用户名: 密码: 验证码:
岩石圈介质结构的不均匀性对地震同震、震后位移影响的三维数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震同震位移场的模拟受很多参数控制,从震源角度看:诸如断层的几何结构,倾角的大小,位错的分布等;从介质结构角度看:如半空间均匀模型、横向分层以及纵向分层介质模型;从弹性参数角度看:如拉梅常数,弹性模量以及泊松比等。定量的分析这些参数对地震同震位移的影响有助于我们根据地震破裂过程了解地震造成的地表形变特征或利用观测的形变资料识别断层的活动特征。在粘弹性松弛的震后形变理论中,震后形变则受控于同震形变和介质的粘性结构。探讨各种粘性结构介质中震后位移场的特征,有助于我们利用震后形变资料研究岩石的粘性。
     本文首先回顾了同震形变、震后形变理论研究的背景。然后介绍了有限元方法的基本理论。在此基础之上,定量探讨了介质的不均匀性对地震同震、震后位移场的影响。最后分别以大陆内部和俯冲区域发生的逆冲大地震:汶川地震、日本地震为例,构建符合当地发震区域的介质结构,在观测资料的约束下,定量的模拟介质的不均匀性对地震同震位移以及震后位移的影响。论文主要包括以下内容:
     (Ⅰ)介质的不均匀性和断层倾角对同震位移场的影响
     影响同震位移分布的主要因素包括断层的滑动分布、断层的几何参数以及介质的弹性参数。本项研究主要利用三维有限元数值模拟的方法,定量研究介质不均匀性和断层倾角变化对同震位移场的影响。而滑动分布则选用简单的有限矩形走滑、逆冲或正断层滑动。数值模拟显示:(1)在均匀及纵向分层介质模型中,对于垂直走滑断层地震,水平位移场分量与介质的泊松比呈较弱负相关,垂直位移场与介质的泊松比呈正相关,水平位移场与剪切模量呈正相关,垂直位移场与剪切模量呈负相关;(2)模型介质的横向变化对同震位移场具有较大影响,剪切模量的横向变化对地震的位移场影响最大,断层左侧块体地震位移场与左侧块体介质的剪切量呈负相关,在垂直走滑断层地震中,断层右侧块体弹性参数不变、左侧块体剪切模量减半可使左侧块体的最大垂直位移分量幅度增大55.6%;(3)倾角对同震位移场有重要影响,在断层附近,倾角对位移场有主要的控制作用,对于高倾角逆冲断层(60~90度),上盘断层附近区域的水平位移场出现反向区,反向区域的范围随倾角的增大而增大,当倾角为90度时,上盘水平位移场全部反向;断层倾角增大时,在断层附近下盘的水平位移场增大幅度较大。
     (Ⅱ)介质粘弹性结构的不均匀性对震后位移场的影响
     在粘弹性松弛震后形变理论中,介质的粘弹性结构在震后位移场的特征中起着重要的控制作用,传统的半解析解无法考虑介质粘性的横向差异。我们构建简单的走滑断层地震,采用有限元的数值方法,定量的分析不同的粘弹性介质及粘性结构不均匀介质中地震震后形变的特征。数值模拟显示:(1)麦克斯韦介质在模拟地震震后形变中存在不协调问题,当粘性较低(如1018Pa.s)时,粘弹性松弛会很快达到平衡,无法模拟时间跨度较长的震后形变,当粘性较高时,震后位移随时间成线性增大,不符合一般观测的震后位移呈指数变化特点,采用广义麦克斯韦体介质,能较好的改善这一问题;(2)纵向分层(果冻三明治模型、奶油焦糖布丁模型)的粘弹性介质模型中,震后位移随时间松弛趋势与半空间均匀介质中的震后位移松弛趋势一致。相对于上地幔,下地壳的粘性对震后位移场的影响较大,在相同时间内,较弱的下地壳模型要比较弱的上地幔模型中震后位移松弛幅度大;(3)在横向不均匀的粘弹性模型中,粘性相对较强的块体中断层附近震后位移分量呈现与同震位移运动方向相反的特点,在相同的时间内粘性较弱的块体中震后位移量大于粘性较强块体中的震后位移。(4)断层一侧块体含有粘性较弱的流动通道时,其震后位移的松弛特点与下地壳上地幔粘性横向不均匀模型中的震后位移松弛特征相同。
     (Ⅲ)汶川Ms8.0地震的同震、震后位移场
     汶川Ms8.0地震发震区域的介质背景以及断层破裂滑动分布比较复杂,我们采用有限元算法,分别利用由Ji and Hayes以及Nishimuru and Yaji给出的滑动分布模型,参考地震波反演给出的发震区域的介质参数,计算汶川地震的同震位移场,比较断层滑动分布对地震同震位移场的影响,并将地表同震位移场的计算值与GPS观测值对比。此外参考CRUST2.0构建汶川地震局部区域的纵向分层介质模型,比较介质结构的差异对汶川地震同震位移场的影响。在震后位移场的模拟中,分别构建粘性横向均匀、横向分层的广义麦克斯韦体粘弹介质模型,探讨粘性差异介质结构中震后位移场的特征,并与观测到的汶川地震的震后位移场做比较,从粘弹性松弛理论的角度对汶川地震的震后位移场进行一个定性的分析。数值结果显示:(1)断层附近两侧的水平位移场呈现明显的相向运动,随着离断层距离的增大,位移场逐渐衰减。破裂区的南部以断层的逆冲运动为主,北部区域以右旋走滑为主,在较远范围内计算结果与GPS及InSAR观测值符合较好;(2)介质的弹性参数对同震位移场同样有一定的影响,相对于采用发震区域的Crust2.0介质结构,采用地震波反演的介质结构在断层附近引起的位移分量差异约10%,但是由于地震波给出的介质参数中,青藏高原的上地壳剪切模量相对四川盆地较强,即使考虑到介质的横向差异无益改善断层附近的位移场的计算值与观测值的差异。(3)断层的滑动分布对同震位移场有显著的影响,采用Ji and Hayes和Nishimuru and Yaji给出的滑动模型计算所得同震位移场在水平方向以及垂直方向都有较大的差异,这表明有必要采用地震波数据和形变观测位移数据,比如GPS和InSAR观测的数据联合反演以获取更合适的滑动分布;(4)震后数值模拟结果发现采用粘性横向差异的粘弹性模型计算的汶川地震的震后位移场特征与GPS观测的震后形变特征大体一致,震后位移随时间呈指数变化,断层两侧震后位移幅度不一致,粘性较弱上盘震后位移松弛幅度要大于粘性较强的下盘位移松弛幅度。断层两侧块体的粘性差异越大,震后位移松弛幅度差异越大;(5)在考虑粘性横向差异的模型中,在以逆冲为主区域的断层附近震后水平位移呈现反向,我们认为,龙门山断层两侧粘性横向差异可能是导致基于GPS观测到的汶川地震断层附近震后位移场反向的原因。
