用户名: 密码: 验证码:
微网发电技术若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式发电作为集中式发电的有效补充,有助于推动清洁能源和可再生能源在电力生产中的应用,可提高一次能源利用效率和局部供电可靠性。
     微网是一种可有效协调管理多种形式的分布式电源的发电技术,有助于实现分布式电源与配电网之间的协调运行。微网与配电网之间的协调运行、微网内部电源的协调控制、提高微网供电可靠性、微网线路保护、合理配置微网主电源直流侧的储能设备和微网能量优化管理等都是亟待研究的问题。本文针对微网主电源的协调控制、提高微网供电可靠性、微网线路保护以及微网主电源直流侧储能设备的控制方法展开了研究,主要研究内容如下:
     第一章介绍分布式发电和微网的发展背景以及现状,对微网控制、微网对配电网保护的影响、微网线路保护和微网主电源直流侧储能设备进行概述,对本文主要工作和章节安排进行说明。
     第二章在主电源输出电压控制环节中引入高通滤波环节和带通滤波环节相结合的“虚拟阻抗”,有利于微网主电源对输出功率的解耦控制,接着介绍主电源下垂控制环节相关参数的选取依据,通过在下垂控制环节增设有功前馈来配置微网有功小扰动模型的特征根阻尼系数,进而可有效抑制主电源输出功率在扰动过程中的波动,然后介绍微网主电源并网同期方法,最后通过仿真验证控制环节设计的有效性。
     第三章首先介绍提高微网供电可靠性的必要性,根据主电源下垂控制环节输出的电压角速度和幅值以及主电源运行状态进行判断是否注入补偿功率的方法来提高微网供电可靠性,接着介绍恒功率电源的控制方法,并且进行小扰动分析,最后通过仿真验证方法的有效性。
     第四章首先介绍微网主电源的电流内环限流方法,可有效限制主电源输出电流,接着介绍微网保护的难点,并且采用一种基于通信的微网分区保护方案,微网分区保护方案适合微网运行方式灵活多变的特点,最后通过仿真验证微网分区保护方案的可行性。
     第五章首先比较几种较常用的小型电力储能设备,采用基于铅酸蓄电池组和超级电容器组的混合储能系统作为微网主电源直流侧的储能设备,接着介绍一种简单的混合储能系统的主从控制方法,超级电容器组可优先响应主电源直流侧输出电流的变化,避免铅酸蓄电池组的频繁充放电,最后通过仿真验证混合储能系统的主从控制方法的有效性。
     第六章对全文工作进行总结,概括本文主要研究成果,并陈述下一步有待开展的研究工作。
As an effective supplement to the traditional centralized power generation, the distributed generation helps to promote the usage of the clean energy and renewable energy into the electricity production, alone with improving local reliability of electricity power supply.
     Microgrid is capable to coordinate and synthesize the operation of different types of distributed generation, Microgrid can be adopted as a feasible management method to ensure the coordinated interaction between the power grid and the distributed generations. But the effective operation coordination management methods between Microgrid and the distributed grid, the effective operation coordination and integration of the distributed generations within Microgrid, the methods to enhance the power supply reliability within Microgrid, Microgrid fault protection methods, the reasonable configuration and control of the power storage units of Microgrid's master power source are urgent to be researched and solved.
     This thesis focuses on the effective operation coordination of the distributed generations within Microgrid, the methods to enhance the power supply reliability within Microgrid, Microgrid fault protection methods and the reasonable configuration and control of the power storage units of the master power sources within Microgrid.
     First to introduce the control design of the three-phase-four-leg interfacing inverter of the master power sources, and to adopt a method to enhance the power supply reliability within Microgrid by equipping with PQ power source to Microgrid, then to propose a software method to limit the output current of the master power source and a Microgrid partitioned fault protection method, finally to propose a master-and-slave control method to suitably manage the hybrid power storage units of the master power sources within Microgrid, the more detailed chief research work of this thesis is as followed by:
     1) The chapter I firstly introduces the developing background and state quo of the the distributed generation, Microgrid and control structure, then Microgrid's impacts on the fault protection of the distributed grid, the fault protection methods within Microgrid and the usage of the power storage units are briefly reviewed, at last the focus of this thesis' research work and the arrangement of the chapters are introduced.
     2) The chapter Ⅱ firstly introduces the three-phase-four-leg voltage control method based on four-orthogonal-space matrix transformation and adds a virtual impedance, consisting of high pass filter and band pass filter, to the mater power source's output voltage control loop in order to decoupling the control of the master power source's output power. Then the selection of the relevant coefficients of the droop control block is introduced and the real power forward feed is adopted to the droop control block in order to set the dampening coefficients of the roots of Microgrid's real power small-signal-disturb model. Finally the synchronization method of the master power source is introduced and the time simulation is built to confirm the feasibility of the above control design.
     3) The chapter III firstly introduces the necessity of the reliability enhancement of Microgrid's power supply and adopts the injection of compensation power by PQ power source to Microgrid to enhance Microgrid power supply reliability. The control method of PQ power source is introduced and the small-signal-disturb stability is analyzed. Finally the time simulation is built to confirm the feasibility of the proposed method to enhance Microgrid power supply reliability.
     4) The chapter IV firstly adopts a software current limitting method to the master power source in order to ensure the stable running of the master power source under the condition of Microgrid's line fault without causing an over-current phenomenon to the inverter's switching legs. Then the difficulty of Microgrid line fault protection is briefly analyzed and a Microgrid partitioned line fault protection method based on the communication network is adopted to satisfy the flexible operation mode of Microgrid. Finally the time simulation is built to confirm the feasibility of the proposed Microgrid partitioned line fault protection method.
