用户名: 密码: 验证码:
个体化人工股骨假体的CAD实践及与普通型人工股骨假体的模拟对比力学实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学和医学的迅速发展以及人们生活水平、医疗保健、康复水平的提高,加之人口的老龄化,人们对人体组织、器宫及骨折缺损的修复和置换等方面的要求日益提高,生物医用材料的研制,尤其是人工骨关节的研制与需求越来越广泛。近年来,人工关节置换手术作为有效的治疗方法在国内外得到了广泛的应用,而人工关节的形状以及与股骨髓腔吻合的程度,是直接影响人工关节长期稳定性、活动度及人工关节生物力学性能的重要因素。延长人工关节的有效使用寿命是人工关节研究的关键,而骨吸收和无菌性松动是影响其使用寿命的主要因素。由于人体的绝对个性化特点,标准人工假体与病人骨骼之间的误差使二者难以很好匹配,不能确保人工关节的长期稳定。同时,一些病人骨骼呈先天性畸形或由于骨骼病变造成骨与关节大面积损坏,其骨骼关节与正常情况明显不同,亦不可能选用标准人工假体。计算机辅助设计和制造(CAD/CAM)通过对病人骨骼的三维重建,为每一位病人进行特殊设计和制造,提高了假体与病变骨骼的匹配度,提高了人工关节的长期稳定性 ,有效防止了关节松动。
     在个体化人工髋假体的CAD及CAM方面,一些发达国家已做了很多工作,并将之应用于临床。在设计制造方面:从1974年CAD技术首次在THA领域为人工全髋关节个体化设计开始,随着计算机技术和现代影像技术的发展,计算机辅助设计和制造(CAD/CAM)在人工关节方面的应用也日益广泛。国内的研究尚处于探索起步阶段。目前国内尚未见到CAD/CAM个体化假体用
    
    
    于普通病人的报道。
     一、实验目的
     进一步修改调试已开发出的两套软件并进行假体的CAD设计,建立个体化假体柄的三维模型,同时利用Solidwork软件建立骨水泥型和生物型假体的三维模型。在Solidwork软件平台上对三种假体模型进行模拟对比力学实验分析,以验证验证我们开发的CAD程序的准确性与可行性以及个体化假体柄是否优于普通型人工股骨假体,为个体化假体柄的CAM奠定基础.
     二、材料与方法
     1、个体化股骨假体柄的三维重建
     (1)CT图像的获得
     取新鲜成人尸体股骨一根,用GESpeedLight16CT做全长连续扫描,层厚1.25mm得到股骨各层面的二维CT图像。储存至工作站备用。
     (2)CT图像预处理
     利用GESpeedLight16工作站将扫描到的CT图像制成虚拟光驱格式文件,转刻至700M之CD-R,在计算机上运行,直接得到CT图像,导入我们自行开发的CAD软件,进行后续实验。
     (3)边缘提取
     采用Canny边缘检测算子,进行边缘检测。
     ①首先求出所有点的平均坐标值,即形心。
     ②以形心为坐标原点,以水平轴为X轴,以垂直轴为Y轴,建立直角坐标系,计算所有各点与原点连线和X轴正半轴的夹角(逆时针),并按角度大小排序。
    
     ③确定两个初始点,一个是外轮廓,一个是内轮廓。
     ④确定两个按角度连续的轮廓线。
     (4)个体化股骨假体柄优化计算
     基于工程学与力学规则计算,进行拉拔切削。假设一与患者股骨髓腔完全匹配的骨柄已经在髓腔内,然后保持髓腔不动,按照一定的规则对骨柄进行拉拔一个很小的距离(层间距),接着再作一旋转运动,每完成一次拉拔和旋转就重新计算骨柄形状一次,主要根据运动之后的骨柄形状与髓腔进行切削计算,如此反复直至整个骨柄拔出并计算完毕,最后用计算机三维显示出来,这样一个符合生物力学特性的、与髓腔最大程度匹配的骨柄即已生成,并同时保证了该骨柄能够顺利地插回到髓腔中。
     (5)由二维轮廓线重建三维表面
     由轮廓线数据重建真实感三维表面,这样使图形看起来更直观、更逼真。
     2、骨水泥型和生物型股骨假体的三维重建
     (1)骨水泥型和生物型股骨假体的测量
     采用中国测试技术研究院测量仪器研究所生产的CLY系列单臂三维测量仪对生物型和骨水泥型假体进行测量,导出坐标数据。
     (2)骨水泥型和生物型股骨假体的三维重建
     利用三维CAD软件SolidWorks2001在计算机上进行自动化建模。
     3、个体化股骨假体与骨水泥型和生物型股骨假体的计算机模拟对比力学实验
     (1)假体模型的网格化
    
