用户名: 密码: 验证码:
三电平有源电力滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它通过实时检测电网谐波和无功电流,然后产生与之大小相等、相位相反的补偿电流,达到改善和提高电能质量的目的。这种技术能够对频率和大小都变化的谐波和无功进行实时补偿,其补偿特性不受系统阻抗的影响,具有响应快、可控性高、自适应性强等优点,因而受到广泛的重视。
    目前,APF的主电路大多采用两电平变换器,以满足低压场合需要。但是,在高压场合中,电路设计要考虑到半导体功率器件的承压能力,而多电平变换器能产生多阶梯、低失真电压波形,具有开关器件承压降低、开关损耗小、效率高、低电磁干扰(EMI)等显著的优势,在国外又被称为“完美无谐波”变换器而受到越来越多的关注,以满足人们对高压、大功率,尤其是高频化的要求。本文对现有多电平变换器的各种拓扑结构以及其控制策略进行了分类,并分析了它们各自的优缺点和应用场合,在此基础上选取了二极管箝位型三电平变换器作为APF的主电路,以达到降低开关管承压和开关频率,应用到高压大功率场合的目的。
    分析了单周控制技术的原理和特点,分别讨论了单周控制技术在单相、三相三线制以及三相四线制两电平APF 中的应用情况。在此基础上,本文首次提出将单周控制技术分别应用于三电平三相三线制APF 和三电平三桥臂三相四线制APF中,在分析其开关周期平均模型的基础上,建立其数学模型,推导出控制的关键方程,据此分别建立了单周控制三电平三相三线制APF 和单周控制三电平三桥臂三相四线制APF 的电路模型,运用PSIM 仿真软件对其分别进行了仿真研究,并且分别和两电平三相三线制APF以及两电平三桥臂三相四线制APF的补偿性能进行了对比分析。仿真和分析结果表明,基于单周控制的三电平APF 控制电路简单,容易实现;主电路开关频率恒定,容易推广到工业和工程实际应用;而且还能够以较低的开关频率获得和较高开关频率下两电平APF 相同甚至更好的补偿效果,有效地消除了负载电流中的谐波和无功分量,在三电平三桥臂三相四线制APF 中也消除了零线电流,从而使补偿后的三相电源电流几乎为正弦波,具有较好的补偿性能。
Active power filter (APF) is a new power electronics device used to restraining harmonics and compensating reactive power. By realtime detecting harmonics and reactive current in the power line, then it generates the compensating current which is equal to harmonic current in amplitude and opposite in polarity, aim at improvement and advancement of electric quality. When frequency and amplitude of harmonic and reactive current vary, this kind of technique can achieve dynamic compensation effectively. Moreover, the compensation performance is not affected by the impedance of power system, it has advantages as follows, fast response, high controllability and adaptability, etc. So, more and more importance is attached to it.
    Most previously proposed APF are based on two-level converters and thus are suitable for low voltage use. However, in a high voltage system, the circuit designers are often confronted with a serious challenge: there are no semiconductors capable of sustaining the desired voltage. Multilevel converters that provide more than two voltage levels, less distorted waveform and that have merits of low sustaining voltage, low switching losses, high efficiency and low EMI and that are called “perfect zero-harmonic”converters offer many benefits for higher voltage, higher power and especially higher frequency applications. In this thesis, the circuit topology and control strategy of multilevel converters previously reported are analysed and compared with each other, and their merits, defects and applications are presented respectively. Further, diode-clamp three-level converter is used to main circuit of APF.
    The principle and characteristic of one-cycle control are analysed, and its applications in single-phase, three-phase three-wire and three-phase four-wire two-level system is discussed. Hereby, this thesis applies one-cycle control to three-level three-phase three-wire APF and three-level three-legs three-phase four-wire APF for the first time respectively. Based on the analysis of equivalent average modes in switching period, the key control equations are derived and circuit modes are created respectively. Simulation is carried out using PSIM simulation software, furthermore, the different compensation performance between three-level APF and two-level APF is compared. The simulation results verify that three-level APF based on one-cycle control is simple and reliable, which make it be realized easily. The switch frequency of the main circuit is constant, which is desirable for engineering and industrial applications. They all can
    dynamically and effectually compensate the harmonics and reactive current, and zero sequence currents are eliminated in three-level three-legs three-phase four-wire APF, and they all have excellent compensating capability.