     5) The chapter V firstly compares the characteristics of several common small-scale power storage units. Then the hybrid power storage system is adopted as the DC side power storage units of the master power source and the master-and-slave control method is proposed to control the hybrid power storage system which selects the banks of super-capacitors as the master storage unit and the banks of lead-acid batteries as the slave storage unit, in order to avoid the frequent charge and discharge of the banks of lead-acid batteries. Finally the time simulation is built to confirm the feasibility of the proposed master-and-slave control method.
     6) The chapter VI summarizes this thesis's research achievements and point out the future research focus.
引文
[1]中国的能源状况与政策白皮书[M].北京:中华人民共和国国务院,2007.
    [2]世界能源统计年鉴[M].英国:BP.2011.
    [3]中国电力行业年度发展报告2011[M].北京:中国电力企业联合会,2011.
    [4]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4.
    [5]张艳霞.我国技术进步与能源利用率关系研究[D].青岛:中国石油大学(华东),2011.
    [6]王克强,左娜,刘红梅.国际能源发展趋势分析[J].上海财经大学学报,2009,11(6):57-64.
    [7]SharmaD.Bartels R. Distributed electricity generation in competitive energy markets:a case study in Australia, in:The Energy Journal Special issue:Distributed Resources:Toward a New Paradigm of the Electricity Business[R]. The international association for energy economics, Clevland, Ohio, USA,1998:17-40.
    [8]Cardell J, Tabors R. Operation and control in a competitive market:distributed generation in a restructured industry [J]. Energy journal special issue:distributed resources:toward a new paradigm of the electricity business, the international association for energy economics, Clevland,1998:111-135.
    [9]Grubb M, Vigotti R. Renewable Energy Strategies for Europe-Volume II[R]. Electricity Systems and Primary Electricity Sources, The Royal Institute of International Affairs, London,1997.
    [10]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001(12):53-56.
    [11]Putegen H, Macgregor P, Lambert F. Distributed generation:Semantic hype or the dawn of a new era[J]. IEEE power and energy magazine,2003(2):22-29.
    [12]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003.27(12):71-88.
    [13]陈琳.分布式发电接入电力系统若干问题的研究[D].杭州:浙江大学,2007.
    [14]薛禹胜.综合防御由偶然故障演化为电力灾难-北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [15]侯慧,尹项根,陈庆前,等.南方部分500kV主网架2008年冰雪灾害中受损分析与思考[J].电力系统自动化,2008,32(11):13-16.
    [16]国家中长期科学和技术发展规划纲要(2006-2020)[M].北京:中华人民共和国国务院,2006.
    [17]分布式电源接入电网技术规定[M].北京:国家电网公司,2010.
    [18]燃气冷热电三联供工程技术规程[M].北京:中国住房和城乡建设部发布,2010.
    [19]分布式发电管理办法(征求意见搞)[M].北京:国家能源局,2011.
    [20]Baker P. Determining the Impact of distributed generation power Systems:Part 1 radial distribution systems[C].Proceeding IEEE PES Summer Meeting, Seattle,2000(3): 1645-1656.
    [21]张勇.分布式发电对电网继电保护的影响综述[J].电力系统及其自动化学报,2010,22(2):145-149.
    [22]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8.
    [23]Lasseter R, Paipgi P. Microgrid:a conceptual solution[C]. Power electronics specialists conference, Aachen,2004(6):4285-4290.
    [24]Hatziargyriou N, Asano H, Iravani R and et al. Microgrids[J]. IEEE power and energy magazine,2007,5(4):78-94.
    [25]VenkataramananG,Illindala M, Houle C,et al.Hardware development of a laboratory-scale Microgrid phase 1-single inverter in island mode operation[R]. Colorado:NREL,2002.
    [26]Illindala M S,PIagi P,Zhang H,et al.Hardware development of laboratory scale Microgrid phase 2:operation and control of a two inverter Microgrid[R]. Colorado:NREL,2004.
    [27]Achermann T, Anderson G, Soder L. Distributed generation:a defination[J]. Electric power systems research,2001(57):195-204.
    [28]Dugan R, McDermott T. Distributed generation[J]. IEEE industry applications magazine, 2002,8(2):19-25.
    [29]L'Abbate A,Fulli G,Starr F, et al. Distributed Power generation in Europe:technical issues for further integration [R]. European Commission Joint Research Centre Institute for Energy, 2007.
    [30]L'Abbate A,Fulli G,Starr F, et al. Distributed Power generation in Europe:technical issues for further integration [R]. European commission joint research centre institute for energy,2007.
    [31]王成山,高菲,李鹏,等.可再生能源与分布式发电接入技术欧盟研究项目述评[J].南方电网技术,2008,2(6):1-6.
    [32]Peperman G,Driesen D, Haeseldonckx R, et al. Distributed Generation:Definition,Benefits and Issues[J].Energy Policy,2005,33(6):787-798.
    [33]Kristina H, Jennifer L, Etan G, et al. Distributed generation potential of the U.S. commercial sector[R].Ernest Orlando Lawrence Berkerley national laboratory,Berkeley,2005.
    [34]Shinji T,Yokoyama A,Hayashi Y.Distributed generation in Japan[C].Power & energy society general meeting, IEEE,Calgary,2009:1-5.
    [35]Morozumi S.Microgrid demonstration projects in Japan[C]. The fourth power conversion conference, IEEE, Nagoya,2007:635-642.
    [36]欧阳武.含分布式发电的配电网规划研究[D].上海:上海交通大学,2009.
    [37]陶晓峰.分布式互补能源微网系统的控制策略研究[D].合肥:合肥工业大学,2010.
    [38]European distributed energy resources projects[R]. European Commision,2004.
    [39]European smartgrids technology platform:vision and strategy for Europe's electricity networks of the future[R]. European Commission,2008.
    [40]Michael H, Natalie P.Smart grids initiatives in Europe[R].Austrian Federal Ministry for Transport, innovation and technology,2011.
    [41]Marnay C, Firestone R.Microgrids:An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality[R].Lawrence berkeley national laboratory,2007.