     (Ⅳ) 2011 Mw 9.0 Honshu地震的同震位移场
     2011年Mw9.0 Honshu地震为发生在俯冲带区域的低倾角逆冲大地震,俯冲带两侧介质存在显著的横向差异,震后很多研究机构基于地震波反演给出了日本地震的滑动分布,在反演的结果中,断层的几何参数以及最大滑动分布差异比较大。本章将参考地震反演给出的日本地震发震区域介质结构,分别计算了不同的滑动分布产生的同震位移场。并将计算结果与GPS测定的日本同震位移场进行对比,选取符合较好的滑动分布模型。为研究日本2011 Mw 9.0 Honshu地震的震后形变机制以及探讨震后的应力变化提供一个较好的约束。此外,参考Crust2.0模型,构建纵向均匀介质模型,比较介质的差异对日本地震同震位移场的影响。数值模拟显示:
     (1)日本地震的水平位移场以断层为中心,两侧位移相向运动,上盘位移远大于下盘位移。地表垂直位移场在断层区域呈现隆起,隆起两侧沉降。呈现典型的低倾角逆冲断层大地震的特征。
     (2)地表同震位移随断层的距离呈指数衰减,在断层附近,相对于Wei et al (2011)给出的滑动分布计算结果,采用Shao et al (2011)给出的滑动模型计算的同震位移在断层附近的最大值较大(最大约21m)。由此可见,在反演断层的滑动分布时,应考虑近场形变的信息。
     (3)介质的横向差异对日本地震的同震位移场影响显著,相对于采用纵向分层的Crust2.0介质模型,采用地震波反演给出的横向不均匀模型计算的位移分量要大0.57-1.77m,因此,对于日本地震,在同震位移场的正演以及利用观测形变资料反演断层的滑动分布的反演的工作中应当考虑到介质的横向差异。
Factors influencing co-seismic displacements include fault slip distribution, fault geometry, rock’s elastic property, and so on. Quantifying their effects on the co-seismic deformation helps to understand the relationship between the surface deformation and the fault rupture process, thus help to recognize the characteristics of the fault with deformation observations. Post-seismic deformation is mainly controlled by the co-seismic deformation and rock’s viscoelastic property. Knowledges about the dependence of post-seismic deformation on different viscoelastic properties help to understand the rheology of the lower crustal and upper mantle form geodetic measurements such as postseismic deformation.
     In this paper, after a brief review on researches about co-seismic and post-seismic deformation, I briefly introduced the basics of finite element solutions to the elastic and viscoelastic deformation and the finite element program--pylith. Then the effects of elastic heterogeneities on the co-seicmic deformation and viscoelastic heterogeneities on post-seismic deformation are discussed in details based on numerical simulations in chapter 3 and chapter 4 respectively. Discussions on the effects of elastic or viscoelastic heterogeneities on the co-seismic or post-seismic deformation of the 2008 Ms 8.0 Wenchuan earthquake and the 2011 Mw9.0 Honshu earthquake are presented in chapter 5 and chapter 6 respectively. Main contributions of this paper are as follows.