引文
[1] 王兆安,杨君,刘进军,谐波抑制和无功功率补偿,机械工业出版社,1998,9
    [2] 赵巍,基于DSP 的混合有源电力滤波系统的研制,中南大学硕士学位论文,2002,3
    [3] 吴竞昌,供电系统谐波,中国电力出版社,1998,10
    [4] IEEE-519. IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems[S]. 1992
    [5] IEC 1000-3-2. Electromagnetic Compatibility-Part 3:Limits-Section 2:Limits for harmonic current emissions(equipment input current <16A per phase)[S]. March 1995
    [6] 林雪海,现代电能质量的基本问题,电网技术,2001, 10(3):61-64
    [7] 周洪亮,有源电力滤波器控制技术的研究及应用,浙江大学博士学位论文,2002,8
    [8] 张代润,有源电力滤波器技术研究的新进展,电工技术杂志,2000, 14(7):74-78
    [9] Akagi H. New Trends in Active Filters. In :Proceedings of EPE’95.Sevila.1995.17-26
    [10] 卓放,三相四线制有源电力滤波器的研究,西安交通大学博士学位论文,2001,5
    [11] Sasaki H, Machida T. A New Method to Eliminate AC Harmonic Current by Magnetic Flux Compensation: Consideration on Basic Design. IEEE Trans on Power Apparatus and Systems, 1971,90(5): 2009-2016
    [12] Gyugyi L, Strycula E.C. Active AC Power Filters. IEEE Proc. of IAS, 1976:529-535
    [13] Akagi H, Nabae A. Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Trans on Industry Applications, 1984,20(3): 625-630
    [14] H.Akagi, YKanazawa, A.Nabae. Generalized Theory of the Instantaneous Reactive Power in Three-phase Circuits. In :Proc.1983 Int. Power Electronics Conf, Tokyo, Japan,1983, pp.1375-1386
    [15] H.Kuo, S. N.Yeh, J. C.Hwang. Novel Analytical Model for Design and Implementation of Three-phase Active Power Filter Controller. IEEE Proc. of Electronic Power Applications, Vol.148.No.4, July, 2001:369-383
    [16] Lijun Chen, Annete von Jouanne. A Comparision and Assessment of Hybrid Filter Topologies and Control Algorithms. IEEE Trans on Power Electronics, 2001, 3(2):565-569
    [17] 胡铭,有源滤波技术及其应用,电力系统自动化,2000, 2(10):66-70
    [18] 吴竞昌,孙树勤,宋文南,电力系统谐波,水利电力出版社,1988,6
    [19] 夏道止,高压直流输电系统的谐波分析及滤波,水利电力出版社,1994,9
    [20] 陆廷信等,有源型谐波抑制无功补偿装置计算机仿真及其实验研究,电气传动,1989,12(6):41-49
    [21] 沈龙大等,电网高次谐波有源抑制装置的工业应用,电气传动,1993, 10(5):126-129
    [22] 纪延超,戴克健,唐中贤,100Kvar 广义电力有源滤波器(GAF)的仿真与试验,中国电机工程学报,1997, 17(5):315-321
    [23] 黄瀚,纪延超,张辉,优化特定消谐PWM 技术,中国电机工程学报,1997, 17(5):345-347
    [24] 颜晓庆,王兆安,电力有源滤波器及其新发展,电工技术杂志,1998, 7(4):1-4
    [25] 蒋强,基于DSP 的三相有源电力滤波器控制系统设计,四川大学硕士论文,2002,3
    [26] 王正元,面向新世纪的电力电子技术,中国电工技术学会电力电子学会第七次全国学术会议论文集,2000,1:1-4
    [27] 余岳辉,王惠刚,彭昭廉,大功率电力电子器件的新发展,电源技术应用,1999, 12(6):72-75
    [28] 钱照明,吕征宇,电力电子器件的最新发展,中国电工技术学会电力电子学会第七次全国学术会议论文集,2000,1:10-19
    [29] Hirofumi Akagi. The State-of-the-art of the Power Electronics in Japan. IEEE Trans. Power Electronics, Vol.13, No.2, 1998, pp.345-356
    [30] S.Bernet et al. Comparison of High Power IGBTs and Hard Driven GTOs for High Power Inverter. APEC’98, pp.711-718
    [31] Nabae I. Takahashi, H.Akagi. A New Neutral-clamped PWM Inverter. IEEE Transactions on Industrial Applications, Volume: 17 No.5 pp.518-523, 1981
    [32] 吴洪洋,多电平变换器及其相关技术研究,浙江大学博士学位论文,2001,12