    [42]Georgakis D, Papathanassiou S, Hatziargyriou N.Operation of a prototype Microgrid system based based on micro-sources[C]. Power electronics specialists conference,2004:2521-2526.
    [43]Braun M,Degner T,Vandenbergh M. Laboratory DG grid[R].European Commission,2006.
    [44]Engler A. Applicability of droops in low voltage grids [J]. International Journal of Distributed Energy Resources,2005,1(1):1-6.
    [45]Sika O, Dimeas A, Barnes M, et al. Description of the laboratory micro grids[R]. European Commission,2005.
    [46]Sanchez E,Santiago J,Oyarzabal J, et al.Report on field tests for islanded mode Part I-Labein's μGrid[R].European Commission,2007.
    [47]Vandenbergh M,Geipel R.Landau M, et al.Performance evaluation of the Gaidoroumandra mini-grid with distributed PV generators[C]. The 4th European PV-Hybrid and Mini-Grid Conference, Athens,2008.
    [48]Cobben S.The first Microgrid in the Netherlands:Bronsbergen[C].Kythnos 2008 Symposium on Microgrids, Kythnos Island,2008.
    [49]Hatziargyriou N.Overview of Microgrid R&D in Europe[C].Nagoya 2007 Symposium on Microgrids,Nagoya,2007.
    [50]Nielsen J. BORNHOLM as a full scale laboratory[C]. Dansk Vindkraftk conference,2008.
    [51]"Grid 2030" a national vision for electricity's second 100 years[R].United states department of energy,2003.
    [52]Bose S. Microgrid design, development and demonstration[R].GE global research,2006.
    [53]Kroposki B.Distributed utility integration test[R].NREL,2003.
    [54]Kroposki B. Interconnection testing and applications[C].Power engineering society general meeting special technical session,2004.
    [55]Whitaker C, Newmiller J,Ropp M,Norris B.Renewable systems interconnection study:test and demonstration program definition[R].SANDIA,2008.
    [56]Jonathan L.Update on Mad River MicroGrid and related activities[C].CERTS Microgrid symposium,2005.
    [57]Ultracapactior energy BridgeTM UPS for Palmdale Water district[R].Northern power systems,2006.
    [58]Firestone R. Distributed energy resources customer adoption model technology data[R],2004.
    [59]Smith M. Overview of federal R&D on Microgrid technologies[C].Kythnos 2008 symposium on Microgrids, Kythnos Island,2008.
    [60]Fukuda H.Overview of the MicroGrid related project in NEDO[C].International conference on renewable energy in Asia,2008.
    [61]Kojima Y,Maejima H, Nakamura M, et al.A demonstration project in Hachinohe:Microgrid with private distribution line[C]. IEEE international conference on system of systems engineering, San Antonio,2007.
    [62]Hirose K. An update on Sendai demonstration of multiple power quality supply system[C]. Kythnos 2008 Symposium on Microgrids,Kythnos Island,2008.
    [63]Denda A. Shimizu's Microgrid research activities[C].Montreal 2006 Symposium on Microgrids, Montreal,2006.
    [64]Tsukada T,Tokumoto T,Ogata T, et al.Demonstration Of Microgrid through the activities toward holonic energy systems[C].IAQVEC2007,Sendai,2007.
    [65]Ito Y, Zhongqing Y, Akagi H. DC microgrid based distribution power generation system[C]. Internationalpower electronics and motion control conference,Xi'an,2004.
    [66]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4.
    [67]Kawasaki K,Matsumura S,Iwabu K, Autonomous dispersed control system for independent Microgrid[J].Electrical engineering in Japan,2009,166(1):1-8.
    [68]肖小清,郑国荣,阚伟民,等.C200微型燃气轮机结构及控制研究[J].燃气轮机技术,2010,23(4):18-21.
    [69]郭力,王成山,王守相,等.微型燃气轮机微网技术方案[J].电力系统自动化,2009,33(9):81-85.
    [70]李鹏,张玲,王伟,等.微网技术应用与分析[J].电力系统自动化,2009,33(20):109-115.
    [71]赵波,李鹏,童杭伟,等.从分布式发电到微网的研究综述[J].浙江电力,2010,3:1-5.
    [72]南麂岛、鹿西岛微网示范工程在温召开实施协调会[EB/OL].http://www.zj.sgcc.com.cn /zxzx/gsxw/201112/t20111223_35497.htm.[Acessed:2011-12-23]
    [73]Alaboudy K,Zeineldin H, Kirtley L.Microgrid Stability Characterization Subsequent to Fault-Triggered Islanding Incidents[J].IEEE Transactions on power delivery,2012,27(2):658-669.
    [74]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化.2010,34(1):99-105.
    [75]Funabashi T, Fujita G, Koyanagi K, et al. Field test s of a microgrid control system[C].the 41st international Universities power engineering conference,Newcastle,2006:232-2236.
    [76]Piagi P and Lasseter R H. Autonomous control of Microgrids[C]. Proceedings of IEEE PES meeting,Montreal,IEEE,2006:1-8.
    [77]Guerrero J,Lijun H,Uceda J.Control of distributed uninterruptible power supply systems[J]. IEEE transactions on industrial electronics,2008,55(8):2845-2858.
    [78]Martins P, Carvalho A, raujo A. Design and implemenation of a current controller for the parallel operation of standard UPSs[C].Proceedings of IEEE IECON,1995:584-589.
    [79]Chen J,Chu C. Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation[J]. IEEE transactions on power electronics,1995,10(5):547-558.
    [80]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定性分析[J].电力系统自动化.2009,33(6):81-85.
    [81]LI Y W,Vilathgamuwa D M and Loh P C. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE transactions on power electronics.2004, 19(5):1195-1204.
    [82]Mohamed Y,EI-Saadany E. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids[J]. IEEE transactions on power electronics,2008,23(6):2806-2816.