     (1)The influences of elastic heterogeneity and the dip of the fault on co-seismic deformation
     The effects of elastic heterogeneity and the dip of the fault on the co-seismic deformation have been studied in a three-dimensional finite element numerical model. In this part, the fault slip models include finite rectangular strike-slip, thrust and normal faults. The numerical results show that: (1) for a vertical strike-slip earthquake in homogeneous or horizontally homogeneous medium, the co-seismic deformation is slightly depend on the Poisson’s ratio, with increases in Posson’s ratio, the horizontal displacements decrease and the vertical displacements increase. The analysis for the relationship between coseismic deformation and shear modulus shows that horizontal displacements increase with shear modulus while vertical displacements decrease with shear modulus; (2) In horizontally heterogeneous medium, the shear modulus plays a significant role on the surface displacements, the relationship between shear modulus is negative, in the case of the elastic parameters on the right block of fault remain unchanged, the increase extent of maximum vertical displacements on the left block of fault reaches 55.6% due to halving the shear modulus of the left block of fault. Horizontal displacements on the hanging wall, the range of opposite direction region increase with dip-angle; and the increase extent of coseismic displacements on the foot wall are obvious.
     (2)The influences of viscoelastic heterogeneities on the post-seismic deformation
     Viscoelastic properties control the post-seismic deformation in viscoelastic relaxation model. Conventional semi-analytic solutions can not account for lateral variations in viscoelastic properties. In this part, the influence of viscoelastic heterogeneity on postseismic deformation was studied with the aid of finite element numerical method. In our models, the fault motion is supposed to be simple finite rectangular strike-slip. The numerical results show that: (1) the maxwell viscoelastic medium was limited in simulating the post-seismic deformation. Post-seismic viscoelastic relaxation would reach balance too soon in the case of low viscousity (e.g. 1018Pa.s), thus can’t interpret the observed post-seismic deformation in long time scales; the post-seismic displacements will relax linearly with time if the viscousity set too high ,thus can’t account for post-seimic displacements relax exponentially with time. Using the General maxwell's body may get a better improvement. (2) In the vertically-layered viscoelastic model (e.g. jelly sandwich or crème brulee model), the tendency of post-seismic displacements relax with time is consistent with that in the model with elastic layer over a homogeneous viscoelastic half-space. Compare with the viscoelastic upper mantle, the viscousity in the lower crust dominate the character- rristics of the post-seismic displacements.In the same time, the relax displacements within the model of low viscousity in the lower crust is great than that within the model of low viscousity in the upper mantle; (3) in the lateral variations viscoelastic model, the post-seismic displacements near the fault move in the opposite direction compare with co-seismic displacements within the relatively strong viscoustiy block,In the same time, the relax displacements within lower viscousity block are great than that within stronger viscousity block.
     (3)The co-seismic and post-seismic deformation of the 2008 MS8.0 Wenchuan earthquake in China
     Based on the finite element numerical algorithm, the coseismic displacements of the Wenchuan MS8.0 earthquake are calculated with the rupture slip vectors derived by Ji and Hayes as well as Nishimura and Yaji. Except in a narrow strip around the rupture zone, the coseismic displacements are consistent with those from GPS observ- ation and InSAR interpretation. Numerical results show that rupture slip vectors and elastic properties have profound influences on the surface coseismic deformation. Results from models with different elastic parameters indicate that;(1) in homogeno- us elastic medium, the surface displacements are weakly dependent on Poisson’s ratio and independent of the elastic modulus;(2) in horizontally homogeneous medium with a weak zone at its middle, the thickness of the weak zone plays a significant role on calculating the surface displacements;(3) in horizontally and vertically heterogeneous medium, the surface displacements depend on both Poisson’s ratio and elastic modulus. Calculations of coseismic deformation should take account of the spatial variation of the elastic properties. The misfit of the numerical results with that from the GPS observations in the narrow strip around the rupture zone suggests that a much more complicated rupture model of the Wenchuan earthquake needs to be established in future study ;( 4) the characteristic of post-seismic deformation calculated by applying lateral variations viscoelastic model is in accordance with that from the GPS observed for the Wenchuan earthquake, the post-seismic displacement relax exponentially with time,in the same time, the relax post-seismic displacements within lower viscousity uping wall are great than that within stronger viscousity down wall;(5) the post-seismic displacements near the fault domainated by reverse move in the opposite direction compare with co-seismic displacements within the relatively strong viscoustiy down wall,and the observed opposite direction in post-seismic displacement near the fault may be induced by lateral variations in viscoelastic properties
     (4)The coseismic deformation of the 2011 Mw 9.0 Honshu earthquake
     2011 Mw 9.0 Honshu earthquake is a megathrust earthquake which occurred on the subduction zone. The lateral variations of medium on the both sides of subduction fault are obvious. Many research institutions have given the fault slip model by inversion. The inversion results show some discrepancy in the fault angle and maximum final slip. In this section, we will calculate the displacements induced by different fault slip within the lateral variations medium based on the seismic inversion results and compare the calculated results with the GPS observations of co-seismic displacements. We will select a fault slip model of which induced displacements fit the GPS observed displacements best to give constraints for the research of post-seismic deformation mechanism. Furthermore, the other vertically-layered earth model was introduced refer to the with the purpose of comparing the effect of lateral variations medium on the 2011 Mw 9.0 Honshu earthquake’s co-seismic deformation. The numerical results show that :(1) the horizontal displacements show that there is a significant opposite movement near the rupture zone after the Honshu earthquake The displacements amplitude on the hanging wall is lager than that on the foot wall. In the vicinity of rupture zone, the displacements are mainly upward and the displacements in the two sides of the rupture zone are mainly downward, all of which are the characteristic of displacements of the megathrust earthquake; (2) the amplitude of the movements decreases with the distance to the rupture zone increasing and the maximum amplitude of displacements induced by different fault slip differ greatly, the maximum displacements calculated by Jichen’s slip model is 21m, therefore it is necessary to combine the seismic wave and surface deformation information to obtain proper fault slip vector in the fault; (3) the effect of lateral variations in elastic properties on the displacements of the 2011 Mw 9.0 Honshu earthquake is obvious.the maximum difference of displacement induce by the lateral variations in elastic medium can reach to 1.77m, So it is necessary to consider the lateral variations in elastic medium for the 2011 Mw 9.0 Honshu earthquake when inversing the fault slip and calculating the co-seismic deformation and post-seismic deformation.