     利用三维CAD软件SolidWorks2001对计算模型进行有限元分析网格化。
     (2)个体化人工股骨假体与普通型人工股骨假体的对比力学实验
     在计算机上模拟临床手术进行截骨置换三类人工股骨假体,远端固定约束,分别模拟单足和双足站立状态。测量三种人工股骨假体在应力分布、界面应力、应力遮挡率、初始微动四个生物力学特性。
     三、实验结果
     1、本次实验对最初设计的软件中边缘提取算法进行了改进,采用了一种比较新的边缘检测算子-Canny算子。由于其在噪声抑制和边缘检测之间取得较好的平衡,我们得到了更好的边缘检测结果,提取的边缘十分完整,边缘的连续性很好,且不需要进行细化处理,减少了后续实验的误差。
     2、改进后的软件运行稳定可靠,计算结果可信,符合预期要求。
     3、设计的个体化人工股骨假体在应力分布、界面应力、初始微动等生物力学指标方面均大大小于普通生物型人工股骨假体和普通骨水泥型人工股骨假体,具有良好?
[Background] In the recent years, the total hip arthroplasty (THA) as the efficient treatment has been broadly applied in the clinical field, however the match degree of prosthesis shape to the femoral medullar cavity will directly affect the longevity of the prosthesis. Prolong the longevity is the key to prostheses design. Due to the diversity in different persons femoral shape, the common commercial prostheses can’t meet need of match degree, therefore the stability of the prostheses cannot be guaranteed as the time passes. Through the CAD/CAM assisted custom design, the life expectancy of prostheses will be highly improved and the loosing of the prostheses will be effectively avoided.
     [Objective] Further modified the existed two sets of software and made CAD design through them. As the three-dimensional model of the prosthesis was founded, we used Solidwork software to build three-dimensional cement prosthesis and biological prosthesis model. Compared and analyzed the biomechanical characters of these three different models on the Solidwork platform to verified the accuracy of the existed CAD program and whether the custom designed prosthesis is superior to the other ones, Therefore laid a foundation to the research of CAM designed prostheses.
     [Material and method]
     1. The three-dimensional reconstruction of the femoral prosthesis
    
     1.1 The obtain of the CT images
     GEspeedlight 16CT scanned one fresh adult cadaver femoral from the proximal to distal part. There was 1.25mm between each scanned slice and the two-dimensional images of each slice were obtained. All the obtained data were put into the computer workstation for the later use.
     1.2 The process of the obtained CT images
     The two-dimensional images of each slice in the workstation were conversed into the compact disc files and recorded on 700M CD-R. Through the calculation, we directly gained the CT images and using own developed CAD software carried on later experiments.
     1.3 The edge detective
     Use Canny edge detective system to detect the images’ edges.
     (1)Figured out the average coordinate value of all the detective edge points, namely the middle point in the three-dimensional space.
     (2)Took the middle point as the crossing point in the coordinate, the transverse line as the X-axis and the vertical as the Y-axis. Calculated the distance between each point and the crossing point. The angles (counter-clockwise) existing in them were also calculated.
     (3)Confirmed the two beginning point. one is in the outer contour, the other is in the inner contour.
     (4)Drew the contour according to the angle.
     1.4 The modifying calculation of the custom femoral prosthesis
     Femoral stem prosthesis was drawn through the reconstructed
    
    
    femoral medullar cavity base on the engineering calculation formula. The cutting process was performed in every drawing out. The same process was repeat until we attained a prosthesis that provided an optimal implant-bone and also surgically insertable.
     1.5 The conversion of two-dimensional images to three- dimensional one
     The originally obtained two-dimensional data were transformed into three-dimensional picture in order to make the picture more real for observation.
     2. the three-dimensional reconstruction of cement and biological femoral prostheses
     2.1 The CLY single-arm three-dimensional measurement device (made in China measurement technical institution) was used in measuring the cement and biological femoral prostheses. All measure data were put into the same coordinate.
     2.2 The three-dimensional reconstruction of cement and biological femoral prostheses model was automatically performed through the Solidworks 2001.
     3. The simulate comparison biomechanical experiment of cu stom designed femoral stem and cement、biological ones.
     3.1 the limitation analysis of these prostheses.
     3.2 The simulate comparison biomechanical experiment of custom designed femoral stem and cement 、biological ones. In the computer
引文
Mao Binyao. et al. 1st edition. Peking The Peopple Sanitation Publishing House. 2001 The Hip Prosthesis Surgery [毛宾尧等. 人工髋关节外科学. 第一版. 北京. 人民卫生出版社. 2001.]
    Walker PS, Robertson DD. Design and fabrication of cementless hip stems. Clin Orthop. 1988 Oct;(235):25-34.
    Harris WH. Current status of noncemented hip implants. Hip. 1987;251-6
    Harper MC, Carson WL. Curvature of the femur and the proximal entry point for an intramedullary rod. Clin Orthop. 1987 Jul; (220):155-61.
    Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop. 1988 Oct;(235):148-65.
    Robertson DD, Walker PS, hirano SK: Early mechanical failure in a series of53 cementless custom molded identifit total hip replacement. Proceedings American Academy Of Orthopaedic Surgeons Sixty-First Annual Meeting. NewOrleans, LA1998;44
    Martini F, Sell S, Kremling E, Kusswetter W. Determination of periprosthetic bone density with the DEXA method after implantation of custom-made uncemented femoral stems. Int Orthop. 1996;20(4):218-21.
    Dujardin FH, Mollard R, Toupin JM, Coblentz A, Thomine JM
    