    [83]Brabandere K,Bolsens B,Keybus J, et al. A voltage and frequency droop control method for parallel inverters[J].IEEE transactions on power electronics,2007,22(4):1107-1115.
    [84]Katiraei F,Iravani M.Lehn P.Microgrid autonomous operation during and subsequent to islanding process[J]. IEEE transactions on power Delivery,2005,1(20):248-257.
    [85]Guerrero J, Vicuna L,Matas J, et al.Output impedance design of parallel-connected UPS inverters with wire-less load-sharing control[J].IEEE transactions on indutrial Electronics, 2005,52(4):1126-1135.
    [86]Guerrero J,Matas J,Vicuna L, et al.Wireless-control strategy for parallel operation of distributed-generation inverters[J].IEEE transactions on industrial electronics,2006,53(5): 1461-1470.
    [87]Marwali M,Keyhani A.Control of distributed generation systems-Part I:Voltages and currents control [J]. IEEE transactions on power electronics,2004,19(6):1541-1550.
    [88]Marwali M,Jung J,Keyhani A.Control of Distributed Generation Systems-Part II:Load Sharing Control[J]. IEEE transactions on power electronics,2004,19(6):1551-1561.
    [89]Shin-Chung Y, Ying-Yu T. Adaptive repetitive control of a PWM inverter for AC voltage regulation with low harmonic distortion[C].Proceedings of IEEE pes,1995:157-163.
    [90]孔雪娟,王荆江,彭力,等.基于内模原理的三相电压源型逆变电源的波形控制技术[J].中国电机工程学报,2003,23(7):67-70.
    [91]陈宏.基于重复控制理论的逆变电源控制技术研究[D].南京:南京航天航空大学,2003年.
    [92]Gokhale K, Kawamura A, Hoft A.Deadbeat microprocessor control of PWM inverter for sinusoidal output waveform synthesis[J]. IEEE transactions on industrial application, 1987,23(1):901-910.
    [93]陈建章.无差拍控制逆变器的研究与实现[D].南京:南京航天航空大学,1997.
    [94]Alireza Daneshpooy.Dead-beat control of parallel connected UPS[C].Proceedings of IEEE APEC,2002:580-583.
    [95]Chiang S,Tai T, Lee.T. Variable structure control of UPS inverters[C].Proceedings of IEEE electric power applieations,1998:559-567.
    [96]Shih-Liang J, Ying-Yu T.Sliding mode control of a closed-loop regulated PWM inverter under large load variations[C].Proceedings of IEE PESC,2003:616-622.
    [97]Tsang-Li T, Jian-Shiang C.UPS inverter design using diserete-time sliding-mode control scheme[J].IEEE transactions on industrial electronics,2002,49(1):67-75.
    [98]吴宁,许扬,陆于平.分布式发电条件下配电网故障区段定位算法[J].电力系统自动化,2009,33(14):77-82.
    [99]孙景钌,李永丽,李盛伟,等.含逆变型分布式电源配电网自适应电流速断保护[J].电力系统自动化,2009,33(14):71-76.
    [100]Perera N,Rajapakse A.Agent-based protection scheme for distribution networks with distributed generators[C].Proceedings of power engineering society general meeting, IEEE, Montreal,2006.
    [101]林霞,陆于平,王联合.分布式发电条件下的新型电流保护方案[J].电力系统自动化,2008,32(20):50-56.
    [102]丛伟,荀堂生,肖静,等.包含多微网的配电系统故障检测算法[J].电力系统自动化设备,2010,30(7):50-56.
    [103]于伟.UPS并联系统若干关键问题研究[D].杭州:浙江大学,2009.
    [104]Oudalov A. and Fidigatti A. Adaptive network protection in microgrids. International Journal of DER,5(3):1-24,2009.
    [105]Hassan N and Robert H L. Microgrid fault protection based on symmetrical and differential current components[C]. California, USA:Public interest energy research California energy commission,2006.
    [106]Eric S, Venkata S S and Joydeep M. Microgrid protection using communication-assisted digital relays[J]. IEEE transaction on power delivery,2010,25(4):2789-2796.
    [107]Zamani M, Tarlochan S, Amirnaser Y.A protection strategy and microprocessor-based relay for low-voltage microgrids[J].IEEE transactions on power delivery,2011,26(3):1873-1883.
    [108]Tumilty R, Brucoli M, Green T. Approaches to network protection for inverter dominated electrical distribution systems[C]. Proceedingsof 3rd IET international conference,2006: 622-626.
    [109]Al-Nasseri H, Redfern M, Li F.A voltage based protection for microgrids containing power electronic converters[C]. Proceedings of IEEE power engineering society,2006:1-7.
    [110]Redfern M, Al-Nasseri H. Protection of microgrids dominated by distributed generation using solid state converters[C]. Proceedings of 9th international conference,2008:670-674.
    [111]Razibul M, Hossam Gabbar H. Study of microgrid safety & protection strategies with control system infrastructures[J]. Smart grid and renewable energy,2012,3(1):1-9.
    [112]Conti S, Raffa L, Vagliasindi U. Innovative solutions for protection schemes in autonomous MV microgrids[C].IEEE international conference,Capri,2009.
    [113]Ustun S, Ozansoy C, Zayegh A. A microgrid protection system with central protection unit and extensive communication[C]. Proceedings of the 10th international conference on environment and electrical engineering, Rome,2011:1-4.
    [114]肖小情,钟清,阚伟民,等.以微型燃气轮机组为基础的微电网动态特性[J].中国电力,2011,44(1):11-14.
    [115]Electricity Storage Association. Technology Comparison[EB/OL]. http://www. Electricitystorage.org/technology/storage_technologies/technology_comparison,[Accessed: 2012-5-8].
    [116]Stephen M, Jean F C. Comparing data center batteries, flywheels, and ultra-capacitors[R]. Rhode Island, American power conversion:2009.