引文
刁法启,熊熊.基于GPS观测的同震、震后形变研究.中国科学院博士学位论文2011.
    中国地震局人教科技司. GPS连续观测站获得的震后变形状态http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/09_05/07/1241669386743.html 2009.
    王敏.基于GPS同震位移场约束反演2008年5.12汶川大地震破裂空间分布.地球物理学报2009 52(10):2519-2525.
    王为民,赵连峰,等.四川汶川8.0级地震震源过程.地球物理学报2008 51(5):1403-1410.
    王卫民,郝金来,等. Preliminary result for rupture process of Mar. 11, 2011, Mw 8.9 earthquake, near the east coast of Honshu, Japan. http://www.itpcas.cas.cn/xwzx/zhxw/201103/t20110313_3084099.html 2011.
    王栋,谢礼立.断层倾角对上/下盘效应的影响.地震工程与工程振动2007 27(5):1-6.
    王辉,刘杰,等.鲜水河断裂带强震相互作用的动力学模拟研究.中国科学D辑:地球科学2008 38(7):808-818.
    申重阳,李辉,等.汶川8.0级地震同震重力与形变效应模拟.大地测量与地球动力学2008 28:6-12.
    任金卫,王敏. GPS观测的2001年昆仑山口西Ms 8.1级地震地壳变形.第四纪研究2005 25(1):34-44.
    朱守彪,张培震. 2008年汶川Ms8.0地震发生过程的动力学机制研究.地球物理学报2009 52(2):418-427.
    朱桂芝,石耀霖,等.西太平洋板块向我国东北地区深部俯冲的数值模拟.地球物理学报2009 52(4):950-957.
    何宏林,魏占玉,等.汶川地震破裂近场震后变形观测及其意义.科学通报2010 55(17): 1702-1709.
    李志才,许才军,等.基于地壳分层的唐山地震断层震后变形分析.地球物理学报2005 20(4):961-968.
    杜方,闻学泽,等. 2008年汶川8.0级地震前横跨龙门山断裂带的震间形变.地球物理学报2009 52(11):2729-2738.
    沈正康,万永革,等.东昆仑活动断裂带大地震之间的黏弹性应力触发研究.地球物理学报2003 46(6):786-795.
    屈春燕,宋小刚,等.汶川Ms8.0地震InSAR同震形变场特征分析.地震地质2008 30(4): 1076-1084.
    邵志刚,周龙泉,等. 2008年汶川Ms8.0地震对周边断层地震活动性的影响.地球物理学报2010 53(8):1784-1795.
    邵志刚,傅容珊,等.以Burgers体模型模拟震后粘弹性松弛效应.大地测量与地球动力学2007 27(5):31-37.
    邵志刚,傅容珊,等.昆仑山Ms8.1级地震震后变形场数值模拟与成因机理探讨.地球物理学报2008 51(3):805-816.
    施行觉,李成波,等.地球介质的非定常参数黏弹模型.地球物理学报2009 52(1): 50-56.
    徐锡伟,闻学泽,等.汶川Ms 8.0地震地表破裂带及其发震构造.地震地质2008 30(9): 597-629.
    袁旭东,汪汉胜,等.同震变形中模型分层和重力影响研究.大地测量与地球动力学2007 27(1):69-76.
    陶玮,胡才博,等.铲形逆冲断层地震破裂动力学模型及其在汶川地震研究中的启示.地球物理学报2011 54(5):1260-1269.
    傅承义,陈运泰,等.地球物理学基础.科学出版社1985.
    雷建设,赵大鹏,等.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报2009 52(2).
    冯万鹏,许力生,等.利用InSAR资料反演2008年西藏改则Mw6.4和Mw5.9地震的断层参数.地球物理学报2009 52(4): 983-993.
    刘宇平,张清志,等.四川汶川Ms8.0级地震的同震位移量.地质通报2008 27(12): 2086-2089.
