的微胶囊,且粒子形态不均一。当[SDS]=1.33g/L时,粒径分布呈单峰分布,且聚合过程中的粒径基本上保持初始亚微液滴的大小,TEM图上为微胶囊形态;当[SDS]=6.77g/L时,粒径分布呈双峰分布,TEM图上显示的粒子分布较为复杂。
     实验发现,以KPS引发剂、十六醇为共稳定剂进行细乳液聚合时,存在均相成核和液滴成核两种机理,由此得到了与成核机理相对应的双峰(50nm和400nm)分布且形态不同(实心粒和微胶囊)的粒子。以十八醇为共稳定剂得到的粒子形态和十六醇相似;用油溶性引发剂取代水溶性引发剂KPS时,也能在单体液滴内引发聚合而形成微胶囊。
     傅立叶红外光谱分析结果表明,在pH=7.0、MPS/St=0.3的条件下,单体乙烯基C=C特征吸收峰(1200cm~(-1)、1634cm~(-1))和MPS中Si-OR的特征吸收峰(821cm~(-1)、1087cm~(-1))消失或转移,说明同时发生了自由基共聚合和水解-缩合反应,从而形成有机-无机杂化结构。同时也证明自由基共聚反应和水解-缩合反应是一对耦合反应。而随MPS/St比值的增大和pH=4.0、9.18条件下,MPS更倾向于发生水解-缩合反应,支化交联程度大大增加。
     实验研究了细乳液聚合的动力学特征和Si-OR的水解-缩合动力学。结果发现,细乳液聚合不存在传统乳液聚合的恒速阶段。当增大HD/SDS比值时,聚合速率增大,成核期缩短。以十六醇为共稳定剂的细乳液聚合成核期较十六烷长。对于SDS和KPS体系,乳化剂对聚合速率的影响大于引发剂的影响,可以表示为dX/dt~[SDS]~(0.375)[KPS]~(0.132)。当采用KPS、AIBN、BPO三种引发剂时,其表观水解速率常数分别为k_h=2.22×10~(-3)min~(-1)、7.01×10~(-3)min~(-1)、7.89×10~(-3)min~(-1)。当MPS/St=0.3、0.6、1.0时,表观水解速率常数分别为k_h=2.22×10~(-3)min~(-1)、2.32×10~(-3)min~(-1)、2.45×10~(-3)min~(-1),但随着MPS/St比值的增加,凝胶率增大,缩合程度增加。pH=4.0和pH=9.18对自由基共聚速率的影响不大,超声分散结束后,大部分MPS已发生水解,pH=4.0下的凝胶率更大。
Nanocapsules with special structure and morphology can prepare polymer materials with controlled release by encapsuling function chemical compound. At present, most nanocapsule shell is polymer or hybrid polymer, inorganic materials or alternating inorganic materials and polymer. There is enormous potential application merit that shell combines advantages of organic and inorganic materials by chemical reaction to carry out microscopic hybrid.
    Combined in-situ polymerization by encapsulation non-solvent alkane and hybrid method between styrene and organic silicon monomer, 3-trimethoxysilyl propyl methacrylate (MPS) with functional group of vinyl and siloxane Si-OR, organic-inorganic hybrid nanocapsules were synthesized by miniemulsion polymerization without core removed. In this process, nanocapsules were formed by radical copolymerization between St and MPS and hydrolysis-condensation reaction of Si-OR on the surface of the well-dispersed isooctane/monomers mixture submicro-droplets. Comparing conventional emulsion polymerization, it's possible that miniemulsion polymerization can prepare nanocapsules. It's concluded that micelle nucleation is fewer advance in formation of nanocapsules, while droplet nucleation is favorable in the miniemulsion polymerization.
    The main location of miniemulsion polymerization lied on monomer submicro-droplets. The hollow nanocapsules were formed on the surface of droplets because generated polymer could not dissolve in the mixture droplets. Nanocapsules were proved by theoretical arithmetic with thermodynamic criterion developing coefficient S_i and Gibbs free energy G and experiment results. Added MPS and [SDS] below CMC (4.5g/L) prefer to form nanocapsules.
