用户名: 密码: 验证码:
双光子细胞膜和核糖核酸探针的合成及其在活细胞荧光成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近研究表明,在活体成像中,双光子荧光显微成像技术比共聚焦成像具有更多的优点。该技术具有低的光毒性和光漂白性、高的检测灵敏度和无成像扭曲等优势。另外,由于双光子显微镜其本身就有高的轴向分辨率,它不需要像共聚焦显微镜那样通过针孔来提高成像效果。更重要的是,由于它的长波段激发有效避免了细胞的光损伤,避开了紫外和蓝光的照射并且使散焦照射减少。从而使得双光子显微镜可以在不损害细胞活性的条件下对细胞进行长时间连续成像。为了适应当前形势,各种能够成像活细胞内不同靶标的荧光探针已经被广泛的运用到双光子荧光显微成像研究中。但是,目前在细胞和组织的三维成像检测中,依然缺乏优良的双光子荧光探针,这一现状亟待解决。本论文主要对不同双光子荧光探针的成像特点进行了研究。
     首先,本论文介绍了细胞膜探针。生物膜是通过脂质、蛋白和糖类等自组装而成的双层膜结构。在这个复杂的结构中,脂质是膜骨架中的主要组成成分,对膜的功能和性质产生巨大影响。通过最近生物膜理论分析,生物膜的构成中由富含胆固醇和鞘磷脂的膜有序相和含非饱和链脂质体和胆固醇的膜无序相组成。在细胞膜的相态研究中,有序相的假设主要是来自富含胆固醇和鞘磷脂的不溶性细胞膜碎片的发现,这种假设一直激发着相关学者深入的研究和讨论,这是由于它们的证据主要通过间接的技术来提供,所以一直未能实现有序相的可视性。一些研究者认为,有序相参与了相关的信号转导、细胞粘附、信号传递和脂质体或蛋白的转运。一直以来,研究者是通过人工膜模仿有序相来代替对细胞膜相关区域进行研究。近年来,生物膜有序相是当前的研究热点,但是在细胞膜相关区域的研究仍然具有挑战。综上所述,为了更好的理解有序相在生物膜内的作用,必须实现生物膜该区域的可视性。但是,由于生物膜结构的复杂性,对细胞及组织意义上的有序相研究一直存在困难,为了成像活细胞膜的有序相,在第二章中,本论文设计合成了一种新型的荧光探针HVC-12,该探针基于聚集诱导发光的机理选择性成像了细胞膜和组织中的有序相。由于探针HVC-12聚集诱导发光的特性,它的纳米聚集颗粒点亮了细胞膜的刚性区域。本论文首次发现,在活细胞膜上有序相呈现的是非连续的分布(1-1.5μm的间隔)。更重要的是,这种探针与商业化的膜探针(如DiD)相比,探针HVC-12对细胞膜表现出了高的灵敏性;大的斯托克斯位移和双光子活性吸收截面;好的光稳定性;并能成像和追踪细胞膜的动态变化。这些优异的光物理性质,使这种新型的探针HVC-12成为研究生物膜强有力的工具。
     其次,核酸是细胞中重要的生物大分子,其定量分析、特异性识别、对基因组学、病毒学、分子生物学等相关学科的发展具有十分重要的意义。本论文针对核酸开展包括DNA及RNA在内的双光子核酸探针的制备及细胞成像方面的研究工作。基于前期工作,本论文通过双光子核酸探针的设计、合成及表征,探索阳离子有机小分子专一性识别内源性RNA的内在规律、分子构型对专一性识别能力的影响,掌握核酸探针的调控机制,最终达到了制备核酸探针的目的。我们知道,多种多样的分子探针一直为检测活细胞内的RNA而研发,包括寡核苷酸探针、非线性荧光共振能量转移探针、双标记的寡核苷酸发夹探针(分子信标)、双荧光共振能量转移分子信标、自动结扎探针和利用蛋白作报道基团的探针。但是,这些RNA探针不具有好的膜通透性,它常常通过微注射技术进入活细胞进行标记。但是这种技术往往造成细胞损伤从而造成细胞的生物功能的紊乱,因此,开发一种低分子量的膜通透性双光子RNA荧光探针是非常重要的。
     在本论文的第三章中,基于吲哚的单离子盐(INR1/INR2)被成功合成和表征,通过体外的波谱分析和在不同细胞系内的单双光子成像研究发现,INR1和INR2作为两种选择性荧光开关探针,与RNA绑定后,探针都具有大的双光子活性吸收截面。在活细胞染色实验中,两种探针具有好的膜通透性,并能用双光子和共聚焦显微镜能在活细胞的细胞质和核仁中成像RNA。此外,它们在与一种重要的DNA-RNA共区域化的DNA染料Hoechst33342复染活细胞时,表现出好的复染兼容性。
     在本论文的第四章中,一种新的咔唑双离子盐HVC-6被设计和合成。更重要的是,在活细胞和固定细胞中,它能够双光子成像细胞内分布在细胞质和核仁区域的RNA.。而且,它们在与另一种重要的DNA-RNA共区域化的DNA染料DAPI复染活细胞时,表现出好的复染兼容性。
     在本论文的第五章中还是集中于能够成像细胞内的靶标的小分子量探针的研究。在本章中,基于吲哚单离子盐,本章设计了低分子量的线粒体探针INSC12。由于这种盐的荧光团具有长的烷基链,分子与脂质膜可以产生强的相互作用,探针INSC12表现出好的膜通透性,并在短时间内能够点亮细胞膜并进一步点亮细胞内的线粒体。更重要的是,这种探针拥有快速检测线粒体的能力,并能在长时间内观测到线粒体的动态变化,一定程度上承受了微环境变化的耐性。
     综上所述,本论文中一些高灵敏性的细胞膜、RNA和线粒体探针(HVC-12/HVC-18, INR1/INR2/HVC-6和INSC12)被成功设计和合成。尤其是本章基于全新的AIE机理在活细胞和深层组织中首次实现了对细胞膜有序相的检测。另外,利用共聚焦和双光荧光显微镜,探针INR1/INR2和HVC-6在活细胞内也实现了对内源性RNA的识别;同时,本论文重点对探针INR1/INR2与RNA的识别机理和双光子性能作了仔细的分析。为实现RNA和细胞膜荧光探针的商品化奠定了基础。
Recently, a comparison study showed that two-photon fluorescence microscopy (TPM) is a better technique than confocal microscopy in imaging living specimen. TPM produces low photodamage, reduced photobleaching, high detection sensitivity, and no image distortion. In addition, it not only has an intrinsically high axial resolution without the need of a confocal pinhole in the detection path, will but also reduce cell damage significantly due to both the use of longer wavelength excitation light, which avoids damaging ultraviolet (UV) or blue excitation light, and the reduction of out-of-focus irradiation. Consequently, TPM is appropriate for the repetitive imaging of living cells without seriously damaging cellular vitality. To meet the current situation, development of various two-photon excitied fluorescence (TPEF) probes to different targets in living cells have been noticed extensively and intensively. Currently, the status that TPM lacks of excellent two-photon fluorescence probes in the three-dimensional imaging detection of cells and tissues is an urgent prolem to solve. This thesis mainly discusses the three different kinds of fluorescent probes.