    [33] 刘智超,吴学智,黄立培,多电平变换器发展现状及其实现,自动化博览,2004: 52-55
    [34] 贾贵玺,高跃,贺家李,张臣堂,高压变频调速技术在发电厂节能方面的研究与应用,电力系统自动化,2002, 26(14): 63-66
    [35] Shigeru Sugiyama et al. Neutral-point-clamped Inverter with Parallel Driving of IGBTs for Industrial Applications. IEEE Proc. of IAS’97 CDROM
    [36] Masahide Hojo et al. SVG Using Three-level PWM Inverter Constructed by Series Capacitors. IEEE Proceeding of IPEC’00, pp.2151-2156
    [37] Nikola Celanovic et al. Control Design of Three-level Voltage Source Inverter for SMES Power Conditioning System. IEEE Proc. of PESC’99, pp.613-618
    [38] Francisco Canales et al. A Zero Voltage and Zero Current Switching Three-level DC/DC Converter. IEEE Proceeding of APEC’00 CDROM
    [39] Bor-Ren Lin et al. High Power Factor Single-Phase Flying Capacitor Rectifier. Proc. of IPEC’00, pp.2013-2018
    [40] Jose Rodriguez, Fang Zheng Pengl. Multilevel Inverters: A Survey of Topologies, Controls, and Applications, IEEE Transactions on Industrial Electronics, 2002.8, VOL.49, NO.4
    [41] 张杰,邹云屏,张贤,丁凯,带独立直流电源的改进型级联多电平逆变器研究,第十四 届全国电源技术年会论文集,2001,9:197-200
    [42] 唐伏良,庄朝晖,雄有伦,一类新型的多电平逆变拓扑研究,中国电机工程学报,2002, 12(3):42-46
    [43] X.Yuan, I.Barbi. Fundamentals of a New Diode Clamping Multilevel Inverter. IEEE Trans. on Power Electronics, 2000, Vol.15: 711-717
    [44] Fang Zheng Peng. A Generalized Multilevel Inverter Topology with Self Voltage Balancing. IEEE Transactions on Industrial Applications, Volume: 37 Issue: 2, March-April 2001
    [45] 陈阿莲,何湘宁,吴洪洋,基于基本单元串-并(并-串)思想生成多电平变换器拓扑的方法,电工技术学报,2004, 19(2):41-46
    [46] B.P. McGrath et al. An Improved Modulation Strategy for a Hybrid Multilevel Inverter, IEEE Proc. of APEC’00, CDROM
    [47] Garrara G. A New Multilevel PWM Method: A Theoretical Analysis, IEEE Transactions on Power Electronics, 1992.7:497-505
    [48] 单庆晓,李永东等,级联型逆变器的新进展,电工技术学报,2004,19(2):1-9
    [49] Leon M. Tolbert et al. Novel Multilevel Inverter Carried-based PWM Methods, IEEE Transactions on Industrial Applications, 1999, pp.1098-1106
    [50] 吴洪洋,何湘宁,多电平载波PWM 法与SVPWM 法之间的本质联系及其应用,中国电机工程学报,2002, 22(5):10-15
    [51] 薄保中,苏彦民,马学亮. 多电平最优空间矢量PWM 控制方法的研究,中国电机工程学报,2002, 22(2):89-92
    [52] F.Z.Peng et al. A Power Line Condition Using Cascade Multilevel Inverters for Distribution System, IEEE Proc. of IAS’97, CDROM
    [53] 丁凯,邹云屏,张贤,张杰. 级联多电平逆变器研究,电力电子技术,2002, 36(2):26-28
    [54] 薄保中,多电平逆变器PWM 控制技术的研究,西安交通大学博士学位论文,2002,4
    [55] 王鸿雁,何湘宁,刘振来,赵荣祥,多电平逆变器软开关技术的研究,电力电子技术,2003, 37(1):34-38
    [56] 王长兵,三电平逆变器SVPWM 控制算法的研究,哈尔滨工业大学工学硕士学位论文,2002,7
    [57] Smedley, K.M, Cuk. S. One-cycle Control of Switching Converters. PESC’91 Record. 22nd Annual IEEE. 1991:888-896
    [58] Smedley, K.M, Cuk. S. Dynamics of One-cycle Controlled Cuk Converters. IEEE Trans. Power Electronics. 1995. 10(6): 634-639