    The effect of feed order and miniemulsion polymerization conditions on nanocapsules morphology was discussed. Few nanocapsles were formed by adding monomers after ultrasound dispersion and its particle size distribution was in disorder. Monodispersion nanocapsules were obtained and maintained the size of the initial droplets in the polymerization process carried out by TEM images when [SDS]=1.33g/L. Bidispersion
    and complex particles cayyied out by TEM images were appeared when [SDS]=6.77g/L.
    From particles size distribution and TEM images with CA as costabilizer, it was found that there were two peaks with about 50nm, which indicated homogeneous nucleation, and about 400nm, which indicated droplet nucleation, respectively. Particle morphology was similar to CA when using octadecyl alcohol as costabilizer. The nanocapsules were also formed if the water-soluble initiator was insteaded by oil-soluble one.
    FTIR spectras of monomers and copolymer verified hybrid structure by disappearance of vinyl C=C bond (1200cm~(-1), 1634cm~(-1)) and Si-OR bond (821cm~(-1), 1087 cm~(-1)) under pH=7.0 and MPS/St=0.3. It illustrates free radical copolymerization and hydrolysis-condensation are coupled in this system. Hydrolysis-condensation happened to cause the branching and crosslinking structure with the increasing of MPS/St ratio and pH=4.0 or pH=9.18.
    Kinetics of miniemulsion polymerization and hydrolysis-condensation of Si-OR were also researched. It was found that miniemulsion polymerization did not have constant-velocity stage. Polymerization rate increased and nucleation time decreased with HD/SDS mass ratio increasing. Effect of SDS and KPS on the polymerization rate represented dX/dt~[SDS]~(0.375)[KPS]~(0.132). The apparent hydrolysis rate constants were k_h= 2.22×10~(-3)min~(-1), 7.01×10~(-3)min~(-1) and 7.89×10~(-3)min~(-1) with KPS, AIBN and BPO as inititors, and k_h=2.22×10~(-3)min~(-1), 2.32×10~(-3)min~(-1) and 2.45×10~(-3)min~(-1) when MPS/St mass ratio were 0.3, 0.6 and 1.0, respectively. Gel fraction and condensation degree enhanced with MPS amount increasing. The rate of free radical copolymerization was affected unobviously by pH = 4.0 and pH = 9.18, but most Si-OR of MPS had hydrolyzed after ultrasound dispersation and gel fraction was higher under pH=4.0.
引文
[1] A G 沃德,A 考茨.明胶的科学与工艺学,轻工业出版社,1982
    [2] P W Morgan, S L Kwolek. Poly Sci, 1959, 40:299-327
    [3] 张留城,李佐邦等.缩合聚合,化学工业出版社,1986
    [4] G B Sukhorulov, E Donath, H Lichtenfeld, E Knippel, M Knippel. Colloid Surface A, 1998, 137:253-266
    [5] E Donath, G B Sukhorulov, F Caruso, S A Davis, H Mohwald. Angew Chem Int Ed, 1998, 37:2201-2205
    [6] S W Keller, S A Johnson, E S Brigham. J Am Chem Soc, 1995, 117:12879-12880
    [7] G B Sukhorulov, E Donath, S Davis. J Polym Advan Technol, 1998, 9:759-767
    [8] F Caruso, M A Caruso, H Mohwald. Science, 1998, 282:1111-1114
    [9] J Ding, G J Liu. Phys Chem B, 1998, 120:6107-6113
    [10] S Stewart, G Liu. Chem Mater, 1999, 11: 1048-1053