     First, this thesis introduces the membrane probe. Biological membranes are self-assembled bilayers of biomolecules such as lipids, proteins, and carbohydrates. Among such complicated structures, lipids are the major constituents of the membrane structural backbone, and the lipid composition greatly affects membrane functions and properties. According to recent biological membrance theory, there are ordered (Lo) domains enriched in saturated lipids (mainly sphingolipids) and sterols (mainly cholesterol) and disordered (Ld) domains in unsaturated lipids and cholesterol. Moreover, the presence of Lo domains (or rafts) in cell plasma membranes was hypothesized from the discovery of detergent-insoluble membrane fractions enriched with sphingolipids, saturated phospholipids, and cholesterol. This hypothesis stimulated intensive research and debates, since their evidence was mainly provided from indirect techniques. It cannot realize direct visualization Lo domains. At the same time, some researchers think that these domains take part in membrane-associated events such as signal transduction, cell adhesion, signaling, cell trafficking and lipid/protein sorting. Up to now, many researchers use artificial membrane technology to simulate the Lo domains of the cell membrane and carry out various research work. But their direct visualization Lo domains remains a challenge, this state stimulates intensively research on Lo domains of biological membrane and results in ardent debates. Therefore, to understand its role in biology, it is crucial to visualize such domains in living cell membrane. At present, no biochemical techniques are available for such study owing to the difficulty in working with Lo phase in living cell membrane and tissues.
     Herein, to achieve selectively two-photon imaging Lo domain in living cell membrane, In the second chapter, we design and synthesize a fluorescent probe2,7-bis(1-iodododecane-4-vinylpyridium iodine)-N-ethylcarbazole (HVC-12), and selectively image the Lo phase in plasma membranes of living cell and tissue based aggregation-induced emission (AIE) mechanism. Due to AIE feature of HVC-12, its nanoaggregates accumulate and light up Lo phase of the cell membranes. This thesis firstly found that the Lo phase exhibit uncontinuous distribution (1-1.5μm interval) in the cell membranes. Moreover, compare to commercially available membrane tracers (e.g. DiD), this probe possesses high specificity to live-cell membrane, large stokes shift and two-photon excitation fluorescence action absorption cross-section (δΦ=189GM in EtOH), superior photostability, and well-suited imaging and tracing dynamic change of cell membrane in a long period of time. Many attractive photophysical qualities of HVC-12make it a new powerful tool to study biological membrane.
     Second, the nucleic acids are important biological macromolecules in cells, and the quantitative analysis and specific recognition of nucleic acids have very important significance to the development of genomics, virology, molecular biology, and other related disciplines. This thasis involves the research work of the preparation and cell imaging of two-photon nucleic acids fluorescent probes, including DNA and RNA probes. On the basis of the preliminary work, this chapter design synthesize and characterize the two-photon RNA fluorescence probes, explore the inherent rules that cationic organic molecules specially recognize RNA and the influence of molecular configuration on specific recoganize ability, master the regulation rules of RNA probes, and eventually reach the targets of producing high-performance nucleic acids probes. Several classes of molecular probes have been developed for RNA detection in living cells, including (a) ODN probes;(b) linear fluorescence resonance energy transfer (FRET) probes;(c) dual-labeled oligonucleotide hairpin probes (e.g., molecular beacons);(d) dual FRET molecular beacons;(e) autoligation probes; and (f) probes using fluorescent proteins as reporters. But, because many RNA fluorescent probes do not possess membrane-permeability, in order to obtaining fluorescent imaging on RNA in a living cell, they have to be injected into a living cell of target by microinjection. a technology that is destructive to intact cells and interferes with biological functions of cells. Therefore, it is very essential to develop a membrane-permeable, low-molecular-weight two-photon fluorescent probe for imaging RNA in living cells.
     In the third chapter, indole-based mono-cationic salts (INR1and INR2) have been synthesized and characterized successfully. According to their spectral response to RNA in vitro and fluorescent imaging in four different living cell lines (SiHa, HeLa, PC3and MDA-MB-231), we identify INR1and INR2as RNA-selective fluorescent turn-on probes with large two-photon excitation fluorescence action absorption cross-sections (Φxδ) when binding to RNA. And two dyes also have very good membrane permeability and can image RNA in nucleoli and cytoplasm in living cells by confocal and two-photon fluorescence microscopy (TPM). Furthermore, they possess good counterstain compatibility with Hoechst33342, a classic DNA-staining dye for live cells, which is very important to RNA-DNA colocalization.
     In the forth chapter, A new carbazole-derived dicationic compound, namely2,7-bis(1-hydroxyethyl-4-vinylpyridinium iodine)-N-ethylcarbazole (HVC-6) has been obtained. Moreover, it possesses the potential of imaging RNA in nucleoli and cytoplasm in two-photon fluorescence microscopy and exhibits good counterstain compatibility with the commercial fluorescent nucleic dye DAPI.
     In the fifth chapter, we have focused on small-molecule-based probes capable of imaging intracellular target. This chapter have designed a LMW mitochondrial probe,3,5-bis((E)-2-(pyridin-4-yl)vinyl)-1H-indole monoiodide (INSC12) based on the conjugation of the indole fluorophore with an anchor group. This anchor group is composed of long alkyl chains and one zwitterionic group, allowing strong interaction with the lipid membrane. Consequently, the probe INSC12exhibits a process for imaging cell membranes, rapidly entering the cell and lighting up the mitochondria; Moreover, the probe possesses some ability for the rapid detection and tracking of morphological change and for observing the dynamical behavior of mitochondria over a long period of time with appreciable tolerance of microenvironmental change.
     In summary, a series of highly selective fluorescent probes for cell membrane (HVC-12/HVC-18), RNA (INR1/INR2/HVC-6) and mitochondrial (INSC12) detection have been designed and synthesized successfully. In particular, this thesis first achieve live-cell membrane and deep-tissue imaging of enrich Lo phase based aggregation-induced emission (AIE) mechanism. In addition, INR1/INR2and HVC-6also achieve RNA detection used confocal fluorescence microscopy fluorescent microTPM; Meanwhile, the recognition mechanism between INR1/INR2and RNA and their two-photon property have been studied in detail. This thesis will lay the foundation to get the commercialization of RNA/cell membrane fluorescent probes.