    
    Micromotion, fit, and fill of custom made femoral stems designed with an automated process. Clin Orthop. 1996 Apr;(325):276-89.
    Aldinger G, Weipert A. 3D-based production of hip joints: the Aldinger system. In: Radiologe 1991 Oct,31(10):474-80
    Ioannis D Gelalis; Theodore A Xenakis; Michael Hantes; Kostantine Vartziotis; Panayiotis N Soucacos; Three-diemensional computerized selection of hip prostheses in patients with congenital dislocatedhips. Orthopedics; Thorofare; Nov 2001.
    Reuben JD, Chang CH, Akin JE et al. A knowledge based computer-aided design and manufacturing system for total hip replacement. In: Clin Orthop 1992 doe,(258):48-56.
    Bargar WL; Murzic WJ; Taylor JK et al Management of bone loss in revision total hip arthroplasty using custom cementless femoral components. J Arthroplasty 1993 Ju;8(3);245-52.
    Lian Ping. et al. Journal of China Surgery. 1996; Vol, 34(6):330-332. [连平,等.腰骶椎管及其内容物三维图像重建的实验研究. 中华外科杂志. 1996;Vol,34(6):330-332.]
    Chen Weinan et al. Journal of Biomedical Engineering. 2000; 17(3):292-294. [陈伟南, 等. 三维重建上肢解剖结构的计算机模拟手术. 生物医学工程杂志, 2000;17(3):292-294.]
    Wang Tao, Cai Jianguo. The analysis of custom hip prosthesis CAM practice. Engine Design and research. 1999.No.4[王涛, 蔡建国. 定做式人工髋关节的CAM实践分析. 机械设计与研究. 1999 No.4]
    
    Otten E, van Lecuwen JL. A 3-D reconstruction package from serial sections images. Eur J Cell Biol, 1989,48(Suppls.25):73
    Maurer CR. Aboutanos GB. et al. Registration of 3-D images using weighted geometrical features. IEEE Transactions on Medical Imaging, 1996,15(6):12
    王汝传. 计算机图形技术原理及其应用. 人民邮电出版社, 1998年2月
    Paul W. Fieguth, William C. Karl, Alan S. Willsky. Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction. Computer Vision And Image Understanding. 1998,May: 157-176;
    Pria N. Werahera, Gary J. Miller. Gerald D. Taylar. Thomas Brubaker. Firouz Daneshgari. A 3-D Reconstruction Algorithm for Interpolation and Extrapolation of Planar Cross Sectional Data[J]. IEEE Transactions on Medical Imaging. 1995,14(4):765-771.
    Chenyang Xu, Dzung L. Pham, Maryam E. Rettmann, Daphne N. Yu. Reconstruction of the Human Cerebral Cortex from Magnetic Resonance Images. IEEE Transactions on Medical Imaging. 1999, 18(6):467-479.
    Jones M W, Chen M. 1994. A New Approach to the Construction of Surfaces from 23. Contour Data. Eurographics’ 94,13(3), C75~C84
    李智勇等. 动态图像分析[M]. 北京: 国防工业出版社,1999.
    Carlbom, Terzopoulos D, Harris M. Computer assisted
    
    
    registration and 3D reconstruction from images of neuronal tissue sections, IEEE Trans. On Medical imaging,1994,13
    Karel J. Zuiderveld, Anton H. J. Koning, Rik Stokking, J. B. Antoine Maintz. Multimodality Visualization of Medical Volume Data. Comput & Graphics, 1996,Vol 20,No 6:775-790
    Charles R. Meyer, Gregg S. Leichtman, James A. Brunberg. Simultaneous Usage of Homologous Points, Lines, and Planes for Optimal, 3-D, Linear Registration of Multimodality Imaging Data. IEEE Transations on Medical Imaging. 1995,Vol 14. No.1:1-11;
    Abhijit S. Pandya, Robert B. Macy. Pattern Recognition With Neural Networks in C++. America, CRC Press, InC.,1996
    Charnley. J Low friction arthroplasty of the hip:theory and practice. New York: Springer-Verlag 1979, 1-300
    D’Antonio JA. Periprosthetic bone loss of the acetabulum. Classification and management. Orthop Clin North Am, 1992, 23:279-285.
    Engh. CA, Bafyn JD. The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop, 1988,270:231,7-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700