用户名: 密码: 验证码:
结构新型热固性FRP复合筋及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FRP(Fibre Reinforced Polymer)筋以其轻质、高强尤其是优异的耐久性而成为一些土木工程结构中钢筋的替代品。本文针对FRP筋在土木工程结构中的应用问题,研制了带肋FRP筋制作装置,研究制作了钢绞线-GFRP(SGFRP)复合筋,带肋FRP筋和BFRP筋等一系列新型FRP筋,对其中主要类型的FRP筋粘结性能、耐久性以及与光纤光栅复合的智能特性等进行了系统研究,主要研究内容如下:
     1.新型FRP复合筋的研制及基本性能研究。针对FRP筋在土木工程结构应用中存在的模量低、成本高和耐久性问题,分别发明和研制了钢绞线-GFRP(SGFRP)复合筋与玄武岩纤维FRP(BFRP)筋,并对其力学性能和耐久性进行了试验研究。研究结果表明:SGFRP筋与GFRP筋相比抗拉弹性模量可以提高50%以上,而且SGFRP筋在酸、碱和盐溶液中具有很好的耐久性;BFRP筋的抗拉性能与GFRP筋相当,但是在碱、酸和盐溶液中的耐久性较GFRP筋要差,尤其是在碱溶液中,其主要原因是玄武岩纤维表面硅烷耦联剂水解。研制了拉缠带肋FRP筋制作装置和成型工艺,对FRP筋肋形式和肋间距进行了定型研究,并制作了各种带肋FRP筋。研究确定的带肋FRP筋最佳肋形式和参数为:螺距为1倍直径的反向双螺旋纤维束缠绕肋。
     2.磁场固化拉挤GFRP筋力学与耐久性能。根据磁场对树脂的改性作用,对FRP拉挤成型工艺设备进行改进,研究开发了FRP筋磁场固化拉挤工艺;研究了成型磁场强度对成型后GFRP筋力学性能的影响,确定了最佳磁场强度;对最佳磁场强度成型和无磁场成型GFRP筋进行80℃水中的耐久性对比试验,以吸水率和层间剪切强度为指标,研究了磁场固化工艺对GFRP筋耐久性的影响。试验结果表明:磁场固化可以提高GFRP筋的层间剪切强度、抗压强度和在水中的耐久性。
     3. FRP筋与混凝土的粘结性能及其多种因素的影响。试验研究了温度处理、腐蚀环境和恒载作用对带肋GFRP和SGFRP筋与混凝土粘结性能影响。首先分别试验研究了70℃处理200小时后,70℃下和-30℃下三种温度环境中两种Φ8mm FRP筋和Φ12mm钢筋与混凝土的粘结性能;其次试验研究了两种FRP筋与混凝土试样经过60℃下碱溶液为期1、2和3.5个月浸泡后的粘结性能,分析了碱腐蚀环境对FRP筋与混凝土粘结性能的影响;最后试验研究了两种FRP筋分别在60%和75%最大粘结荷载作用下的恒载粘结性能,分析了恒载作用对FRP筋与混凝土粘结性能的影响。
     4. FRP筋的耐久性寿命预测。针对GFRP筋耐碱性问题,对光面和带肋GFRP筋利用34、60和80℃加速温度进行碱溶液中浸泡试验,分析了两种GFRP筋在碱溶液中不同温度下拉伸性能与浸泡时间关系,利用TSF法和FHWA法对两种GFRP筋在10℃、100%RH混凝土环境中的耐久性寿命进行预测;对Φ8mm带肋和Φ7mm光面SGFRP筋进行60℃下碱、酸和盐溶液浸泡试验,分析了两种SGFRP筋在各种腐蚀溶液中的耐腐蚀性能。预测结果表明:光面GFRP筋的耐久性寿命为带肋GFRP筋的4倍左右。
     5. FRP-OFBG智能筋成型过程的残余应变及其对传感特性的影响。针对单向FRP筋轴向残余应变问题,从理论上分析了智能筋制作过程对其中各组分引起的残余应变,利用双光栅法对GFRP筋拉挤成型过程中的温度和应变进行了在线监测;分析了恒载和常温无应力作用对智能筋中光栅残余应变的影响,研究了智能筋的传感稳定性问题;分析了智能筋中光栅光谱劣化产生原因,提出了高温后处理对智能筋中光栅双峰和多峰现象改善的方法。
FRP(Fibre Reinforced Polymer)rebar becomes the substitution of steel rebar in some civil infrastructures, for its light weight, high strength and especially excellent durability performance. Against the problems of applying FRP rebar in civil infrastructures, this dissertation develops ribbed FRP rebar fabrication devices, and fabricates a series of new style of FRP rebars, such as steel cable-GFRP (SGFRP) composited rebar, ribbed FRP rebar and BFRP rebar. To the main type of FRP rebars this dissertation systematically studies bonding performance, durability and intelligent properties composited with FBG. Main works of this dissertation are followed as:
     1. New types of FRP composited rebar development and their basic properties. Against low modulus, high price and durability problem of FRP rebar applied in civil infrastructures, this dissertation individually invented and developed steel cable-GFRP (SGFRP) composited rebar and basalt fibre FRP (BFRP) rebar, and done experimental investigation of their mechanical and durability performances. The results indicate that SGFRP rebars produce more than 50% modulus improvement comparing to GFRP rebar, and exhibit good durability performances in acid, alkali and saline solution; BFRP rebars show equivalence tensile properties to GFRP rebars, but bad durability performances in acid, alkali and salt solution, especially in alkali solution. The durability performance of BFRP rebar is caused by hydrolyzation of silane coupling agent on the surface of basalt fibre; To improve bonding performance of FRP rebar with concrete, this dissertation developed pull-winding ribbed FRP rebar fabrication devices and fabrication process, done rib style and spacing standardized test, and fabricated diverse of ribbed FRP rebars. The rib standardized test result defines that optimal rib of ribbed FRP rebar is fibre bundle inverse double winding with 1 time diameter pitch.