引文
[1]何晶,石景,傅尧,小分子荧光探针在蛋白质标记与成像分析中的应用,化学通报,2007,7,1-7.
    [2]Uenol T., Naganol T., Fluorescent probes for sensing and imaging, Nature Methods, 2011,8,642-645.
    [3]Looney M. R., Thornton E. E., Sen D., Lamm W. J., Glenny R. W., Krummel M. F., Stabilized imaging of immune surveillance in the mouse lung, Nat Methods.,2011 8,91-96.
    [4]Choe S., Acharya A., Keselowsky B. G., Sorg B. S., Spectral and fluorescence imaging of immune system and tissue response to an immunogenic agent, SPIE Proceedings,2009,7313,10-22.
    [5]Dubey P., Reporter Gene Imaging of Immune Responses to Cancer:Progress and Challenges, Theranostic,2012,2,355-362.
    [6]Spencer D. B., Lee E. J., Kawaguchi T., Rosenbaum J. T., In vivo imaging of the immune response in the eye, Seminars in Immunopathology,2008,30,179-190.
    [7]Yuasa M., Oyaizu K., Horiuchi A., Ogata A., Hatsugai T., Yamaguchi A., Kawakami H., Liposomal Surface-Loading of Water-Soluble Cationic Iron(Ⅲ) Porphyrins as Anticancer Drugs, Mol. Pharmaceutics,2004,1,387-389.
    [8]JOHNSON I., Fluorescent probes for living cells, Histochemical Journal,1998,30, 123-140.
    [9]Yuan L., Lin W., Zheng K., Zhu S., FRET-Based Small-Molecule Fluorescent Probes:Rational Design and Bioimaging Applications, Acc. Chem. Res.,2013,46, 1462-1473.
    [10]Cao X., Lin W., He L., A Near-Infrared Fluorescence Turn-On Sensor for Sulfide Anions, Org. Lett.,2011,13,4716-4719.
    [11]Yuan L., Lin W., Chen B., Xie Y., Development of FRET-Based Ratiometric Fluorescent Cu2+ Chemodosimeters and the Applications for Living Cell Imaging, Org Lett.,2012,14,432-435.
    [12]Yuan L., Lin W., Zhao S., Gao W., Chen B., He L., Zhu S., A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging, J. Am. Chem. Soc,2012,134,13510-13523.
    [13]Wu X., Sun X., Guo Z., Tang J., Shen Y., James T. D., Tian H., Zhu W., In Vivo and in Situ Tracking Cancer Chemotherapy by Highly Photostable NIR Fluorescent Theranostic Prodrug, J. Am. Chem. Soc.,2014, DOI: 10.1021/ja412380j.
    [14]Iwamoto T., Ohnishi N., Akasaka N., Ohno K., Ishida S., Anthryl-Substituted 3-Silylene-2-silaaziridine Obtained by Isomerization of Disilacyclopropanimine: An Exocyclic Silene Showing a Distinct Intramolecular Charge Transfer Transition, J. Am. Chem. Soc.,2013,135,10606-10609.
    [15]Jayamurugan G., Dumele O., Gisselbrecht J.-P., Boudon C., Schweizer W. B., Bernet B., Diederich F., Expanding the Chemical Structure Space of Opto-Electronic Molecular Materials:Unprecedented Push-Pull Chromophores by Reaction of a Donor-Substituted Tetracyanofulvene with Electron-Rich Alkynes, J. Am. Chem. Soc.,2013,135,3599-3606.
    [16]Park M., Kim C. H., Joo T., Multifaceted Ultrafast Intramolecular Charge Transfer Dynamics of 4-(Dimethylamino)benzonitrile (DMABN), J. Phys. Chem. A,2013, 117,370-377.
    [17]Liu Y., Zhang W., Sun Y., Song G., Miao F., Guo F., Tian M., Yu X., Sun J. Z., Two-photon fluorescence imaging of RNA in nucleoli and cytoplasm in living cells based on low molecular weight probes, Dyes and Pigments,2014, 103,191-201.
    [18]Sweede M., Ankem G., Chutvirasakul B., Azurmendi H. F., Chbeir S., Watkins J., Helm R. F., Finkielstein C. V., Capelluto D. G. S., Structural and Membrane Binding Properties of the Prickle PET Domain, Biochemistry,2008,47, 13524-13536.
    [19]Syv8nen S., Eriksson J., Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier, ACS Chem. Neurosci.,2013,4,225-237.
    [20]Ametamey S. M., Honer M. chubiger P. A. S, Molecular Imaging with PET, Chem. Rev.,2008,108,1501-1516.
    [21]Miao F., Song G., Sun Y., Liu Y, Guo F., Zhang W., Tian M., Yu X., Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe, Biosensors and Bioelectronics,2013,50,42-49.
    [22]Zhao Y., Cao L., Ouyang J., Wang M., Wang K., Xia X.-H., Reversible Plasmonic Probe Sensitive for pH in Micro/Nanospaces Based on i-Motif-Modulated Morpholino-Gold Nanoparticle Assembly, Anal. Chem.,2013,85,1053-1057.
    [23]Abe H., Wang J., Furukawa K., Oki K., Uda M., Tsuneda S., Ito Y, A Reduction-Triggered Fluorescence Probe for Sensing Nucleic Acids, Bioconjugate Chem.,2008,19,1219-1226.
    [24]Wang L., Xiao Y, Tian W, Deng L., Activatable Rotor for Quantifying Lysosomal Viscosity in Living Cells, J. Am. Chem. Soc.,2013,135,2903-2906.
    [25]Kalwarczyk T., Ziebacz N., Bielejewska A., Zaboklicka E., Koynov K., Szymanski J., Wilk A., Patkowski A., Gapinski J., Butt H.-J., Holyst R., Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale, Nano Lett.,2011,11,2157-2163.
    [26]Levitt J. A., Kuimova M. K., Yahioglu G., Chung P.-H., Suhling K., Phillips D., Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging, J. Phys. Chem. C,2009,113,11634-11642.
    [27]Hirano T., Kikuchi K., Urano Y., Nagano T., Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs, J. Am. Chem.Soc.,2002,124, 6555-6562.
    [28]Guo B. C., Peng X. J., Cui A. J., Wu Y. K., Tian M. Z., Zhang L. Z., Chen X. Q., Gao Y. L., Synthesis and spectral properties of new boron dipyrromethene dyes, Dyes and Pigments,2007,73,206-210.