    [11] 朱蕙,袁晓凤,赵汉英.应用化学,2001,5:336-341
    [12] M Wang, M Jiang, F L Ning, D Chen, S Liu, H Duan. Macromolecules, 2002, 35: 5980-5989
    [13] F Caruso. J Chem Eur, 2000, 6:413-419
    [14] K P Velikov, AV Blaaderen. Langmuir, 2001, 17:4779-4786
    [15] T K Mandal, M S Fleming, D R Walt. Chem Mater, 2000, 12:3481-3487
    [16] S Blomberg, S Ostberg, E Harth, A W Bosman, B V Hom, C J Hawker. J Polym Sci A, 2002, 40:1309-1320
    [17] T K Mandal, M S Fleming, D R Walt. Chem Mater, 2000, 12(11): 3481-3487
    [18] S M Marinakos, J P Novak, AB House. J Chem Soc, 1999, 121:8518-8522
    [19] D Cheng, X Zhou, H Xia, H Chan. Chem Mater. 2005, 17(14): 3578-3581
    [20] M Giersig, TUng, L M Liz-Marzan, P Mulvaney. Adv Mater, 1997, 9:570-578
    [21] H Shiho, N Kawahashi. Colloid Polym Sci, 2000, 278:270-274
    [22] S Eiden, G Maret. J Colloid Interf Sci, 2002, 250:281-284
    [23] E Bourgeat-Lami, I Tissot, F Lefebvre. Macromolecules, 2002, 35: 6185-6191,
    [24] I Tissot, C Novat, F Lefebvre, E Bourgeat-Lami. Macromolecules, 2001, 34: 5737-5739
    [25] I Tissot, E Bourgeat-Lami. Chem Mater, 2002, 14:1325-1331
    [26] F Caruso, E Donath, H Mohwald. J Phys Chem t3, 1998, 102:2011-2016
    [27] N Kawahashi, E Matijevic. J Colloid Interf Sci, 1991, 143:103-110
    [28] N Kawahashi, C Persson, E Matijevic. J Mater Chem, 1991, 1:577-583
    [29] A Kowalski, M Vogel, R M Blankenship. US, 1984, 4427836
    [30] A Kowalski, M Vogel. US, 1984, 4469825
    [31] M Robert, A Kowalski. US, 1986, 4594363
    [32] A Kowalski. US, 1989, 4880842
    [33] M Robert. US, 1996, 5545695
    [34] M Okubo. US, 1990, 4910229
    [35] 郝冬梅,刘成岑,施凯等.高分子材料科学与工程,2001,17(1):146-149
    [36] M Okubo, M Shiotak, Tsujihiro. J Colloid Polym, 1991,269:222-229
    [37] M Okubo, M Shiotak. J Polym International, 1993, 30:369-376
    [38] M Okubo, H Minami. J Colloid Polym Sci, 1997, 275:992-997
    [39] C J McDonald. US, 1990, 4973670
    [40] C J McDonald, K Bouck, A B Chaput. Macromolecules, 2000, 33(5): 1593-1605
    [41] J Jang, K Lee. Polymer Preprints, 2002, 43:605-609
    [42] F Tiarks, K Landfester, M Antonietti. Langmuir, 2001, 17(3): 908-918
    [43] M Willert, K Landfester. Macromol Chem Phys, 2002, 203, 825-836
    [44] 王武生,曾俊,阮德礼.高分子材料科学与技术,2001,17(4):34-36
    [45] 倪克钒,单国荣,翁志学,Bourgeat-Lami E,Fevotte G.化工学报,2005,56(2):352-357
    [46] 倪克钒,单国荣,翁志学.高等学校化学学报,2005,26(5):948-951
    [47] 潘祖仁.高分子化学,第三版,北京:化学工业出版社,2003
    [48] J Ugelstad, M S EI-Aasser, J W Vanderhoff. J Polym Lett Ed, 1973, 11: 503-513
    [49] Y J Chou, M S El-Aasser, J W Vanderhoff. J Dispersion Sci Technol, 1980, 1:129-150
    [50] J M Asua. J Prog Polym Sci, 2002, 27:1283-1346
    [51] M Antonietti, K Landfester. J Prog Polym Sci, 2002, 27:689-757
    [52] I Capek, C S Chem. JAdv. Polym. Sci, 2001, 155:101-165
    [53] 王群,府寿宽,于同隐.高分子通报,1996,3:141-151
    [54] 余樟清,李洁爱,倪沛红.高分子材料科学与工程,2002,18(5):36-38
    [55] 张洪涛,谭必恩,胡芳.高等学校化学学报,2000,21(1):156-159
    [56] 谭必恩,张洪涛,胡芳.高分子学报,2000,2:184-189