     2. Mechanical and durability performances of magnetism curing pultrusion GFRP rebar. According to modifying effect of magnetic field to resin, through modification of FRP pultrusion process and equipments, this dissertation developed FRP rebar magnetism curing pultrusion process, studied the effect of fabrication magnetic field intensity on mechanical performances of fabricated GFRP rebar, and confined the optimal intensity of curing magnetic field. Through durability contrast test of GFRP rebars fabricated with optimal curing magnetism intensity and without magnetic field in 80℃water, according to water-absorbing capacity and interlaminate shear strength, the effect of magnetism curing on the durability performance of GFRP rebar was studied. Experimental results show that magnetism curing can improve GFRP rebar interlaminate shear strength, compression strength and durability in water.
     3. Bonding performance of FRP rebars with concrete and multi-factor influence. Temperature disposal, corrosion environment and sustained load action effects on bonding performance of ribbed GFRP and SGFRP rebars with concrete were studied. Firstly, it was experimentally studied the bonding performance of two kindsΦ8mm FRP rebar andΦ12mm steel rebar with concrete individually under 70℃, -30℃and after 200 hours of 70℃treatment three kinds of temperature condition; Next it was experimentally studied bonding performance of two kinds FRP rebar with concrete bonding specimen in 60℃alkali solution individually after 1, 2 and 3.5 months of soaking, which analyzes the effect of alkali environment on the bonding performance of FRP rebar with concrete; Finally it was experimentally studied sustained load bonding performance of two kinds of FRP rebars with concrete under 60% and 75% of maximum bonding load, which analyzes the effect of sustained load on bonding performance of FRP rebar with concrete.
     4. FRP rebar durability life predictions. Against the alkali resistance problem of GFRP rebar, corrosion tests of round and ribbed GFRP rebars were done in alkali solution individually in 34, 60 and 80℃accelerating temperature. Relation of tensile performances and corrosion time of two kinds GFRP rebar under different temperatures was analyzed, and durability life of two kinds GFRP rebar serving in 10℃, RH=100% concrete, without stress condition was predicted individually by TSF and FHWA method; According to the corrosion test ofΦ8mm ribbed andΦ7mm round SGFRP rebars in 60℃acid, alkali and salt solution, it was analyzed two kinds SGFRP rebar corrosion resistant property in various corrosion solutions. Durability life prediction results show that durability life of round GFRP rebar is about 4 times of ribbed GFRP rebar’s.
     5. Residual stain of FRP-OFBG smart rebar in fabrication process and its effect on smart rebar sensing character. Against axial residual strain in unidirectional FRP rebar, it was theoretically analyzed residual strain of various constituents introduced in smart rebar fabrication process. Utilizing double FBGs method, the temperature and strain in GFRP rebar pultrusion fabrication process were on-line monitored. Through experimental analysis of sustained load and room temperature unstressing action influence on residual strain of smart rebar, sensing stability of smart rebar is studied. This dissertation analyzed deterioration reason of FBG spectrum in smart rebar, and introduced high temperature post treatment method to settle problem of double or multi peaks phenomenon of FBG in smart rebar.