    [29]Gareis T., Huber C., Wolfbeis O. S., Daub. J., Phenol/phenolate-dependent on/off switching of the luminescence of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes, Chem. Commun.,1997,1717-1718.
    [30]Kollmannsberger M., Gareis T., Heinl S.; Breu J., Daub J., Electrogenerated Chemiluminescence and Proton-Dependent Switching of Fluorescence: Functionalized Difluoroboradiaza-s-indacenes, Angew. Chem. Int. Edit.,1997,36, 1333-1335.
    [31]Baki C. N.; Akkaya E. U., Boradiazaindacene-Appended Calix[4]arene: Fluorescence Sensing of pH Near Neutrality, J. Org. Chem.2001,66,1512-1513.
    [32]Baruah M., Qin W., Basaric'N., Borggraeve W. M. D., Boens N., BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes, J. Org. Chem.2005,70, 4152-4157.
    [33]Qin W., Baruah M., Borggraeve W. M. D., Boens N., Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol, J. Photochem. Photobiol. A,2006,183, 190-197.
    [34]Wu Y., Peng X., Guo B., Fan J. L., Zhang Z. C., Wang J. Y., CuiA. J., Gao Y. L., Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(Ⅱ) in living cells, Org. Biomol. Chem.,2005,3(8),1387-1392.
    [35]de Silva S. A., Loo K. C., Amorelli B., Pathirana S. L., Nyakirangni M., Dharmasena M., Demarais S., Dorcley B., Pullay P., Salih Y. A., A fluorescent "off-on-off' proton switch derived from natural products and further studies of first-generation fluorescent photoinduced electron transfer (PET) systems, J. Mater. Chem.,2005, 15,2791-2795.
    [36]Pond S. J. K., Tsutsumi O., Rumi M., Kwon O., Zojer E., Bredas J. L., Marder S. R., Perry J. W., Metal-Ion Sensing Fluorophores with Large Two-Photon Absorption Cross Sections:Aza-Crown Ether Substituted Donor-Acceptor-Donor Distyrylbenzenes, J. Am. Chem. Soc,2004,126(30),9291-9306.
    [37]Pearson A. J., Xiao W., Fluorescence and NMR Binding Studies of N-Aryl-N'-(9-methylanthryl)diaza-18-crown-6 Derivatives,J. Org. Chem.2003,68 (13),5369-5376.
    [38]Tian M. Z., Peng X. J., Feng F., Meng S. M., Fan J. L., Sun S. G., 2-{2-[4-(Dimethylamino) phenyl]-6-methyl-4H-pyran-4-ylidene} malononitrile:A colorimetric and fluorescent chemosensor for low pH values, Dyes and Pigments, 2009,81,58-62.
    [39]Santangelo P. J., Nix B., Tsourkas A., Bao G., Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res,2004,32, e57.
    [40]Denk W., Strickler J. H., Webb W. W, Two-photon laser scanning fluorescence microscopy., Science,1990,248,73-76.
    [41]Potter S. M., Vital imaging:two photons are better than one, Curr. Biol,1996 6, 1595-1598.
    [42]Masters B. R., SO P. T. C., Antecedents of two-Photon excitation laser scanning microscopy. Microsc. Res. Tech.,2004,63,3-11.
    [43]Centonze V. E., White J. G., Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J.1998,75, 2015-2024.
    [44]Feijo J. A., Moreno N., Imaging plant cells by two-photon excitation, Protoplasma, 2004,223,1-32.
    [45]Ericson M. B. et al, Two-photon laser-scanning fluorescence microscopy applied for studies of human skin. J. Biophoton.,2008,1,320-330.
    [46]Gerritsen H. C., Grauw C. J. D., Imaging of optically thick specimen using two-photon excitation microscopy. Microsc. Res. Tech.,1999,47,206-209.
    [47]So P. T. C., Dong C. Y., Masters B. R., Berland K. M., Two-photon excitation fluorescence microscopy., Annu. Rev. Biomed. Eng.,2000,2,399-429.
    [48]Picot A., D'Alo A., Baldeck P. L., Long-Lived Two-Photon Excited Luminescence of Water-Soluble Europium Complex:Applications in Biological Imaging Using Two-Photon Scanning Microscopy,.J. Am. Chem. Soc.,2008,130,1532-1533.
    [49]Cannone F., Caccia M., Bologna S. et al, Single Molecule SpectroscopicCharacterization of GFP-MUT2 Mutant for Two-Photon Microscopy Applications, Microscopy Research And Technique,2004,65,186-193.
    [50]Peter T. C. S., Two-photon Fluorescence Light Microscopy, Encyclopedla of Life Sciences,2002,1-5.
    [51]Zhang W., Li P., Yang F., Hu X., Sun C., Zhang W., Chen D., Tang B., Dynamic and Reversible Fluorescence Imaging of Superoxide Anion Fluctuations in Live Cells and in Vivo, J. Am. Chem. Soc.,2013,135,14956-14959.
    [52]Bae S. K., Heo C. H., Choi D. J., Sen D., Joe E.-H., Cho B. R., Kim H. M., A Ratiometric Two-Photon Fluorescent Probe Reveals Reduction in Mitochondrial H2S Production in Parkinson's Disease Gene Knockout Astrocytes, J. Am. Chem. Soc.,2013,135,9915-9923.
    [53]Sanchez E. J., Novotny L., G. Holtom R., Room temperature fluorescence and spectroscopy of single molecules by two-photon excitation, J Phys Chem A,1997, 101,7019-7023.
    [54]Leung C. W. T., Hong Y, Chen S, Zhao E., Lam J. W. Y, Tang B. Z., A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking, J. Am. Chem. Soc.,2013,135,62-65.
    [55]Lim C. S., Chung C., Kim H. M., An M. J., Tian Y S., H. G. Chun, B. R. Cho, A two-photon turn-on for glucose uptake, Chem. Commun.,2012,48,2122-2124.
    [56]Rizzuto R., Pozzan T., Microdomains of intracellular Ca2+:molecular determinants and functional consequences, Physiol. Rev.,2006,86,369-408.
    [57]Mohan P. S., Lim C. S., Tian Y. S., Roh W. Y., Lee J. H., Cho B. R., A two-photon fluorescent probe for near-membrane calcium ions in live cells and tissues, Chem. Commun.,2009,5365-5367.
    [58]Lodish H., Berk A., Zipursky S. L., Matsudaira P., Baltimore D., Darnell J., Molecular Cell Biology, New York, Scientific American Books,4th ed.,2004.
    [59]Tonks N. K., Protein tyrosine phosphatases:from genes, to function, to disease. Nat. Rev. Mol. Cell Biol.2006,7,833-846.