    [117]Mamadou B C, Hamid G, Frederic G, et al. Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles[J]. IEEE transactions on vehicular technology,2008,5(57):2721-2735.
    [118]Francoise J N, Gualous H, Outbib, et al.42V power net with supercapacitor and battery for automotive applications[J]. Journal of power sources,2005,1(143):275-283.
    [119]Bertoni L, Gualous H,Bouquain D, et al.Hybrid auxiliary power unit (APU) for automotive applications[C]. Proceedings of the IEEE vehicular technology VTC'02 conference, Vancouver,2002.
    [120]Dowgiallo E, Burke A. Ultracapacitors for electric and hybrid vehicles[C]. Electric vehicle conference, Florence,1993.
    [121]Shu J.The development of the hybrid propulsion system for the light-duty vehicle applications[C].International electric vehicle symposium and exposition,Long Beach,2003.
    [122]Michael M, Ross D.A simple comprehensive lead-acid battery model for hybrid system simulation[C].CANMET energy technology centre, Varennes,2002.
    [123]于芃,周玮,孙辉,等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133.
    [124]Glavin M E, Chan P K, Armstrong S and et al. A stand-alone photovoltaic supercapacitor battery hybrid energy storage system[C]. Power electronics and motion control conference, Poznan,2008:1688-1695.
    [1]彭力,白丹,康勇,等.三相逆变器不平衡负载抑制研究[J].中国电机工程学报,2004,24(5):174-178.
    [2]吴玉杨.基于三维空间矢量调制的三相四桥臂逆变器的研究[D].合肥:合肥工业大学,2007.
    [3]杨宏,阮新波,严仰光.采用SVM控制的四桥臂三相逆变器[J].电气传动.2003,2:32-34.
    [4]林金燕,王正仕,陈辉明等.一种高性能三相四桥臂逆变器控制器的设计[J].中国电机工程学报.2007,22(27):101-105.
    [5]于伟.UPS并联系统若干关键问题研究[D].杭州:浙江大学,2009.
    [6]Eyuup D.Ouput voltage control of a four-leg inverter based three-phase UPS by means of stationary frame resonant filter banks[D].Ankara:Middle east technical university.2006.
    [7]Min D,Mohammad N,Jin W J,et al.A three-phase four-wire inverter control technique for a single distributed generation unit in island mode[J].IEEE transactions on power electronics, 2008,23(1):322-330.
    [8]Illindala M S,Plagi P,Zhang H, et al.Hardware development of laboratory scale Microgrid phase 2:operation and control of a two inverter Microgrid[R].Colorado:NREL,2004.
    [9]李登莹.静止坐标系下四桥臂逆变器3-DSVM调制方法研究[D].青岛:燕山大学,2006.
    [10]张晋颖.基于重复控制和PI双闭环控制的三相四桥臂逆变器[D].青岛:燕山大学,2006.
    [11]Keling Z,Danwei W.Relationship between space-vector modulation and three-phase carrier-based PWM:a comprehensive analysis[J].IEEE transactions on industrial electronics,2002, 49(1):186-195.
    [12]Jang H K,Seung K S.A carrier-based PWM method for three-phase four-leg voltage source converters[J].IEEE transactions on power electronics,2004,19(1):66-75.
    [13]Zhang R,Prasad V H,Boroyevich, et al.Three-dimensional space vector modulation for four-leg voltage-source converters[J].IEEE transactions on power electronics,2004,17(1):314-325.
    [14]Ryan M J,Rik W D, Robert D L.Decoupled control of a 4-leg inverter via a new 4×4 transformation matrix[J].IEEE transactions on power electronics,2001,16(5):694-701.
    [15]Ryan M J,Robert D L, Rik W D.Modeling of multileg sine-wave inverters:a geometric approach[J].IEEE transactions on industrial electronics,1999,46(6):1183-1190.
    [16]Quin C A,Mohan N, Mehta H.A four-wire,current-controlled converter provides harmonic neutralization in three-phase, four-wire systems[C].Proceedings of IEEE APEC conference,SanDiego:IEEE,1993:841-846.
    [17]Vechiu I, Camblong H, Tapia G, et al.Control of four leg inverter for hybrid power system application with unbalanced load[J].Energy conversion and management,2007,48:2119-2128.
    [18]吴睿,谢少军.基于abc坐标系空间矢量控制的三相四桥臂电压源型逆变器研究[J].电工技术学报.2005,12(20):47-52.
    [19]Prats M,Franquelo L, et al. Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters[J]. IEEE transactions on power electronics letters.2003, 1(4):104-109.
    [20]孙迟,毕增军,魏光辉.一种新颖的三相四桥臂逆变器解耦控制的建模与仿真[J].中国电机工程学报,2004,24(1):124-130.
    [21]LI Y W,Vilathgamuwa D M,Loh P C. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE transactions on power electronics,2004,19(5): 1195-1204.
    [22]Ojo O.Concise modulation strategies for four-leg voltage source inverters[J].IEEE transactions on power electrics.2004,1(19):46-53.
    [23]LI Y W,Vilathgamuwa D M,Poh C L.Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator[J].IEEE transactions on industry applications.2005,6(41):1707-1719.
    [24]Cardenas R,Pena R, Wheeler P and et al.Experimental validation of a space-vector-modulation algorithm for four-Leg matrix converters[J]. IEEE transactions on industrial electronics,2011,4(58):1282-1293.
    [25]LI Y W.Control and resonance dampening of voltage-source and current-source converters with LC filters[J]. IEEE transactions on industrial electronics.2009,5(56):1511-1521.
    [26]孙继健,肖岚.基于单极性SPWM控制的并网逆变器的研究[J].电力电子技术,2011,1(45):71-73.
    [27]赵青.一种基于单极性SPWM控制的正弦波逆变器的研究[D].杭州:浙江大学,2004.