    [57] 谢刚,张和鹏,张秋禹.高分子学报,2003,5:626-630
    [58] J Ugelstad, P C Mψrk, K Kaggerud. J Adv Colloids Interface Sci, 1980, 13:101-140
    [59] C C Wang, N S Yu, C Y Chen, J F Kuo. JAppl Polym Sci, 1996, 60:493-501
    [60] J Delgado, M S E1-Aasser, J W Vanderhoff. J Polym Sci, Polym Chem, 1986, 24: 861-874
    [61] J Delgado, M S El Aasser, C A Silibi. J Polym Sci, Polym Chem, 1990, 28:777-894
    [62] C S Chern, T J Chen. J Colloid Polym Sci, 1997, 275:546-554
    [63] W L Grimm, T I Min, M S EI-Aasser. J Colloid Interface Sci, 1983, 94:531-545
    [64] Y T Choi, M S El-Aasser, E D Sudo. J Polym Sci. Polym, Chem Ed, 1985, 23: 297-287
    [65] K Landfester, N Bechthold, S Forster, M Antonietti. J Macromol Rapid Commun, 1999, 20:81-84
    [66] Y T Choi, E D Sudol, J W Vanderhoff. J Polym Sci, Polym Ed, 1985, 23:2973-2981
    [67] J Delgado, M S El-Aasser, C A Silebi. J Polym Mat Sci, 1987, 57:976-982
    [68] J L Reimers, F J Schork. J Appl Polym Sci, 1996, 60:251-262
    [69] J L Reimers, F J Schork. JAppl Polym Sci, 1996, 59:1833-1841
    [70] K Landfester, N Bechthold, F Tiarks, M Antonietti. Macromolecules, 1999, 32: 5222-5228
    [71] A Sood, S K Awasthi. J Appl Polym Sci, 2003, 88:3058-3065
    [72] P L Tang, E D Sudol, CA Silebl. J Appl Polym Sci, 1991, 43:1059-1066
    [73] C C Wang, N S Yu, C Y Chen, J F Kuo. JAppl Polym Sci, 1996, 60: 493-501
    [74] 余樟清,倪沛红,李洁爱.高分子材料科学与工程,2003,19(6):92-95
    [75] 谭必恩,胡芳,张洪涛.化学与粘合,2001,17:80-83
    [1] E Bourgeat-Lami, I Tissot, F Lefebvre. Macromolecules, 2002, 35:6185-6191
    [2] C J McDonald, K J Bouck, A B Chaput. Macromolecules, 2000, 33:1593-1605
    [3] F Tiarks, K Landfester, M Antonietti. Langmuir, 2001, 17:908-918
    [4] S Torza, S G. Mason. J Colloid Interface Sci, 1970, 33:6783-6792
    [5] 范克雷维纶著,许元泽译.聚合物的性质:性质的估算及化学结构的关系,第一版,北京:科学出版社,1981
    [6] 倪克钒,单国荣,翁志学.高等学校化学学报,2005,26:948-951
    [7] J Berg, D Sundberg, B Kronberg. Polym Mater Sci Eng, 1986, 64:367-375
    [8] B J Chamberlain, D H Napper, R G. Gilbert. J Chem Soc Faraday Trans, 1982, 78: 591-606
    [9] F K Hansen, J Ugelstad. J Polym Sci, Polym Chem Ed, 1979, 17:3069-3082
    [10] S C Chem, Y C Liou. J Polym Sci, Part A: Polymer Chemistry, 1999, 37:2537-2550
    [1] I Marcu, E S Daniels, V L Dimonie, C Hagiopol, M S EI-Aasser. Macromolecules, 2003, 36:328-332
    [2] Markus Antonietti, Katharina Landfester. Prog Polym Sci, 2002, 27:689-757
    [3] 张洪涛,谭必恩,胡芳,李建宗.高分子学报,2000,2:184-189
    [4] 张洪涛,谭必恩,胡芳,李建宗。高等学校化学学报,2000,21:156-159
    [5] B J Chamberlain, D H Napper, R G. Gilbert. J Chem Soc Faraday Trans, 1982, 78: 591-606
    [6] Chomg-Shyan Chem, Yuh-Chemg Liou. J Polym Sci: Part A, 1999, 37:2537-2550
    [7] V S Rodriguez, J M Asua, M S E1-Aasser, C A Silibi. J Polym Sci, Polym. Phys., 1991, 29:483-500
    [8] 倪克钒,单国荣,翁志学.2005全国化工类博士生学术论坛,219-220
    [9] M Willert, K Landfester. Macromol Chem Phys, 2002, 203,825-836
    [10] Ming Chen,美国威科公司产品说明书,有机硅烷偶联剂和交联剂,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700