    [60]Li L., Shen X., Xu Q.-H., Yao Q., A Switchable Two-Photon Membrane Tracer Capable of Imaging Membrane-Associated Protein Tyrosine Phosphatase Activities, Angew. Chem. Int. Ed.,2013,52,424-428.
    [61]Hamada T., Miura Y., Ishii K., Araki S., Yoshikawa K., Vestergaard M., Takagi M., Dynamic Processes in Endocytic Transformation of a Raft-Exhibiting Giant Liposome, J. Phys. Chem. B,111:2007 10855-10857.
    [62]Kim H. M., Choo H.-J., Jung S.-Y., Ko Y.-G., Park W.-H., Jeon S.-J., Kim C. H., Joo T., Cho B. R., A Two-Photon Fluorescent Probe for Lipid Raft Imaging: C-Laurdan, ChemBioChem,2007,8,553-559.
    [63]Haugland R. P. In:Spence MTZ, editor. A guide to fluorescent and labeling technologies:the handbook.10th ed.2005.
    [64]Kim H. M., Jeong B. H., Hyon J.-Y., An M. J., Seo M. S., Hong,J. H., Lee K. J., Kim C. H., Joo T., Hong S.-C., Cho B. R., Two-Photon Fluorescent Turn-On Probe for Lipid Rafts in Live Cell and Tissue, J. Am. Chem. Soc,2008,130, 4246-4247
    [65]Kucherak O. A., Oncul, S.; Darwich, Z., Yushchenko, D. A., Arntz, Y.,Didier P., Me'ly Y, Klymchenko, A. S., Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes, J. Am. Chem. Soc,2010, 132,4907-4916.
    [66]Shoseyov O.; Levy, I. Nanobiotechnology:bioinspired devices and materials of the future; Humana Press:Totowa, NJ,2010.
    [67]Miller A. D.; Tanner, J. Essentials of chemical biology:structure and dynamics of biological macromolecules; Wiley:Chichester, U.K.,2008.
    [68]Szobota S.; Isacoff, E. Y, Optical Control of Neuronal Activity, Annu. Rev. Biophys. 2010,39,329-348.
    [69]Fiala A., Suska, A., Schluter, O. M., Optogenetic approaches in neuroscience, Curr. Biol.2010,20,R897-903.
    [70]Lima, S. Q.; Miesenbock, G., Remote control of behavior through genetically targeted photostimulation of neurons, Cell,2005,121,141-152
    [71]Numata T., Murakami, T., Kawashima, F., Morone N., HeuserJ. E., Takano Y, Ohkubo K, Fukuzumi S., Mori Y, Imahori H., Utilization of Photoinduced Charge-Separated State of Donor-Acceptor-Linked Molecules for Regulation of Cell Membrane Potential and Ion Transport, J. Am. Chem. Soc.,2012,134, 6092-6095.
    [72]Imahori H., Tamaki, K., Guldi, D. M.,Luo, C., Fujitsuka, M., Ito, O., Sakata, Y, Fukuzumi, S., Modulating Charge Separation and Charge Recombination Dynamics in Porphyrin-Fullerene Linked Dyads and Triads:Marcus-Normal versus Inverted Region, J. Am. Chem. Soc.2001,123,2607.
    [73]Imahori, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. Vectorial Multistep Electron Transfer at the Gold Electrodes Modified with Self-Assembled Monolayers of Ferrocene-Porphyrin-Fullerene Triads, J., Phys. Chem. B,2000, 104,2099-2108.
    [74]Wei W, Elstrott J., Feller M. B., Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina Nature. Procotols.,2010,5,1347-1352.
    [75]Toiyama Y, Mizoguchi A., Okugawa Y, Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy, Journal of Gastroenterology,2010,45,544-553.
    [76]Li Q. F., Wu S.S.H., Chou K. C., Subdiffraction-Limit Two-Photon Fluorescence Microscopy for GFP-Tagged Cell Imaging, Biophy. J,2009,97,3224-3228.
    [77]Bosisio C, Quercioli V., Collini M., Protonation and conformational dynamics of GFP mutants by two-photon excitation fluorescence correlation spectroscopy, J., Phys. Chem. B,,2008,112,8806-8814.
    [78]Martini J., Schmied K., Palmisano R., et al, Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time, Journal of Structural Biology,2007, 158,401-409.
    [79]Chen Y, MacDonald P. J., Skinner J. P., et al, Probing nucleocytoplasmic transport by two-photon activation of PA-GFP, Microscopy Research and Technique,2006, 69,220-226.
    [80]于晓强,陶续堂,蒋民华,双光子子荧光显微技术中的探针问题,大学化学(今日化学),2008,23,1-7.
    [81]Xu C., Webb W. W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B,1996, 13,481-491.
    [82]Xu, C., et al. Multiphoton fluorescence excitation:new spectral windows for biological nonlinear microscopy, PNAS,1996,93,10763-10768.
    [83]Webb W. W., Bredas J.-L., Marder S. R., Preey J. W.et al, Design of organic molecules with large two-photon absorption cross sections, Science,1998,281, 1653-1656.
    [84]Marder S. R., Preey J. W. et al, Two-photon polymerzation initiators for three demensional optical storage and microfabrication, Nature,1999,398,51-54.
    [85]He G. S., Zheng Q. D., Prasad P. N., et al, Nonlinear optical stabilization of 1064-nm laser pulses with a two-photon absorbing liquid-dye salt system, Applied Optics,2005,44,3560-3564.
    [86]Zhou G. Y., Wang D., Ren Y et al, Two-photon-pumped amplified spontaneous emission and cavity lasing of an organic dye HEASPS in PHEMA polymer, Applied Physics B-lasers and Optics,2004,79,341-344.
    [87]Zhang X., Sun Y., Yu, X., Zhang B., Huang B., Jiang, M., Synthesis and nonlinear optical properties of several new two-photon photopolymerization initiators about dibenzothiophene derivatives, Synth. Met.,2009,159,2491-2496.
    [88]Zhang X., Yu X., Yao J., Jiang M., Synthesis and nonlinear optical properties of two three-branched two-photon polymerization initiators, Synth. Mat.,2008,158, 964-968.
    [89]Zhang X., Yu X., Sun Y., He W., Wu Y., Feng Y., Tao X., Jiang M, Synthesis and nonlinear optical properties of two new two-photon initiators:Triphenylamine derivatives., Opt. Mater,2006,28,1366-1371.
    [90]Kim, H. M., Kim, B. R., Hong, J. H., Park, J.-S. K., Lee, J., Cho, B. R., Two-photon fluorescent probes for acidic vesicles in live cells and tissue and method of imaging acidic vesicles in live cells and tissue using the same, Angew. Chem. Int. Ed,2007,46,7445-7448.