    [28]朱军卫,龚春英.逆变器单极性电流SPWM控制与滞环控制比较[J].电力电子技术,2004,1(38):26-29.
    [29]梅烨,石健将,何湘宁.6kV*A逆变器滞环调制和单极性SPWM倍频调制的比较[J].电源技术应用,2005,8(3):24-27.
    [30]刘飞.三相并网光伏发电系统的运行控制策略[D].武汉:华中科技大学,2008.
    [31]Kamalesh H,Amit K J,Debmalya and et al.Active dampening of output LC filter resonance for vector-controlled VSI-fed AC motor drives[J].lEEE transactions on industrial electronics, 2012, 1(59):334-342.
    [32]Wiseman J C,Wu B. Active dampening control of a high-power PWM current-source rectifier for line-current THD reduction[J].IEEE transactions on industrial electronics,2005,3(52): 758-764.
    [33]Blasko V, Kaura V.A novel control to actiely damp resonance in input LC filter of a three-phase voltage source converter[J].IEEE transactions on industrial electronics.1997,2(33): 542-550.
    [34]Malinowski M, Bernet S. A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter[J]. IEEE transactions on industrial electronics,2008, 4(55):1876-1880.
    [35]Laczynski T, Mertens A. Active damping of LC-filters for high power drives using synchronous optimal pulse width modulation[C]. Proceedings of IEEE power electronics conference,Hannover:IEEE,2008:1033-1040.
    [36]Mohammad N M, Ali K. Control of distributed ad generation systems-part I:voltages and currents control[J]. IEEE transactions power electronics.2004,6(19):1541-1550.
    [37]Mohammad N M, Jung J W and Ali K. Control of distributed ad generation systems-part Ⅱ: load sharing control[J]. IEEE transactions power electronics.2004,6(19):1551-1561.
    [38]吴子平.基于微型燃气轮机发电系统的微网控制与分析[D].北京:华北电力大学,2009.
    [39]Josep M G,Jose M,Luis G V, et al. Wireless-control strategy for parallel operation of distributed generation inverters[J]. IEEE transactions power electronics.2006,5(53):1461-1470.
    [40]Josep M G,Luis G V,Jose M and et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J].IEEE transactions power electronics, 2004,5(19):1205-1213.
    [41]Josep M,Hang L,Javier U.Control of distributed uninterruptible power supply systems[J]. IEEE transactions industrial electronics.2008,8(55):2845-2859.
    [42]王斯然,周霞,姚文熙等.锂电池能量回收系统的进网电流优化控制技术[J].浙江大学学报.2011,5(45):809-824.
    [43]Lasseter R H. Microgrids.Proceedings of 2002 IEEE power engineering society winter meeting[C]. New York:IEEE,2002:305-308.
    [44]Hatziargyriou N,Asand H,Iravani R, et al. Microgrids[J]. IEEE power and energy magazine, 2007,5(4):78-94.
    [45]Morozumi S. Microgrid demonstration projects in Japan[C].IEEE power conversion conference, Nagoya, IEEE,2007:635-642.
    [46]Piagi P, Lasseter R H. Autonomous control of Microgrids[C]. Proceedings of IEEE PES meeting, Montreal:IEEE,2006:1-8.
    [47]黄泳均.电网不平衡下三相PWM整流器的控制策略研究[D].北京:北京交通大学,2009.
    [48]林新春,段善旭,康勇等.基于下垂特性控制的无互联线并联UPS建模与稳定性分析[J].中国电机工程学报.2004,24(2):33-38.
    [49]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定性分析.电力系统自动化[J].2009,33(6):81-85.
    [50]Coelho E A, Cabaleiro P, Donoso P F. Small signal stability for parallel connected inverters in stand-alone AC supply sytem[J]. IEEE transactions on industry application.2002,38(2):533-542.
    [51]Venkataramanan G, Illindala M. Small signal dynamics of inverter interfaced distributed generation in a chain-microgrid[C]. IEEE power engineering society general meeting. Tampa:IEEE,2007:1-6.
    [52]Chung S K. A phase tracking system for three phase utility interface inverters[J].IEEE transactions power electronics.2000,15(3):431-438.
    [1]Lasseter R H. Microgrids[C].Proceedings of 2002 IEEE power engineering society winter meeting, New York,IEEE,2002:305-308.
    [2]Hatziargyriou N, Asand H, Iravani R, et al. Microgrids[J]. IEEE power and energy magazine. 2007,5(4):78-94.
    [3]Morozumi S. Microgrid demonstration projects in Japan[C].IEEE power conversion conference.Nagoya, IEEE,2007:635-642.
    [4]Piagi P and Lasseter R H. Autonomous control of Microgrids[C]. Proceedings of IEEE PES meeting. Montreal, IEEE,2006:1-8.
    [5]肖朝霞,王成山,王守相.含多微型电源的微网小信号稳定性分析[J].电力系统自动化.2009,33(6):81-85.
    [6]Venkataramanan G, Illindala M. Small signal dynamics of inverter interfaced distributed generation in a chain-microgrid[C]. IEEE power engineering society general meeting. Tampa: IEEE,2007:1-6.
    [7]Illindala M S,PIagi P.Zhang H and et al.Hardware development of laboratory scale Microgrid phase 2:operation and control of a two inverter Microgrid[R].Colorado,NREL,2004.
    [8]ITI(CBEMA) Curve application note[R]. Washington D.C, Information technology industry council,2000.
    [9]SEMI F47-0200. Specification for semiconductor processing equipment voltage sag immunity[R]. SEMI F47-0200,2000.
    [10]Ken D, Bruce H. The role of distributed generation in power quality and reliability[R]. New York, New York state energy research and development authority,2005.
    [11]潘艳,朱伟江和刘迅等.电能质量电力系统频率偏差[M].北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,2009.