引文
1 B. M. Shahrooz, S. Boy, T. M. Baseheart. Flexural Strengthening of Four 76-Year-Old T-Beams with Various Fiber-Reinforced Polymer Systems: Testing and Analysis. ACI Structural Journal. 2002, 99(5):681-691
    2 V. M. Karbhari, J. M. Chin, D. Hunston, B. Benmokrane, et al. Reynaud. Durability Gap Analysis for Fiber-Reinforced Polymer Composites in Civil Infrastructure. Journal of Composites for Construction. 2003, 7(3):238-247
    3 J. B. Scalzi. Will FRP Composites Ever Change Bridge Engineering? Concrete International. 2000, 22(4):56-58
    4洪乃丰.建筑腐蚀可持续发展.工业建筑. 2006, 36(3): 76-79
    5杨广云.钢筋腐蚀与混凝土结构的耐久性.山西建筑. 2007, 33(16): 75-76
    6柯伟.中国腐蚀调查报告.北京,化学工业出版社. 2003
    7罗福午.建筑结构缺陷事故的分析及防止.清华大学出版社. 1994: 6-12
    8 H. Toutanji, Y. Deng. Delfection and Crack-width Prediction of Concrete Beams Reinforced with Glass FRP Rods. Construction and Building Materials. 2003, 17: 69-74
    9 S.H. Rizkalla, P. Labossiere. Structural Engineering with FRP in Canada. Concrete International. 1999, 21(10): 25-28
    10 G. Thiagarajan. Experimental and Analytical Behavior of Carbon Fiber-Based Rods as Flexural Reinforcement. Journal of Composites for Construction. 2003, 7(1): 64-72
    11 P. Soroushian, S. Ravanbakhsh, M.A. Nagi. Laboratory Evaluation and Field Application of Concrete Reinforcement with Aramid Fiber-Reinforced Polymer Bars. ACI Materials Journal. 2002, 99(6): 584-590
    12 L.C. Hollaway. The Evaluation of and the Way Forward Polymer Composites in the Civil Infrastructure. Construction and Building Materials. 2003, 17: 365-378
    13 S. Matthys, L. Taerwe. Concrete Slabs Reinforced with FRP Grids I: One-Way Bending. Journal of Composites for Construction. 2000, 4(3): 145-153
    14周履. 20世纪后期海洋混凝土结构抗腐蚀性能的发展.世界桥梁. 2002: 65-68
    15黄明城.混凝土结构中的钢筋锈蚀及预防.广东建材. 2007, 1: 19-22
    16 A. Ghali, T. Hall, W. Bobey. Minimum Thickness of Concrete Members Reinforced with Fibre Reinforced Polymer Bars. Canadian Journal of Civil Engineering. 2001, 28: 583-592
    17 A. Mirmiran, W. Yuan, X. Chen. Design for Slenderness in Concrete Column Internally Reinforced with Fiber-Reinforced Polymer Bars. ACI Structural Journal. 2001, 98(1): 116-125
    18 A.J. Ferreira, P.P. Camanho, A.T. Marques, et al. Modeling of Concrete Beams Reinforced with FRP Rebars. Composite Structures. 2001, 53: 107-116
    19 W.D. Callister. Materials Science and Engineering: an Introduction. Wiley. New York. 2000: 34-45
    20 C.E. Bakis. FRP Reinforcement: Materials and Manufactureing. Fiber-reinforced-plastic (FRP) reinforcement for Concrete structures; Properties and Applications. Elsevier Science Publisher B.V. Amsterdam, Netherlands. 1993: 13-58
    21 T. Uomoto, T. Nishimura. Deterioration of Aramid, Glass, and Carbon Fibers due to Alkali, Acid and Water in Different Temperature. Fourth International Symposium, Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Proceedings. ACI International SP-188. 1999: 515-522
    22朱航征.纤维增强聚合物(FRP)用作混凝土配筋材料的开发与应用(上).建筑技术开发. 2004, 31(11): 107-110
    23周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料-合成、应用与进展.北京.化学工业出版社. 2004: 1-40
    24吴培熙,沈健.特种性能树脂基复合材料.化学工业出版社.北京. 2003: 1-35
    25 M. Ochi, R. Takahashi, A. Terauchi. Phase Structure and Mechanical and Adhesion Propertes of Epoxy/ Silica-Hybrids. Polymer. 2001, 42: 5151-5158
    26黎艳,刘伟区,宣宜宁.有机硅改性双酚A型环氧树脂研究.高分子学报. 2005, 2: 244-247
    27惠雪梅,张炜,王晓洁.环氧树脂/SiO2纳米复合材料性能的研究.工程速率应用. 2004, 32(2): 18-20
    28周文英,齐暑华,赵维等.热固性树脂微波固化研究进展.塑料. 2005, 34(5): 47-53
    29钟发春,贺江平,王晓川等.聚合物材料的微波制备技术.热固性树脂.2006, 21(3): 43-46
    30高丹盈, B. Brahim.纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法.水力学报. 2000, 11: 70-78