    刘杰,石耀霖,等.基于准三维有限元方法建立的地震活动模型.地球物理学报2001 44(6): 814-824.
    单建新,宋小刚,等.汶川Ms8.0地震前InSAR垂直形变场变化特征研究.地球物理学报2009 52(11):2739-2745.
    单斌,熊熊,等. 2008年5月12日Mw7.9汶川地震导致的周边断层应力变化.中国科学D辑:地球科学2009 39(5):537-545.
    吴珍汉,张作辰.四川汶川Ms8.0级地震的地表变形与同震位移.地质通报2008 27(12): 2067-2075.
    国家重大科学工程“中国地壳运动观测网络”项目组. GPS测定的2008年汶川Ms8.0级地震的同震位移场.中国科学D辑:地球科学2008 38(10):1195-1206.
    孙建宝,徐锡伟,等.东昆仑断裂玛尼段震间形变场的InSAR观测及断层滑动率初步估计.自然科学进展2007 17(10):1361-1370.
    孙荀英,刘激扬,等. 1976年唐山地震震时和震后变形的模拟.地球物理学报1994 37(1): 45-55.
    张竹琪,张培震,等.龙门山高倾角逆断层结构与孕震机制.地球物理学报2010 53(9): 2068-2082.
    张克亮,魏东平.重力与粘弹性对汶川地震同震及震后变形的影响.物理2009 38(4): 254-260.
    张勇,冯万鹏,等. 2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学2008 38(10): 1186 -1194.
    张晁军,石耀霖,等.昆仑山大地震震后形变反映的地壳岩石流变特性.岩土力学2009 30(9): 2552-2558.
    张晁军,曹建玲,等.从震后形变探讨青藏高原下地壳粘滞系数.中国科学D辑:地球科学2008 38(10):1250-1257.
    张培震,徐锡伟,等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报2008 51(4):1066-1073.
    张智,陈赟,等.利用地震面波频散重建川滇地区壳幔S波速度.地球物理学报2008 51(4): 1114-1122.
    张国宏,屈春燕,等.基于InSAR同震形变场反演汶川Mw7.9地震断层滑动分布.地球物理学报2010b 53(2):269-279.
    张国宏,屈春燕,等.基于GPS和InSAR反演汶川Mw7.9地震断层滑动分布.大地测量与地球动力学2010a 30(4):19-24.
    杨海燕,胡家富,等.川西地区壳幔结构与汶川Ms8.0级地震的孕震背景.地球物理学报2009 52(2):356-364.
    楼海,王椿镛,等. 2008年汶川Ms8.0级地震的深部构造环境-远震P波接收函数和布格重力异常的联合解释.中国科学D辑:地球科学2008 38(10):1207-1220.
    许才军,刘洋,等.利用GPS资料反演汶川Mw7.9级地震滑动分布.测绘学报2009 38(3): 195-201.
    谈洪波,申重阳,等.地壳分层和地壳厚度对汶川地震同震效应的影响.大地测量与地球动力学2010 30(4):29-35.
    谈洪波,申重阳,等.汶川大地震震后重力变化和形变的粘弹分层模拟.地震学报2009 31(5):491-505.
    谭凯,李杰,等.大地测量约束下的阿尔泰山岩石圈流变结构.地球物理学报2007 50(6): 1713-1718.
    谭凯,沈强,等.汶川Mw7.9地震InSAR同震形变场的校验.大地测量与地球动力学2010 30(2):14-18.
    赵翠萍,陈章立,等.汶川Ms8.0级地震震源破裂过程研究:分段特征.科学通报2009 54(22):3475-3482.
    邓志辉,杨主恩,等.四川汶川Ms8.0级地震北川-映秀地表破裂的复杂现象.科学通报2008 53(20):2509-2513.
    陈运泰,许力生,等. 2008年5月12日汶川大地震震源特性分析报告. http://www.cea-igp.ac.cn/汶川地震专题/地震情况/初步研究及考察结果(一).pdf 2008.
    陈运泰,黄立人,等.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报1979 23(3):201-217.
    马寅生,龙长兴,等.四川汶川Ms8.0级地震同震变形特征和分段性.地质通报2008 27(12): 2076-2085.
    黄立人,顾国华.静力位错理论.地震出版社1981
    Aagaard, B., C, Williams, et al. Pylith: A finite-element code for modeling quasi-static and dynamic crustal deformation. Eos Trans. AGU 2007 8 8(52): Abstract T21B-0592.
    Aagaard, B., C, Williams, et al. Pylith: A finite-element code for modeling quasi-static and dynamic crustal deformation. Eos Trans. AGU 2008 89 (53): Abstract T41A-1925.
    Aagaard, B., S. Kientz, et al. Pylith user manual. www.geodynamics.org Ammon, C. J., C. Ji, et al. Rupture process of the 2004 Sumatra-Andaman earthquake. SCIENCE 2005 308.
    Anderson, G. and Hadley. A new statistical test for static stress triggering : Application to the 1987 Superstition Hills earthquake sequence. JOURNAL OF GEOPHYSICAL RESEARCH 1999 104(B9): 20153-20168.