    [12]周胜军,于坤山和谭志强等.电能质量供电电压偏差[M].北京:中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会,2009.
    [13]王成山,肖朝霞,王守相.微网中分布式电源逆变器的P-f和Q-V多环反馈控制策略研究[J].电工技术学报,2009,24(2):100-107.
    [14]LI Y W, Vilathgamuwa D M, Loh P C. Design, analysis, and real-time testing of a controller for multibus microgrid system[J]. IEEE transactions on power electronics,2004,19(5):1195-1204.
    [15]任先成,薛禹胜,WU Q H,等.低频低压切负荷的控制负效应及其机理[J].电力系统自动化.2009,10(33):1-5.
    [16]任先成.电力系统低频低压切负荷控制的优化与协调[D].南京:东南大学,2009.
    [17]Hirose K. An update on Sendai demonstration of multiple power quality supply system[C]. Kythnos 2008 symposium on Microgrids,Kythnos Island,2008.
    [18]Ryan M J,Rik W D and Robert D L.Decoupled control of a 4-leg inverter via a new 4×4 transformation matrix[J].IEEE transactions on power electronics,2001,16(5):694-701.
    [19]刘飞.三相并网光伏发电系统的运行控制策略[D].武汉:华中科技大学,2008.
    [20]Daniel N,Donald G.Stationary frame current regulation of PWM inverters with zero steady state error[J].IEEE Transaction on Power Electronics,2003,28(3):814-822.
    [21]Twining E and Holmes D G. Grid current regulation of a three-phase voltage inverter with an LCL input filter[C]. IEEE 33rd Annual Volume,2002,3:1189-1194.
    [22]LI Y W.Control and resonance dampening of voltage-source and current-source converters with LC filters[J]. IEEE transactions on industrial electronics.2009,5(56):1511-1521.
    [23]Piagi P and Lasseter R H. Autonomous control of Microgrids[C]. Proceedings of IEEE PES meeting. Montreal,IEEE,2006:1-8.
    [1]于伟.UPS并联系统若干关键问题研究[D].杭州:浙江大学,2009.
    [2]丁辉,姚蜀军,韩明晓.高压变频驱动系统脉冲封锁保护策略[J].中国电机工程学报,2006,26(6):123-127.
    [3]孔雪娟.逆变器控制及并联[D].武汉:华中科技大学,2006.
    [4]汪洪亮,岳秀梅,裴雪军,等.组合式三相逆变器软硬件限流保护策略[J].电工技术学报,2008,23(9):92-97.
    [5]Chunlian J, Roger D. Current limiting technique based protection strategy for an industrial DC distribution system[C]. IEEE ISIE 2006,7:820-826.
    [6]Yamaguchi H, Kataoka T. Current limiting characteristics of transformer type superconducting fault current limiter with shunt impedance[J]. IEEE transaction on applied superconductivity,2007,17(6):1919-1922.
    [7]王林兵,何湘宁,张超.逆变器输出限流技术研究[J].电力电子技术,2006,40(4):65-67.
    [8]Baran M, El-markaby I. Fault analysis on distribution feeders with distributed generators[J]. IEEE transaction on power systems,2005,20(4):1757-1764.
    [9]El-markaby I. Control and protection of distribution networks with distributed generators [D]. Raleigh, NC, USA:North Carolina State University,2004.
    [10]Brahma S. Development of an adaptive protection scheme for power distribution systems with high penetration of distributed generation[D]. Clemson, SC, USA:Clemson University, 2003.
    [11]Girgis A, Brahma S. Effect of distributed generation on protective device coordination in distribution system. Proceedings of 2001 large engineering systems conference on power engineering, Halifax, Canada:115-119,2001.
    [12]Hui W. Protection coordination in power system with distributed generations[D]. Hong Kong, China:Hong Kong Polytechnic university,2006.
    [13]Zeng X J, Li K K, Chan W L, et al. Multi-agents based protection for distributed generation systems[C]. Proceedings of the 2004 IEEE international conference on electric utility deregulation, restructuring and power technologies, Hong Kong, China:393-397,2004.
    [14]Al-Nasseri H, Redfern M A, O'Gorman R. Protection micro-grid systems containing solid-state converter[C].2005 International conference on future power systems, Amsterdam, Holland:1-5,2005.
    [15]Zeineldin H H, EI-Saadany E F, Salama M M. Distributed generation microgrid operation: control and protection[C], IEEE power systems conference, Clemson, SC, USA:105-111, 2006.
    [16]Oudalov A. and Fidigatti A. Adaptive network protection in microgrids. International journal of DER,5(3):1-24,2009.
    [17]Hassan N and Robert H L. Microgrid fault protection based on symmetrical and differential current components[C]. California, USA:Public interest energy research California energy commission,2006.
    [18]Eric S, Venkata S S and Joydeep M. Microgrid protection using communication-assisted digital relays[J]. IEEE transaction on power delivery,2010,25(4):2789-2796.
    [19]Zamani M, Tarlochan S, Amirnaser Y.A protection strategy and microprocessor-based relay for low-voltage microgrids[J].IEEE transactions on power delivery,2011,26(3):1873-1883.
    [20]Tumilty R, Brucoli M, Green T. Approaches to network protection for inverter dominated electrical distribution systems[C]. Proceedings of 3rd IET international conference,2006: 622-626.
    [21]Al-Nasseri H, Redfern M, Li F.A voltage based protection for microgrids containing power electronic converters[C]. Proceedings of IEEE power engineering society,2006:1-7.
    [22]Redfern M, Al-Nasseri H. Protection of microgrids dominated by distributed generation using solid state converters[C]. Proceedings of 9th Iinternational Conference,2008:670-674.
    [23]Razibul M, Hossam Gabbar H.Study of microgrid safety & protection strategies with control system infrastructures[J]. Smart Grid and Renewable Energy,2012,3(1):1-9.