    [91]Lu, H.; Xiong, L. Q.; Liu, H. Z.; Yu, M. X.; Zhen, S.; Li, F. Y.; You, X. Z., A highly selective and sensitive fluorescent turn-on sensor for Hg2+and its application in live cell imaging, Org. Biomol. Chem.,2009,7,2554-2558.
    [92]Tian, Y. S.; Lee, H. Y.; Lim, C. S.; Park, J.; Kim, H. M.;Shin, Y. N.; Kim, E. S.; Jeon, H. J.; Park, S. B.; Cho, B. R., A Two-Photon Tracer for Glucose Uptake, Angew. Chem.2009,121,8171-8175.
    [93]Gao, Y. H., Wu, J. Y., Li, Y. M., Sun, P. P., Zhou, H. P., A Sulfur-Terminal Zn(II) Complex and Its Two-Photon Microscopy Biological Imaging Application, J. Am. Chem. Soc,2009,131,5208-5213.
    [94]Reinhardt, B. A., Highly Active Two-Photon Dyes:Design, Synthesis, and Characterization toward Application, Chem. Mater.,1998,10,1863-1874.
    [95]Yan, P.; Millard, A. C.; Wei, M. D.; Leow, L. M., Unique Contrast Patterns from Resonance-Enhanced Chiral SHG of Cell Membranes, J. Am. Chem. Soc,2006, 128,11030-11031.
    [96]Yan P.; Xie, A. F.; Wei M. D.; Leow L. M., Amino(oligo)thiophene-Based Environmentally Sensitive Biomembrane Chromophores, J. Org. Chem.,2008,73, 6587-6594.
    [97]Kricka L., Stains J., labels and detection strategies for nucleic acids assays, Ann Clin Biochem,2002,39,114-129.
    [98]Gingeras T. R., Higuchi R., Kricka L. J., et al. Fifty years of molecular (DNA/RNA) diagnostics., Clin Chem,2005,51,661-671
    [99]Allain C., Lartia S. R., Bordeau G., Charra F.-D., Tauc P., Teulade-Fichou M., Vinyl-Pyridinium Triphenylamines:Novel Far-Red Emitterswith High Photostability and Two-Photon Absorption Properties for Staining DNA, ChemBioChem.2007,8,424-433.
    [100]Zhang Y. H., Wang J. J., Jia P. F., Yu X. Q., Liu H., Liu X., Zhao N., Huang B. B., Two-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt, Org. Biomol. Chem.,2010,8,4582-4588.
    [101]Zhao N., Zhang Y. H., Liu X., Yu X. Q., M. F. Ge, Carbazole tricationic salt:A novel potential two-photon fluorescent DNA probe for nucleic imaging of cells, Chin. Sci. Bull,2010,55,3661-3667.
    [102]R. P. Haugland, in the handbook, A Guide to Fluorescent Probes and Labeling Technologies, ed. M. T. Z. Spence,10tH.,2005, pp.710-711.
    [103]Li Q., Kim Y., Namm J., Kulkarni A., Rosania G. R., Ahn Y. H., Chang Y. T., RNA-selective, live cell imaging probes for studying nuclear structure and function Chem. Biol,2006,13,615-623.
    [104]Ohulchanskyy T. Y., Pudavar H. E., Yarmoluk S. M., Yashchuk V. M., Bergey E. J., Prasad P. N., A Monomethine Cyanine Dye Cyan 40 for Two-photon-excited Fluorescence Detection of Nucleic Acids and Their Visualization in Live Cells Photochem. Photobiol,2003,77,138-145.
    [105]Liu X., Sun Y. M., Zhang Y. H., Miao F., Wang G. C., Zhao H. S., Yu X. Q., Liu H., Wong W.-Y., A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm Org. Biomol. Chem.2011,9,3615-3618.
    [106]Honcharenko D, Zhou C, Chattopadhyaya J. Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide. J Org Chem,2008,73,2829-2842.
    [107]Onizuka K., Taniguchi Y., Sasaki S., Site-Specific Covalent Modification of RNA Guided by Functionality-Transfer Oligodeoxynucleotides, Bioconjugate. Chem., 2009,20,799-803
    [108]Honcharenko D., Zhou C., Chattopadhyaya J., Modulation of Pyrene Fluorescence in DNA Probes Depends upon the Nature of the Conformationally Restricted Nucleotide, J. Org. Chem.,2008,73,2829-2842.
    [109]ARYA D.,New Approaches Toward Recognition of Nucleic Acid Triple Helices, Accounts of Chemical Research,2011,44,134-146
    [1](a) McMullen T. P. W., Lewis R. N. A. H., McElhaney R. N., Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes, Curr. Opin. Colloid. Interface.Scl,2004,8, 459-468. (b) Hanand J. J., Boo D.W., Reversible Immobilization of Diffusive Membrane-Associated Proteins Using a Liquid-Gel Bilayer Phase Transition:A Case Study of Annexin V Monomers, Langmuir,2009,25,3083-3088. (c) Welti R., Rintouli D. A., Goodsaid-Zalduondo F., Felder S., Silb D. F., Gel phase phospholipid in the plasma membrane of sterol-depleted mouse LM cells. Analysis by fluorescence polarization and x-ray diffraction, J. Biol. Chem.,1981,256, 7528-7535. (d) Vanegas J. M., Contreras M. F., Faller R., Longo M. L., Role of Unsaturated Lipid and Ergosterol in Ethanol Tolerance of Model Yeast Biomembranes, Biophys. J.,2012,102,507-516. (e) Bacia K., Schwille P., Kurzchalia T., Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes, Proc. Natl. Acad. Sci. USA.,2005,102,3272-3277. (f) Marsh D., Cholesterol-induced fluid membrane domains:A compendium of lipid-raft ternary phase diagrams, Biochim. Biophys. Acta.,2009,1788,2114-2123. (g) Sengupta P., Singh R. P., Cox D., Slepoy A. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies, Phys. Rev. E.,2004,70,021902-1-6.