    Apsel, R. J. and J. e. Luco. On the green's fuctions for a layered half-space . Part II. Bulletin of the Seismological Society of America 1983 73(4): 931-951.
    Beaumont, C., R. A. Jamieson, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 2001 414: 738-742.
    Bills, B. G., D. R. Currey, et al. Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern. JOURNAL OF GEOPHYSICAL RESEARCH 1994 99(B11): 22059-22086.
    Burchfiel, B. C., L. H. Royden, et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008 Sichuan People's Republic of China. GSA Today 2008 18(7).
    Burgmann, R. and G. Dresen. Rheology of the lower crust and upper mantle:evidence from rock mechanics, Geodesy, and Field Observations. Annu. Rev. Earth Planet. Sci. 2008 36(1): 536-567.
    Carolina, P., S. Freysteinn, et al. Glacio-isostatic deformation around the vatnajokullicecap ,iceland,induced by recent climate warming: GPS observations and finite element modeling. JOURNAL OF GEOPHYSICAL RESEARCH 2007 112(B08405): 1-12.
    Chandrupatla, T. R. and A. D. Belegundu. Introduction to finite elements in engineering(Third edition). 2002.
    Chang, L., C. Wang, et al. Seismic anisotropy of upper mantle in Sichuan and adjacent regions SCIENCE IN CHINA (Series D) 2008 51(12): 1683-1693.
    Chen, X. A systematic and efficient method of computing normal modes for multilayered half-space. Geographic Information Science 1993 115(2): 391-409.
    Chinnery, M. A. The deformation of the ground around surface faults. Bulletin of the Seismological Society of America 1961 51(3): 355-372.
    Chinnery, M. a. The stress changes that accompany strike-slip faulting Bulletin of the Seismological Society of America 1963 53(5): 921-932.
    Clark, M. K. and L. H. Royden. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 2000 28(8): 703-706.
    Deng, J., M. Gurnis, et al. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. SCIENCE 1998 282: 1689-1692.
    Deng, J. and L. R. Sykes. Stress evolution in southern California and trggering of moderate-,small-,and micro-size earthquakes. JOURNAL OF GEOPHYSICAL RESEARCH 1997a 102(B11): 24411-24435.
    Deng, J. and L. R. Sykes. Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective. JOURNAL OF GEOPHYSICAL RESEARCH 1997b 102(B5): 9859-9886.
    Diao, F., X. Xiong, et al. Slip model of the 2008 Mw7.9 Wenchuan(China) earthquake derived from the co-seismic GPS data. Earth and Space 2010 62: 869-874.
    Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu.Rev.Earth Planet.Sci 2005 33: 335-367.
    Freed, A. M., R. Burgmann, et al. Implications of deformation following the 2002 Denali, Alaska,earthquake for postseismic relaxation processes and lithospheric rheology. JOURNAL OF GEOPHYSICAL RESEARCH 2006 111(B01401): 1-23.
    Freed, A. M. and J. Lin. Delayed trggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer. Nature 2001 411: 180-183.
    Gaherty, J. B. and T. H.Jordan. Seismic structure of the upper mantle in a central Pacific corridor. JOURNAL OF GEOPHYSICAL RESEARCH 1996 101(B10): 22291-22309.
    Ge, L., K. Zhang, et al. Preliminary results of satellite radar differential interferometry for theco-seismic deformation of the 12 May 2008 Ms8.0 Wenchuan earthquake. Geographic Information Sciences 2008 14(12-19).
    GSI. Preliminary GPS time series provided by the ARIA team at Jpl and Caltech. ftp://sideshow.jpl.nasa.gov/pub/usrs/ARIA/ 2011.
    Hardebeck, J. L., J. J. Nazareth, et al. The static stress change triggering model: Constraints form two southern California aftershock sequences. JOURNAL OF GEOPHYSICAL RESEARCH 1998 103(B10): 24427-24437.
    Hayes, G. Updated result of the mar 11, 2011 Mw 9.0 earthquake Offshore Honshu, Japan. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php 2011.
    Hearn, E. H. What can GPS data tell us about the dynamics of post-seismic deformation. Geophys.J.Int 2003 155: 753-777.
    Hearn, E. H., R. Burgmann, et al. Dynamics of izmit earthquake postseismic deformation and loading of the duzci earthquake hypocenter. Bulletin of the Seismological Society of America 2002 92(1): 172-193.
    Hilley, G. E., R. Burgmann, et al. Bayesian inference of plastosphere viscosities near the Kunlun fault,northern Tibet. GEOPHYSICAL RESEARCH LETTERS 2005 32(L01302): 1-4.
    Hsu, Y.-J., P. Segall, et al. Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake. Geophys.J.Int 2007 169: 367-379.
    Ji, C. and G. Hayes. Preliminary result of the 12 May 2008 Mw7.9 eastern Sichuan,China earthquake. http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/finite_fault.php 2008.
    Kaufmann, G. and F. Amelung. Reservoir-induced deformation and continental rheology in vivinity of lake Mead,Nevada. JOURNAL OF GEOPHYSICAL RESEARCH 2000 105(B7): 16341-16358.