    [24]Conti S, Raffa L, Vagliasindi U. Innovative solutions for protection schemes in autonomous MV microgrids[C].IEEE international conference,Capri,2009.
    [25]Ustun S, Ozansoy C, Zayegh A. A microgrid protection system with central protection unit and extensive communication[C]. Proceedings of the 10th international conference on environment and electrical engineering, Rome,2011:1-4.
    [26]袁野,程林,孙元章,等.广域阻尼控制的时滞影响分析及时滞补偿设计[J].电力系统自动化,2006,30(14):6-9.
    [27]江全元,邹振宇,曹一家等.考虑时滞影响的电力系统稳定分析和广域控制研究进展[J].电力系统自动化,2005,29(3):1-7.
    [1]Hatziargyriou N, Asand H, Iravani R, et al. Microgrids[J]. IEEE power and energy magazine, 2007,5(4):78-94.
    [2]Illindala M S,PIagi P,Zhang H,et al.Hardware development of laboratory scale Microgrid phase 2:operation and control of a two inverter Microgrid[R]. Colorado:NREL,2004.
    [3]Sanchez E, Santiago J, Oyarzabal J and et al.Report on field tests for islanded mode part I-Labin's grid description[R],2007.
    [4]Sika O, Dimeas A, Barnes M and et al.Description of laboratory microgrids[R],2005.
    [5]Morozumi S. Microgrid demonstration projects in Japan[C]. IEEE power conversion conference,2007:635-642.
    [6]Fukuda H. Overview of the microgrid related projects in NEDO[C]. International conference on renewable energy in Asia:A challenge for microgrid concept,2008.
    [7]肖小情,钟清,阚伟民等.以微型燃气轮机组为基础的微电网动态特性[J].中国电力,2011,1(44):11-14.
    [8]Robert J Y. Behavior of Capstone and Honeywell microturbine generators during load changes[R]. California energy commission,USA,California,2001.
    [9]Zhang C, Tseng K J. A novel flywheel energy storage system with partially self bearing flywheel rotor[J]. IEEE transaction on energy conversion,2007,22(2):477-487.
    [10]Spyker R L, Nelms R M. Classical equivalent circuit parameters for a double layer capacitor[J]. IEEE transactions on aerospace and electronic systems,2000,36(3):829-836.
    [11]llegre A L, Bouscayml A, Trigui R. Influence of control strategies on battery/super capacitor hybrid energy storage systems for traction applications[C]. IEEE Vehicle power and propulsion conference,2009:213-220.
    [12]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报,2001,21(12):64-66.
    [13]周林,黄勇,郭珂等.微电网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152.
    [14]Electricity Storage Association. Technology Comparison[OL]. http:// www. Electricitystorage. org/technology/storage_technologies/technology comparison,[Accessed:2012-5-8].
    [15]Stephen M, Jean F C. Comparing data center batteries, flywheels, and ultra-capacitors[R]. Rhode Island, American power conversion:2009.
    [16]Fukuda H.Overview of the MicroGrid related project in NEDO[C].International conference on renewable energy in Asia,2008.
    [17]Kojima Y,Maejima H, Nakamura M, et al.A demonstration project in Hachinohe:Microgrid with private distribution line[C]. IEEE international conference on system of systems engineering, San Antonio,2007.
    [18]Hirose K. An update on Sendai demonstration of multiple power quality supply system[C]. Kythnos 2008 symposium on Microgrids,Kythnos Island,2008.
    [19]Engler A. Applicability of droops in low voltage grids [J]. International journal of distributed energy resources,2005,1(1):1-6.
    [20]于伟.UPS并联系统若干关键问题研究[D].杭州:浙江大学,2009.
    [21]Mamadou B C, Hamid G, Frederic G, et al. Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles[J]. IEEE transactions on vehicular technology,2008,5(57):2721-2735.
    [22]Francoise J N, Gualous H, Outbib, et al.42V power net with supercapacitor and battery for automotive applications[J]. Journal of power sources,2005,1(143):275-283.
    [23]Bertoni L, Gualous H.Bouquain D, et al.Hybrid auxiliary power unit (APU) for automotive applications[C].Proceedings of the IEEE vehicular technology VTC'02 conference, Vancouver,2002.
    [24]Dowgiallo E, Burke A. Ultracapacitors for electric and hybrid vehicles[C]. Electric vehicle conference, Florence,1993.
    [25]Shu J.The development of the hybrid propulsion system for the light-duty vehicle applications[C].International electric vehicle symposium and exposition,Long Beach,2003.
    [26]Michael M, Ross D.A simple comprehensive lead-acid battery model for hybrid system simulation[C].CANMET energy technology centre, Varennes,2002.
    [27]Ultracapactior energy BridgeTM UPS for Palmdale Water District[R].Northern Power Systems,2006.
    [28]Sanchez E,Santiago J,Oyarzabal J, et al.Report on field tests for islanded mode Part I-Labein's μGrid description[R].European Commission,2007.
    [29]于芃,周玮,孙辉等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133.
    [30]Glavin M E, Chan P K, Armstrong S and et al. A stand-alone photovoltaic supercapacitor battery hybrid energy storage system.[C] Power electronics and motion control conference, Poznan,2008:1688-1695.
    [31]Olivier T, Louis A D and Abdel I D. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]. Vehicle power and propulsion conference, IEEE, New York,2007: 284-289.
    [32]Lasseter R H. Dynamic models for micro-turbines and fuel cells. Power engineering society summer meeting[C], IEEE,Vancouver,2001:761-766.
    [33]李政,王德慧,薛亚丽等.微型燃气轮机的建模研究(上)-动态特性分析[J].中国动力工程学报,2005,25(1):13-17.
    [34]李政,王德慧,薛亚丽等.微型燃气轮机的建模研究(下)-简化与分析[J].中国动力工程学报,2005,25(2):160-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700