    31 S. Kocaoz, V.A. Samaranayake. Tensile Characterization of Glass FRP Bars. Composites: Part B. 2005, 36: 127-134
    32 N.J. Ma, S.Y. Liu. The New Structure of Fibre Glass Reinforced Plastic Bolt. Joural of Coal Science and Engineering. 2003, 9(1): 8-11
    33 H.G. Harris, W. Somboonsong, et al. New Ductile Hybrid FRP Reinforcing Bar for Concrete Structures. Journal of Composites for Construction. 1998, 2(1): 28-37
    34 ACI-440 Report. Guide for the Design and Construction of Concrete Reinforced with FRP Rebars. 2000
    35熊光晶,赵若红.复合材料筋混凝土研发方向浅议.工业建筑. 2003,33(8): 59-60
    36 A. Nanni, C.E. Bakis. Self-monitoring, Pseudo-ductile, Hybrid FRP Reinforcement Rods for Concrete Applications. Composites Science and Technology. 2001, 61: 815-823
    37 V. Tamuzs, R. Tepfers, et al. Ductility of Hybrid Fiber Composite Reinforcement FRP for Concrete. Proceedings First International Conference on Composites in Infrastruecture. 1996: 110-122
    38杨正光,郑百林,贺鹏飞,李文晓等.结构混杂GFRP棒拉伸力学性能试验测试.玻璃钢/复合材料. 2001, 3: 8-11
    39 P.K. Mallick. Fiber Reinforced Composites, Materials, Manufacturing, and Design. Marcell Dekker Inc., New York. 1988: 469-475
    40 M.R. Ehsani. Glass-fiber Reinforcing Bars. Alternative materials for the Reinforcement and Prestressing of concrete. J.L. Clarke, Blackie Academic Professional. London. 1993: 35-54
    41 ACI Committee 209. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures. In: Designing for Effects of Creep, Shrinkage and Temperature in Concrete Structures, ACI SP27-4. Dertoit, Mich. 1992: 51-93
    42 L.J. Malvar. Tensile and Bond Properties of GFRP Reinforcing Bars. ACI Materials Journal. 1995, 92(3): 276-285
    43 A. Katz. Bond Mechanism of FRP Rebars to Concrete. Materials and Structures.1999, 32: 761-768
    44 Z. Achillides, K. Pilakoutas. Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions. Journal of Composites for Construction. 2004, 8 (2): 173-181
    45 F.A. Tavarez, L.C. Bank, M.E. Plesha. Analysis of Fiber-Reinforced Polymer Composite Grid Reinforced Concrete Beams. ACI Structural Journal. 2003, 100(2): 250-258
    46 A. Katz, N. Berman, L.C. Bank. Effect of High Temperature on Bond Strength of FRP Rebars. Journal of Composites of Construction. 1999, 5: 73-81
    47 A. Nanni, I.M. Tanigak. Pretensioned Prestressed Concrete Members with Bonded Fiber Reinforced Plastic Tendons: Development and Flexural Bond Lengths (Static). ACI Structural Journal. 1992, 89(4): 433-441
    48 A. Nanni, T. Utsunomiya, H. Yonekura, et al. Transmission of Prestressing Force to Concrete by Bonded Fiber Reinforced Plastic Tendons. ACI Structural Journal. 1998, 95(6): 335-344
    49 B. Tighiouart, B. Benmokrane, P. Mukhopadhyaya. Bond Strength of Glass FRP Rebar Splices in Beams under Static Loading. Construction and Building Materials. 1999, 13: 383-392
    50张新越,欧进萍.混凝土结构中FRP筋的耐久性研究.沿海地区混凝土结构耐久性及其设计方法科.中国深圳. 2004, 6: 522-527
    51张新越,欧进萍. FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究.武汉理工大学学报. 2007, 20: 33-36
    52 G.L. Steckel, G.F. Hawkins, J.L. Bauer. Environmental Durability of Composites for Seismic Retrofit of Bridge Columns. Fiber Composites in Infrastructure. Proceedings of the Second International Conference on Fibre Composites in Infrastructure ICCI’98. Tucson. 1998, 2: 460-475
    53 T. Uomoto, T. Nishimura. Development of New Alkali Resistant Hybrid AGFRP Rod. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Third International Symposium. Sapporo. 1997, 2: 67-74
    54 M. Fransesco, A. Nanni. Durability of FRP Rods for Concrete Structures. Construction and Building Materials. 2004, 18: 491-503