    [59] K.Mark Smith, Zheren Lai. A New PWM Controller with One-cycle Response.IEEE Trans. Power Electronics. 1999.14(1): 142-150
    [60] Zheren Lai, Smedley, K.M. A New Extension of One-cycle Control and Its Application to Switching Power Amplifiers. IEEE Transactions on Power Electronics, 1996.11(1): 99-105
    [61] Zheren Lai, Smedley, K.M. A Family of Continuous-conduction-mode Power-factor-correction Controllers Based on the General Pulse-width Modulator. IEEE Trans. Power Electronics. 1998. 13(3):501-510
    [62] 蒋建文,单周控制静止无功发生器的研究,重庆大学硕士学位论文,2002,5
    [63] Smedley, K.M, Luowei Zhou. Unified Constant-frequency Integration Control of Active Power Filter: Steady-state and Dynamics. IEEE Trans. Power Electronics. 2001. 16(3): 428-436
    [64] Chongming Qiao, Taotao Jin, Smedley, K.M. Unified Constant-frequency Integration Control of Three-phase Active Power Filter with Vector Operation. PESC. 2001. 20(3): 1608-1614
    [65] 丁洪发,段献忠,何仰赞,.同步检测法的改进及其在三相不对称无功补偿中的应用,中国电机工程学报,2000, 20(6):17-20
    [66] 张桂斌,徐政,王广柱,基于空间矢量的基波正序、负序分量的实时检测方法,中国电机工程学报,2001, 21(10):1-5
    [67] 邹荣盛,刘会金,周青山,单周控制有源滤波器控制新方法,中国电机工程学报,2004,16(2):45-48
    [68] Luowei Zhou, Smedley, K.M. Unified Constant-frequency Integration Control of Active Power Filters[C]. Fifteenth Annual IEEE, Volume: 1, 2000, Page(s): 406-412 vol.1
    [69] 钱挺,吕征宇,胡进,基于单周控制的有源滤波器双环控制策略,中国电机工程学报,2003, 23(3):34-37
    [70] Chongming Qiao, Smedley, K.M, Maddaleno F. A Comprehensive Analysis and Design of a Single-phase Active Power Filter with Unified Constant-frequency Integration Control[C]. Power Electronics Specialists Conference, 2001. Page(s): 1619-1625 vol.3
    [71] Taotao Jin, Chongming Qiao, Smedley, K.M. Operation of Unified Constant-frequency Integration Controlled Three-phase Active Power Filter in Unbalanced System[C]. The 27th Annual Conference of the IEEE, Volume: 2, 2001. Page(s): 1539-1545 vol.2
    [72] Chongming Qiao, Smedley, K.M. Three-phase Bipolar Mode Active Power Filters. IEEE Transactions on, Volume: 38, Issue: 1, Jan.-Feb. 2002. Page(s): 149-158
    [73] Qiao, C., Smedley, K.M. Three-phase Active Power Filters with Unified Constant-frequency Integration Control[C]. Power Electronics and Motion Control Conference, Volume 2, 15-18 Aug. 2000 Page(s): 698-705 vol.2
    [74] 周林,蒋建文,周雒维,叶一麟,基于单周控制的三相四线制有源滤波器,中国电机工程学报,2003, 23(3):85-88
    [75] Aredes, M., Hafner, J., Heumann, K Three-phase Four-wire Shunt Active Filter Control Strategies. Power Electronics, IEEE Transactions on, Volume 12, Issue 2, March 1997 Page(s):311-318
    [76] 周晓军,周林,沈小莉,单周控制四桥臂三相四线制有源电力滤波器,重庆大学学报(自然科学版),2004, 27(3):77-80
    [77] 翁海清,孙旭东等,三电平逆变器直流侧电压平衡控制方法的改进,2002, 22(9):94-97
    [78] 宋强,刘文华,严干贵等,基于零序电压注入的三电平NPC 逆变器中点电位平衡控制方法,中国电机工程学报,2004, 24(5):57-62
    [79] 韦立祥,孙旭东,刘丛伟等,高性能三电平异步电机调速控制系统的研究和实现,清华大学学报(自然科学版),2001, 41(3):13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700