    [2](a) Knorr R. L., Staykova M., Gracia R. S., Dimova R., Wrinkling and electroporation of giant vesicles in the gel phase, Soft Matter.2010,6,1990-1996. (b) Scholtysek P., Li Z., Kressler J., Blume A., Interactions of DPPC with Semitelechelic Poly(glycerol methacrylate)s with Perfluoroalkyl End Groups, Langmuir,2012,28,15651-15662. (c) Wolfa C, Koumanov K., Tenchov B., Quinn P. J., Cholesterol favors phase separation of sphingomy, Biophys. Chem., 2001,89,163-172. (d) Quinn P., Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase, Biochim. Biophys. Acta,2009,1788,2267-2276. (e) Pinto S. N., Fernandes F., Fedorov A., Futerman A. H., Silva L. C, Prieto M., A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains, Biochim. Biophys. Acta.,2013,1828, 2099-2110. (f) Repa'kova J., Distribution, Orientation, and Dynamics of DPH Probes in DPPC Bilayer, J. Phys. Chem. B.,2004,108,13438-13448. (g) Klapisz E., Masliah J., Bereziat G., Wolf C., Koumanov K. S., Sphingolipids and cholesterol modulate membrane susceptibility to cytosolic phospholipase A2, J. Lipid. Res.,2000,41,1680-1688. (h) Muckom R. J., Stanzione F., Gandour R. D., Sum A. K., Dendritic amphiphiles strongly affect the biophysical properties of DPPC bilayer membranes,J.Phys. Chem. B.,2013,117,1810-1818. (i) Attwood S. J., Choi Y., Leonenko Z., Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy, Int. J. Mol. Sci.2013,14,3514-3539, (j) Ladha S., The lipid organisation of the cell membrane, Grasasy Aceites.,2000,51,56-65.
    [3](a) Aresta-Branco F., Cordeiro A. M., Marinho H. S., Cyrne L., Antunes F., de Almeida R. F. M., Gel Domains in the Plasma Membrane of Saccharomyces cerevisiae:HIGHLY ORDERED, ERGOSTEROL-FREE, AND SPHINGOLIPID-ENRICHED LIPID RAFTS, J. Biol. Chem.,2011,279, 5043-5054. (b) Pawlikowska-Pawlega, B., Misiak, L. E., Zarzyka, B., Paduch, R., Gawron A., Gruszecki W. I., Localization and interaction of genistein with model membranes formed with dipalmitoylphosphatidylcholine (DPPC), Biochim. Biophys.2012,1818,1785-1793. (c) Ramstedt B., Slotte J. P., Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochimica et Biophysica Acta (BBA)-Biomembranes, Biochim. Biophys. Acta.2006,1758, 1945-1956. (d) Wang T.-Y, Silvius J. R., Different Sphingolipids Show Differential Partitioning into Sphingolipid/Cholesterol-Rich Domains in Lipid Bilayers, Biophys. J.,2000,79,1478-1489. (e) Hofsa C, Lindahl E., Edholm O., Molecular Dynamics Simulations of Phospholipid Bilayers with Cholesterol, Biophys. J.,2003,84 2192-2206. (f) Wang T. Y, Silvius J. R., Sphingolipid Partitioning into Ordered Domains in Cholesterol-Free and Cholesterol-Containing Lipid Bilayers, Biophys. J.,2003,84,367-378. (g) Zhong, J., Yang C., Zheng W., Huang L., Hong Y, Wang L., Sha Y, Effects of Lipid Composition and Phase on the Membrane Interaction of the Prion Peptide 106-126 Amide, Biophys. J.,2009, 96,4610-4621.
    [4](a) Mohapatra M., Mishra A. K.,1-Naphthol as a Sensitive Fluorescent Molecular Probe for Monitoring the Interaction of Submicellar Concentration of Bile Salt with a Bilayer Membrane of DPPC, a Lung Surfactant, J. Phys. Chem. B,.2010, 114,14934-14940. (b) Leung S. S., Busto J. V., Keyvanloo, A., Goni F. M., Thewalt J., Insights into Sphingolipid Miscibility:Separate Observation of Sphingomyelin and Ceramide N-Acyl Chain Melting, Biophys. J.,2012,103, 2465-2474. (c) Ahmed S. N., Brown D. A., London E., Ahmed S. N, Brown D. A., London E., On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes:physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochem.,1997,36,10944-10953. (d) Zhang K., Showalter M., Revollo J., Hsu F.-F., Turk J., Beverley S. M., Sphingolipids are essential for differentiation but not growth in Leishmania, EMBO J.,2003,22,6016-6026.
    [5](a) Kim H. M., Jeong B. H., Hyon J.-Y., An M. J., Seo M. S., Hong J. H., Lee K. J., Kim C. H., Joo T., Hong, S.-C., Cho B. R., Two-Photon Fluorescent Turn-On Probe for Lipid Rafts in Live Cell and Tissue, J. Am. Chem. Soc.,2008,130, 4246-4247. (b) Kucherak O. A., Oncul S., Darwich Z., Yushchenko, D. A., Arntz Y, Didier P., Me'ly Y, Klymchenko A. S., Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes, J. Am. Chem. Soc.,2010,132,4907-4916.
    [6](a) Chiantia S., London E., Acyl Chain Length and Saturation Modulate Interleaflet Coupling in Asymmetric Bilayers:Effects on Dynamics and Structural Order, Biophys. J.,2012,103,2311-2319. (b) Murate M., Hayakawa T., Ishii K., Inadome H., Greimel P., Watanabe M., Nagatsuka Y., Ito K., Ito Y., Takahashi H., Hirabayashi Y, Kobayash T., Phosphatidylglucoside Forms Specific Lipid Domains on the Outer Leaflet of the Plasma Membrane, Biochem.,2010,49, 4732-4739. (c) Speelmans G., Staffhorst R. W. H. M., Kruijff B., Wol. F. A., Transport Studies of Doxorubicin in Model Membranes Indicate a Difference in Passive Diffusion across and Binding at the Outer and Inner Leaflets of the Plasma Membrane, Biochem.,1994,33,13761-13768. (d) Kucerka N., Marquardt D., Harroun T. A., Nieh M.-P., Wassail S. R., Katsaras J., The Functional Significance of Lipid Diversity:Orientation of Cholesterol in Bilayers Is Determined by Lipid Species,J.Am. Chem. Soc.,2009,131,16358-16359. (e) Isabel Collado M., Goni F. M., Alonso A., Marsh D., Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy, Biochem., 2005,44,4911-4918. (f) Horgan R. P., Broadhurst D. I., Walsh S. K., Dunn W. B., Brown M., Roberts C. T., North R. A., McCowan L. M., Kell D. B., Baker P. N., Kenny L. C., Metabolic Profiling Uncovers a Phenotypic Signature of Small for Gestational Age in Early Pregnancy, J. Proteome Res.,2011,10,3660-3673. (g) Lopez C., Briard-Bion V., Menard O., Rousseau F., Pradel P., Besle J.-M, Phospholipid, Sphingolipid, and Fatty Acid Compositions of the Milk Fat Globule Membrane are Modified by Diet, J. Agric. Food Chem.,2008,56,5226-5236. (h) Zhao J., Liu Y, Park H.-J., Boggs J. M., Basu A., Carbohydrate-Coated Fluorescent Silica Nanoparticles as Probes for the Galactose/3-Sulfogalactose Carbohydrate-Carbohydrate Interaction Using Model Systems and Cellular Binding Studies, Bioconjugate Chem.,2012,23,1166-1173. (i) Mondal S., Mukhopadhyay C., Molecular Level Investigation of Organization in Ternary Lipid Bilayer:A Computational Approach, Langmuir.,2008,24,10298-10305. (j) Wang M., Janout V., Regen S. L., Glued Langmuir-Blodgett Bilayers from Recognition in Curved Fluid Bilayers, Langmuir,2009,25,4328-4330.