    55 Taketo, Uomoto. Durability Considerations for FRP Reinforcements. 5th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcementfor Concrete Structures (FRPRCS-5). 1998: 17-32
    56 M.A. Aiello, L. Ombres. Environmental Effects on the Mechanical Properties of Glass-FRP and Aramid-FRP Rebars. Mechanics of Composite Materials. 2000, 36(5): 395-398
    57 F. Fllyin, C. Rohrbacher. The Influence of Aqueous Environment, Temperature and Cyclic Loading on Glass-fiber/Epoxy Composite Laminates. Journal of Reinforced Plastics and Composites. 2003, 22(7): 615-635
    58 C. Bockenheimer, D. Fata, W. Possart. New Aspects of aging in Epoxy Networks. I. Thermal Aging. Journal of Applied Polymer Science. 2004, 91: 361-368
    59 C. Bockenheimer, D. Fata, W. Possart. New Aspects of Aging in Epoxy Networks. II. Hydrothermal Aging. Journal of Applied Polymer Science. 2004, 91: 369-377
    60 B.C. Ray. Thermal Shock and Thermal Fatigue on Delamination of Glass-fiber-Reinforced Polymeric Composites. Journal of Reinforced Plastics and Composites. 2005, 24: 111-116
    61 M.H. Han, J.A. Nain. Hygrotherma aging of Polyimde Matrix Composite Laminates Composites: Part A. 2003, 34: 979-986
    62 V. Dejke. Durability of FRP Reinforcement in Concrete-Literature Revieve and Experiments. Thesis for Degree of Licentiate of Engineering of Chanlmers University of technology. 2001: 56-190
    63 A.H. Rahman, C. Kingsley. Experimental Investigation of the Mechanism of Deterioration of FRP Reinforcement for Concrete. Fiber Composites in Infrastructure: Proceedings of the Second International Conference on Fibre Composites in Infrastructure ICCI’98. Tucson. 1998, 2: 501-511
    64 P.V. Vijay. Ageing and Design of Concrete Members Reinforced with GFRP Bars. Dorctoral Thersis of West Virginia University. 1999: 12-179
    65 B. Benmokrane, H. Rahman. Improvement of the Durability of FRP Reinforcements for Concrete Structures. Proceedings from the First International Conference on Durability of Fibre Reinforced Polymer (FRP) Composites for Construction. Sherbrooke. 1998: 571-585
    66张新越. FRP筋及其加筋混凝土梁桥体系的性能与设计研究.哈尔滨工业大学博士论文. 2006: 56-71
    67 F.E. Tannous, H. Saadatmanesh. Durability and Long-Term Behavior of Carbon and Aramid FRP Tendons, Fiber Composites in Infrastructure. Proceedings of the Second International Conference on Fibre Composites in Infrastructure ICCI’98. Tucson. 1998: 524-538
    68 H.V.S. Gangarao, P.V. Vijay. Aging of Structural Composites under Varying Environmental Conditions. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Third International Symposium. Sapporo. 1997, 2: 91-98
    69 ACI 440.1R-01. Guide for the Design and Construction of Concrete Reinforced with FRP Bars. American Concrete Institute. 2001: 1-41
    70 Y. Kato, T. Yamaguchi. Computational Model for Deterioration of Aramid Fiber by Ultraviolet Rays. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Third International Symposium. Sapporo. 1997, 2: 163-170
    71 E.Y. Sayed-Ahmed, N.G. Shrive. CFRP Post-tensioned Masonry Diaphragm Walls. Proceedings of the Annual CSCE Conference, 2nd Structural Specialty Conference. Halifax, Nova Scotia. 1998: 571-582
    72 M. R. Ehsani, H. Saadatmanesh, S. Tao. Design Recommendations for Bond of GFRP Rebars to Concrete. Journal of Structural Engineering. 1996, 122(3): 247-254
    73欧进萍,王勃,张新越,何政,钱民中.混凝土结构用CFRP筋的感知性能试验研究.复合材料学报. 2003, 20(6): 47-51
    74张新越,欧进萍,王勃,何政. CFRP筋的自感知特性试验研究.功能材料. 2004, 35: 1575-1581
    75 B. Wang, J.P. Ou, X.Y. Zhang. Experimental Investigation on the Sensing Properties of CFRP Bars. Proceedings of the International Workshop on Integrated Life-Cycle Management of Infrastructures. Hong Kong, China. 2004: 171-177