    Kenner, S. J. and P. Segall. Lower crustal structure in northern California: Implications from strain rate variations following the 1906 San Francisco earthquake. JOURNAL OF GEOPHYSICAL RESEARCH 2003 108(B1): 1-17.
    King, G. C. P., R. S. Stein, et al. Static stress changes and the triggering of earthquakes Bulletin of the Seismological Society of America 1994 84(3): 935-953.
    Kruger, F. and M. Ohrnberger. Tracking the rupture of the Mw 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 2005 435: 937-939.
    Larsen, C. F., R. J. Motyka, et al. Rapid viscoelastic uplift in southeast Alaska caused by post-little ice age glacial retreat. Earth and Planetary Science Letters 2005 237: 548-579.
    Lay, T., H. Kanamori, et al. The great Sumatra-Andaman earthquake of 26 december 2004.SCIENCE 2005 308: 1127-1133.
    Li, F. and J. Huang. Three-dimensional numerical simulation on the coseismic deformation of the 2008 Ms8.0 Wenchuan earthquake in China. Earthquake Science 2010 23: 191-200.
    Luco and Apsel. On the green's functions for a layered half-space. Part I. Bulletin of the Seismological Society of America 1983 73(4): 909-929
    Mansinha, L. and D. E. Smylie. The displacement fields of inclined faults Bulletin of the Seismological Society of America 1971 61(5): 1433-1440.
    Marone, C. J. and R. Bilham. On the mechanics of earthquake afterslip. JOURNAL OF GEOPHYSICAL RESEARCH 1991 96(b5): 8441-8452.
    Marsan, D. Triggering of seismicity at short timescales following Californian earthquakes. JOURNAL OF GEOPHYSICAL RESEARCH 2003 108(B5): 1-14.
    Martin, F. L., F. Roth, et al. Elastic and inelastic triggering of earthquakes in the North Anatolian fault zone. Tectonophysics 2006 424: 271-289.
    Masterlark, T. and H. F. Wang. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, Earthquakes. Bulletin of the Seismological Society of America 2002 92(4): 1470-1486.
    McCarey, R., M. D. Long, et al. Rotation and plate locking at the southern Cascadia subduction zone. GEOPHYSICAL RESEARCH LETTERS 2000 27(19): 3117-3120.
    Menahem, A. B., S. J. Singh, et al. Static deformation of a spherical earth model by internal dislocations. Bulletin of the Seismological Society of America 1969 59(2): 813-853.
    Muto, J. Rheological structure of northeastern Japan lithosphere based on geophysical observations and rock mechanics. Tectonophysics 2011 503: 201-206.
    Nakajima, J. and A. Hasegawa. Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? GEOPHYSICAL RESEARCH LETTERS 2006 33(L16309): 1-4.
    Nakajima, J., T. Matsuzawa, et al. Moho depth variation in the central part of northeastern Japan estimated from reflected and converted waves. Physics of the Earth and Planetary Interiors 2002 130: 31-47.
    Nakajima, J., T. Matsuzawa, et al. Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophysics 2001 341: 1-17.
    Ni, S. and H. Kanamori. Energy radiation from the Sumatra earthquake. Nature 2005 434: 582.
    Nishimura, T., T. Hirasawa, et al. Temporal change of interplate coupling in northeastern Jaoan during 1995-2002 estimated from continuous GPS observations. Geophys. J. Int 2004 157: 901-916.
    Nishimura, T. and W. Thatcher. Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen lake earthquake. JOURNAL OF GEOPHYSICAL RESEARCH 2004 108(B8): 1-12.
    Nishimuru, N. and Y. Yaji. Rupture process for may 12,2008 Sichuan earthquake. http://www.geol.tsukuba.ac.jp/~nisimura/20080512/ 2008.
    Nur, A. and G. Mavko. Postseismic viscoelastic rebound. SCIENCE 1974 183(4121): 204-206.
    Okada and Yoshimitsu. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological Society of America 1985 75(4): 1135-1154.
    Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the seismological Society of America 1992 82(2): 1018-1040.
    Ozawa, S., T. Nishimura, et al. Co-seismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 2011 000(00): 1-4.
    Parsons, T., R. S. .Stein, et al. Stress sensitivity of fault seismicity : a comparison between limited-offset oblique and major strike-slip faults. JOURNAL OF GEOPHYSICAL RESEARCH 1999 104: 20183-20202.
    Parsons, T., S. Toda, et al. Heightened odds of large earthquakes near istanbul: an Interaction-based probability. SCIENCE 2000 288(28): 661-665.
    Peltzer, G., P. Rosen, et al. Poroelastic rebound along the Landers 1992 earthquake surface rupture. JOURNAL OF GEOPHYSICAL 1998 103(B12): 30131-30145.
    Pollitz, F. F. Postseismic relaxation theory on the spherical earth. Bulletin of the Seismological Society of America 1992 82(1): 422-453.
    Pollitz, F. F. Gravitational viscoelstic postseismic relaxation on a layered spherical Earth. JOURNAL OF GEOPHYSICAL RESEARCH 1997 102(B8): 17921-17941.
    Pollitz, F. F. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophys.J.Int 2003 155(1): 57-78.