    76 J.P. Ou, B. Wang, X.Y. Zhang. Self-sensing Properties of CFRP and OFBG-GFRP Bars for Concrete Structures. Proceedings of the 4th International Workshop on Structural Health Monitoring. Stanford, USA. 2003: 1431-1438
    77 N. Muto, H. Yanagida, T. Nakatsuji, et al. Design of Intelligent Materials with Self-diagnosing Function for Preventing Fatal Fracture. Smart Materials andStructures. 1992, 1: 324-329
    78 Y. Okuhara, S.G. Shin. Self-Diagnosis Function of FRP Containing Electrically Conductive Phase. Proc. SPIE. 2000, 3986: 191-198
    79 N. Muto, H. Yanagida, T. Nakatsuji, et al. Design of Intelligent Materials with Self-diagnosing Function for Preventing Fatal Fracture. Smart Materials and Structures. 1992, 1: 324-329
    80 Y. Okuhara, S. Shin. Self-diagnosis Function of FRP Containing Electrically Conductive Phase. Proc. SPIE. 2001, 39(86): 191-198
    81 M. Sugita, H. Yanagida, N. Muto. Materials Design for Self-diagnosis of Fracture in CFGFRP Composite Reinforcement. Smart Materials and Structures. 1995, 4: 52-57
    82周智.光纤光栅传感元件、监测系统及其在桥梁结构中的应用.哈尔滨工业大学博士论文. 2003
    83赵雪峰.结构健康监测的光栅光纤传感网络及其工程应用.哈尔滨工业大学博士论文. 2007
    84 J.P. Ou, X.F. Zhao, H. Li, et al. Health Monitoring of Binzhou Yellow River Highway Bridge Using Fiber Bragg Gratings. Proceedings of SPIE– The International Society for Optical Engineering, Smart Structures and Materials 2005– Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. 2005, 5765: 576-583
    85 J.L. Li, Z. Zhou, J.P. Ou. Interface Strain Transfer Mechanism and Error Modification for Adhered FBG Strain Sensor. SPIE-Fundamental Problems of Optoelectronics and Microelectronics. 2005, 5857: 278-287
    86 J.L. Li, Z. Zhou, J.P. Ou. Interface Transferring Mechanism and Error Modification of Embedded FBG strain Sensor. Smart Structures and Materials: Smart Sensor Technology and Measurement Systems, edited by Eric Udd, Daniele Inaudi, Proceedings of SPIE. 2004, 5384: 190-198
    87 J.L. Li, Z. Zhou, J.P. Ou. Interface Transferring Mechanism and Error Modification of FRP-OFBG Strain Sensor Based on Standard Linear Viscoelastic Model. Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, edited by Masayoshi Tomizuka, SPIE. 2006, 6174
    88欧进萍,周智,王勃. FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用.高技术通讯. 2005, 15(4): 23-28
    89王勃,欧进萍,张新越,周智,何政等.混凝土结构用智能FRP筋的试验研究.功能材料. 2004, 35: 348-353
    90王勃. FRP加筋混凝土梁的力学与自感知性能研究.哈尔滨工业大学博士学位论文. 2004: 34-117
    91 A. Kalamkarov, G. Saha, S. Rokkam, et al. Strain and Deformation Monitoring in Infrastructure Using Embedded Smart FRP Reinforcements. Composites: Part B. 2005, 36: 455-467
    92李冬生.拱桥吊杆损伤监测与健康监测.哈尔滨工业大学博士论文. 2007: 48-57
    93 V.L. Brown, C.L. Bartholomew. FRP Reinforcing Bars in Reinforced Concrete Members. ACI Materials Journal. 1993, 90(1): 34-39
    94 L. R. Taerwe, A. Nanni. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications. Orlando, Elsevier Science Publisher. Amsterdam, 1993: 99-114
    95张鹏,唐小林,蒙文流等.碳纤维增强塑料(CFRP)的应用及研究.广西工学院学报. 2004,15(3): 17-22
    96 Y. Sonobe. An Overview of R&D in Japan. A. Nanni. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications. Orlando, Elsevier Science Publisher. Amsterdam. 1993: 115-128
    97 V.M. Karbhari. Use of Composite Material in Civil Infrastructure in Japan. International Technology Reaearch Institute World Technology Division. 1998
    98高丹盈,朱海堂,谢晶晶.纤维增强塑料筋锚杆及其应用.岩石力学与工程学报. 2004, 23(13): 2205-2210
    99 A.A. Mufti. FRPs and FOSs Lead to Innovation in Canadian Civil Engineering Structures. Construction and Building Materials. 2003, 17: 379-387
    100 A.A. Mufti, R.C. Tennyson. Integrated Sensing of Civil and Innovative FRP Structures. Progress in Structural Engineering and Materials. 2003, 5: 115-126