    Pollitz, F. F., R. Burgmann, et al. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys.J.Int 2006 167: 397-420.
    Pollitz, F. F., R. Burgmann, et al. Viscosity of oceanic asthenosphere Inferred from remote triggering of earthquakes. SCIENCE 1998 280(22): 1245-1249.
    Pollitz, F. F., C. Wicks, et al. Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 Hector Mine earthquake. SCIENCE 2001 293: 1814-1818.
    Royden, L. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. JOURNAL OF GEOPHYSICAL RESEARCH 1996 101(B8):17679-17705.
    Ryder, I., B. Parsons, et al. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophys.J.Int 2006 169: 1009-1027.
    Sagiya, T. Interplate coupling in the Tokai district, central Japan, deduced from continuous GPS data. GEOPHYSICAL RESEARCH LETTERS 1999 26(15): 2315-2318.
    Savage, J. C. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models. JOURNAL OF GEOPHYSICAL RESEARCH 1990 95(B4): 4873-4879.
    Schubert, G. and D. L. Turcote. Geodynamics. Cambridge 2001.
    Shao, G., X. Li, et al. Preliminary result of the mar 11, 2011 Mw 9.1 Honshu earthquake 2011.
    Shen, F. Large-scale crustal deformation of the Tibetan plateau. JOURNAL OF GEOPHYSICAL RESEARCH 2001 106(B4): 6793-6816.
    Shen, Z. K., D. D.Jackson, et al. Postseismic deformation following the Landers earthquake,California,28 June 1992. Bulletin of the Seismological Society of America 1994 84(3): 780-791.
    Shen, Z. K., J. Sun, et al. Slip maxima at fault junctions and rupturing of barriers during the 2008Wenchuan earthquake. NATURE GEOSCIENCE 2009 2: 718-724.
    Simons, M., S. E. Minson, et al. The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries. SCIENCE 2011 332(17): 1421-1425.
    Stein, R. S., A. A. Barka, et al. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys.Journal International 1997 128(594-604).
    Stein, S. and E. A.Okal. Speed and size of the Sumatra earthquake. Nature 2005 434(581-582).
    Stekette, J. A. On Volterra's dislocation in a semi-infinite elastic medium. Can.J.Phys 1958a 36(192).
    Stekette, J. A. Some geophysical applications of the elasticity theory of dislocation. Can.J.Phys 1958b 36.
    Suwa, Y., S. Miura, et al. Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. JOURNAL OF GEOPHYSICAL RESEARCH 2006 111(B04402): 1-12.
    Taira, A. Tectonic evolution of the Japanese island arc systerm. Annu.Rev.Earth Planet.Sci 2001 29: 109-134.
    Toda, S., J. Lin, et al. 12May2008 M=7.9 Wenchuan,China,earthquake calculated to increase failure stress and seismicity rate on three major fault systerms. GROPHYSICAL RESEARCH LETTERS 2008 35(L17305).
    Wang, C., H. Lou, et al. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-deep environment of lower crustal flow. Science in China Series D: Earth Sciences2008 51(2): 263-274.
    Wang, C., J. Wu, et al. P-wave crustal velocity structure in western Sichuan and eastern Tibetan region. SCIENCE IN CHINA (Series D) 2003 46: 254-265.
    Wang, R., F. L. Martin, et al. Psgrn/Pscmp-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory Computer & Geosciences 2006 32(2006): 527-541.
    Wang, W. H. and C. H. Chen. Static stress transferred by the 1999 Chi-Chi, Taiwan,earthquake:effects on the stability of the surrouding fault systems and aftershock triggering with a 3D fault-slip model. Bulletin of the Seismological Society of America 2001 91(5): 1041-1052.
    Wei, S., A. Sladen, et al. Updated result 3/11/2011 Mw 9.0 Tohoku-oki, Japan http://tectonics.caltech.edu/slip_history/2011_taiheiyo-oki/index.html 2011. Williams, C. A. Development of a package for modeling stress in the lithosphere. Eos Trans.AGU 2006 87(36): Abstract T24A-01 Invited.
    Williams, C. A., B. Aagaard, et al. Development of software for studying earthquakes across multiple spatial and temporal scales by coupling quasi-static and dynamic simulations. EosTrans. AGU 2005 86(52): Abstract S53A-1072.
    Yagi, Y. and N. Nishimura. The 2011 Tohoku-oki earthquake (Ver. 3). http://www.geol.tsukuba.ac.jp/~yagi-y/EQ/Tohoku/index-e.html 2011.
    Zeng, Y. Viscoelastic stress-triggering of the 1999 Hector Mine earthquale by the 1992 Landers earthquake. GEOPHYSICAL RESEARCH LETTERS 2001 28(15): 3007-3010.
    Zhang, Y., L. Xu, et al. Rupture process of the 11 march 2011 earthquake near the east coast of Honshu, Japan. http://ddsep.cea-igp.ac.cn/rp/2011 2011.
    Zienkiewicz, O. C. and R.L.Taylor. The finite element method(Fifth edition). 2000 2:Solid Mechanics. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700