    101 A.A. Abdelrahman, G. Tadros. Test Model for the First Canadian Smart Highway Bridge. ACI Structural Journal. 1995, 92(4): 451-458
    102沃丁柱.复合材料大全[ M] .北京:化学工业出版社. 2000
    103叶列平,冯鹏. FRP在土木结构中的应用与发展.土木工程学报. 2006, 39(3): 24-36
    104梅葵花,吕志涛,张继文,刘钊.碳纤维复合材料索斜拉桥的设计与测试.长安大学学报(自然科学版). 2007, 27(6): 48-52
    105 N. Pan, K. Chen. The hybrid Effects in Hybrid Fibre Composites: Experimental Study Using Twisted Fibrous Structures. Proc. Royal Society. 1998, 454: 1109-1127
    106 R. Tepfers. Pull out Flexural Rotation Capacity and Creep Tests Using Hybrid Composite Rods and CFCC Rods for Reinforcement in Concrete. Chammers University o Technology. Division of Building Technology. Work No: 33. Publication No: 99:4. Goteborg, 1999
    107纪梓斌,崔玉清,熊光晶.混杂纤维复合材料的应用及对混凝土加固的启示. J建筑技术. 2004, 35(6): 458-459
    108徐茂波,戴林,徐向东. GFRP/CFRP混杂纤维延性分析.山东建筑工程学院学报. 2003, 18(4): 5-7
    109张少实,庄茁.复合材料与粘弹性力学.北京.机械工业出版社. 2005
    110何政,于明伟,欧进萍. CG-FRP混杂筋的研制及试验研究.哈尔滨工业大学学报. 2007, 39(6): 845-848
    111罗云标,吴刚,吴智深,王燕华.钢-连续纤维复合筋拉伸力学性能试验研究.力学与工程. 2007: 213-218
    112 Z.S. Wu, X. Wang, K. Iwashita. State of the Art of Advanced FRP Applications in Civil Infrastructure in Japan.工业建筑. 2007, 37(增刊):1-17
    113胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用.高科技纤维与应用. 2005, 6: 7-13
    114石钱华.国外连续玄武岩纤维的发展及其应用.玻璃纤维. 2003, 4: 27~31
    115胡显奇,罗益锋,申屠年.玄武岩连续纤维及其复合材料.高科技纤维与应用. 2002, 27(2): 1-5
    116谢尔盖、李中郢.玄武岩纤维材料的应用前景.纤维复合材料. 2003, 3: 17-20
    117 S.E. Artemenko. Polymer Composite Materials Made from Carbon, Basalt and Glass Fibres. Structure and Properties. Fibre Chemistry. 2003, 35(3): 226-229
    118 E.P.普罗德曼.聚合物基体复合材料中的界面.中国建筑工业出版社.北京. 1980
    119胡福增.聚合物及其复合材料的表界面.北京轻工业出版社.北京. 2001
    120赵玉庭,姚希曾.复合材料基体与界面.华东化工学院出版社.上海. 1991
    121蒋秉植,杨健美.磁场效应影响化学反应研究的概况及前景.化学进展. 1992, 02: 15-36
    122 Y.M. Molchanov, E.R. Kisis, Y.P. Rodin. Structural Changes in Polymer Materials in a Magnetic Field. Mekh Polim. 1973, 9(4): 737-738
    123刘胜利,张启芳,王良贤.磁场处理改善环氧树脂浇注体力学性能研究.固体火箭技术. 1995, 1(82): 62-69
    124 Y.P. Rodin, Y.M. Molchanov. Orientation of Molecules of Epoxy Oligomers in a Uniform Constant Magnetic Field. Mekh Kompoz Mater. 1982, 18(6): 1056
    125 Y.P. Rodin, Y.M. Molchanov. Effect of Conformational Changes Caused by a Uniform Constant Magnetic Field on the Curing of an Epoxy Resin. Mekh Kompoz Mater. 1988, 24(3): 497-454
    126 L.N. Egorova, M.S. Akutin, A.N. Shabadash, et al.Study of the Effect of Magnetic Treatments of Oligomers on the Nature of Physicochemical Phenomena at the Interfaces in Composite Materials. Deposited Doc. 1983, VINITI. 1983: 2644-2653
    127陈贻瑞,范震冈,方洞浦等.磁场对酚醛环氧树脂交联的影响.高等学校化学学报. 1987, 8(12): 1136-1140
    128 T.A. Man′ko, A.N. Kvasha, A.V. Solovev, et al. Structural Studies of Epoxy Polymers Cured in a Constant Magnetic Field. Mekh Kompoz Mater. 1984, 20(4): 589- 592
    129 Y.P. Rodin, Y.M. Molchanov. Anisotropy of the Strength Properties of Plastics and their Components Treated in a Magnetic Field. Mekh Kompoz Mater. 1984, 20(3): 503
    130 Y.P. Rodin, Y.M. Molchanov, E.R. Kisis. Properties of Polymeric Composite Materials Formed in the Presence of a Nonuniform Constant Magnetic Field. Mekh Kompoz Mater. 1981, 17(5): 864
    131 V.N. Shalygin. Strengthening of Thick-Walled Reinforced Polymer Structures by the Action of Physical Field. In: Morodtield Vin A, eds.Polim Mater Mashinostr . Perm, USSR: Permsk Politekh Inst. 1982: 37
    132赵克熙.复合材料壳体磁场固化技术.固体火箭技术. 1994,3: 61-71
    133 F. Shahidi. Bond Degredation between FRP Bars and Concrete under Sustained Loads. Doctor Thesis of University of Saskatchewan, Canada. 2003
    134 P.P. Adams. Glass Corrosion–A Record of the Past? A Predictor of the Future.Journal of Non-Crystalline Solids. 1984, 67: 193-205
    135 V.T. Yilmaz, F.P. Glsser. Reaction of Alkali-resistant Glass Fibres with Cement, Part 1: Review, Assessment, and Microscopy. Glass Technology. 1991, 32(3): 91-98
    136 V.T. Yilmaz. Chemicial Attach on Alkali-resistant Fibres in Hydrating Cement Matrix: Characterization of Corrosion Products. Journal of Non-Crystaline Solids. 1992, 151: 236-244
    137 J.W. Chin, K. Aouadi. Effects of Environmental Exposure on Fibre Reinforced Plastic Materials used in Construction, Journal of Composites Technology and Research. 1997, 19(4): 205-213
    138 R.D. Bradshaw, L.C. Brinson. Physical Aging in Polymer Composites: an Analysis and Method for Time Aging time Superposition. Polymer Engineering and Science. 1997, 31(1): 31-34
    139 L. Gautier, B. Mortaigne. Interface Damage Study of Hydrothermally Aged Glass-fibre-reinforced Polyester Composites. Composites Science and Technology. 1999, 59: 2329-2339
    140 W. Nelson. Accelerated Testing-statistical Models, Test Plans and Data Analyses. John Wiley and Sons. 1990
    141 H. Caruso, A. Dasgupta. A fundamental Overview of Accelerated Testing Analytical Models. Journal of the Institute for Environmental Sciences and Technology. 1998: 16-20
    142 L.C. Bank, T.R. Gentry, A. Barkatt, et al. Accelerated Aging of Pultruded Glass/Vinyl ester Rods. Second International Conference on Composite Infrastructure. Saadatmanesh H., and Ehsani M.R. 1998: 423-437
    143 K.L. Litherland, D.R. Oakley. The Use of Accelerated Ageing Procedures to Predict the Long Term Strength of GRF Composites. Cement and Concrete Research, 1981, 11: 455-466
    144 L.C. Bank, T.R. Gentry. A Model Specification for FRP Composites for Civil Engineering Structures. Construction and Building Materials. 2003, 3: 405-437
    145李昕,吴耀楚,杨虹. FRP残余应力及纤维最佳预张力分析.武汉理工大学学报. 2001, 23(5): 54-56
    146金香花,陈巨兵,辛全成.钻孔法和光栅应变花测试复合材料的残余应力.试验力学. 2005, 20(1): 78-83
    147万里冰,武湛君,张博明等.光纤布拉格光栅监测复合材料固化.复合材料. 2004, 21(3): 1-5
    148李向华,刘小会,蒋方云.光栅Bragg光栅用以三维编织复合材料结构的内应变测量.材料科学与工程学报. 2005, 23(2): 221-225
    149李昕,刘萍.置入光纤传感器测定FRP残余应力的研究.武汉大学学报(工学版). 2003, 36(1): 89-91
    150 A.L. Kalamkarov, S.B. Fitzgerald, D.O. Macdonnal, et al. On the Processing and Evaluation of Pultruded Smart Composites. Composites: Part B. 1999, 30: 753-763
    151 A.L. Kalamkarov, D.O. Macdonald, S.B. Fitzgerald, et al. Reliability Assessment of Pultruded FRP Reinforcements with Embeded Fiber Optic Sensors. Composite Structures. 2000, 50: 69-78
    152侯爽.钢筋混凝土结构预期使用期可靠度设计与FRP加固监测.哈尔滨工业大学博士论文. 2006
    153 J.S. Sirkis. Unified Approach to Phase-strain-temperature Models for Smart Structure Interferometric Optical Fiber Sensors: Part1, Development. Opt. Eng. 1993, 32(4): 752–761
    154 J.M. Menedez. Strain Measurements inside Thick Laminates at Vicinity of Bolted Joints. Smart Structures and Materials. Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, SPIE. 1999, 3670: 184-194
    155 K.A. Gopal, S. Adali, et al. Optimal Temperature Profile for Minimum Residual Stress in the Cure Process of Polymer Composite. Composite Structures. 2000, 48: 99-106
    156 L. Sorensen, T. Gmur. Long FBG Sensor Characterization of Residual Strains in AS4/PPS Thermoplastic Laminates. Smart Structure and Material: Smart Sensor Technology and Mearuement Systems, Preceddings of SPIE. Bellingham. 2004, 5384: 267-277
    157 Y. Okabe, S.Yashiro. Effect of Thermal Residual Stress on the Reflection Spectrum from Fibre Bragg Grating Sensors Embedded in CFRP Laminates. Composites: Part A. 2002, 33: 991-999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700