    [7]London E., Brown D. A., Insolubility of lipids in triton X-100:physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts), Biochim. Biophys. Acta.,2000,1508,182-195.
    [8]Field K. A., Holowka D., Baird B., Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains, J. Biol. Chem. 1997,272,4276-4280..
    [9](a) Swamy M. J., Ciani L., Ge M., Smith A. K., Holowka D., Baird B., Freed J. H., Coexisting Domains in the Plasma Membranes of Live Cells Characterized by Spin-Label ESR Spectroscopy, Biophys. J.,2006,90,4452-4465. (b) Wawrezinieck L., Rigneault H., Marguet D., Lenne P. F., Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization, Biophys. J.2005,89,4029-4042.
    [10]Janes P. W., Ley S. C., Magee A. I., Aggregation of lipid rafts accompanies signalling via the T cell antigen receptor, J. Cell. Biol,1999,147,447-461.
    [11]Dietrich C, Bagatolli L. A., Volovyk Z. N., Thompson N. L., Levi M., Jacobson K., Gratton E., Lipid rafts reconstituted in model model membranes, Biophys. J., 2001,80,1417-1428.
    [12]Schultz G. J., Kada G., Pastushenko V. P., Schindler H., Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, EMBO J.,2000,19,892-901.
    [13]Kenworthy A. K., Nichols B. J., Remmert C. L., Hendrix G. M., Kumar M., Zimmerberg J., Lippincott-Schwartz J., Dynamics of putative raft-associated proteins at the cell surface, J. Cell. Biol.2004,165,735-746.
    [14]Haluska C. K., Schro"der A. P., Didier P., Heissler D., Duportail G., Me'ly Y, Marques C. M., Combining fluorescence lifetime and polarization microscopy to discriminate phase separated domains in giant unilamellar vesicles, Biophys. J., 2008,95,5737-5347.
    [15]Baumgart T., Hunt G., Farkas E. R., Webb W. W., Feigenson G. W., Fluorescence probe partitioning between L< sub> o/L< sub> d phases in lipid membranes, Biochim. Biophys. Acta,2007,1768,2182-2194.
    [16]Bagatolli L. A., To see or not to see:Lateral organization of biological membranes and fluorescence microscopy, Biochim. Biophys. Acta.,2006,1758,1541-1556.
    [17]Kim H. M., Choo H.-J., Jung S.-Y, Ko Y.-G., Park W.-H., eon S.-J., Kim C. H., Joo T., Cho B. R., A Two-Photon Fluorescent Probe for Lipid Raft Imaging:C-Laurdan, ChemBioChem.,2007,8,553-559.
    [18](a) Benninger R. K. P., Onfelt B., Neil M. A. A., Davis D. M., French P. M. W., Fluorescence Imaging of Two-Photon Linear Dichroism:Cholesterol Depletion Disrupts Molecular Orientation in Cell Membranes, Biophys. J.,2005,88,609-622. (b) Zhang W., McIntosh A. L., Xu H., Wu D., Gruninger, T., Atshaves B., SteveLiuJ. C., Schroeder, F., Structural analysis of sterol distributions in the plasma membrane of living cells, Biochem.,2005,44,2864.
    [19]Kucherak, O. A., Oncul, S.; Darwich, Z., Yushchenko, D. A., Arntz, Y.,Didier P., Me'ly Y, Klymchenko, A. S., Switchable Nile Red-Based Probe for Cholesterol and Lipid Order at the Outer Leaflet of Biomembranes, J. Am. Chem. Soc.2010, 132,4907-4916.
    [20](a) Hong Y., Lam J. W. Y., Tang B. Z., Aggregation-induced emission, Chem. Soc. Rev.,2011,40,5361-5388. (b) Luo J., Xie Z., Lam J. W. Y, Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y, Zhu D., Tang B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001, 1740-1741. (c) Hong Y, Lam J. W. Y, Tang B. Z., Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun.,2009,4332-4353. (d) Liu J., Lam J. W. Y, Tang B. Z., Acetylenic Polymers:Syntheses, Structures, and Functions, Chem. Rev,2009,109,5799-5867.. (e) Wang J., Mei, J., Yuan W, Lu P., Qin A., Sun J., Ma Y, Tang B. Z. J. Mater. Chem.2011,21,4056-4059. (f) Liu Y, Tang Y., Barashkov N. N., Irgibaeva I. S., Lam J. W. Y., Hu R., Birimzhanova D., Yu Y, Tang B. Z. J. Am. Chem. Soc.2010,132,13951-13953. (g) Wang J., Mei J., Hu R., Sun J. Z., Qin A., Tang B. Z., Click Synthesis, Aggregation-Induced Emission,E-Zlsomerization, Self-organization, and Multiple Chromisms of PureStereoisomers of a Tetraphenylethene-Cored Luminogen,2012,134, 9956-9966. (h) Zhao Z., Lam J. W. Y, Tang B. Z., Aggregation-Induced Emission of Tetraarylethene Luminogens, Curr. Org. Chem.2010,14,2109-2132. (i) Jiang Y.-H., Wang Y, Hua J.-L., Tang J., Li B., Qian S., Tian H., Urgent high quality communications from across the chemical sciences, Chem. Commun.,2010,46, 4689-4691.
    [21](a) Tian Y. Q., Chen C. Y., Yang C. C., Young A. C., Jang S. H., Chen W. C., Jen A. K. Y.,2-(2'-Hydroxyphenyl) benzoxazole-Containing Two-Photon-Absorbing Chromophores as Sensors for Zinc and Hydroxide Ions, Chem. Mater.2008,20, 1977-1987. (b) Kim, H. M., Kim, B. R., Hong, J. H., Park, J.-S. K., Lee, J., Cho, B.R., A Two-Photon Fluorescent Probe for Calcium Waves in Living Tissue, Angew. Chem., Int. Ed,2007,46,7445-7448. (c) Barsu, C., Cheaib, R., Chambert, S., Queneau, Y., Maury, O., Cottet, D., Wege, H., Douady, J., Bretonniere Y, Andraud, C., Neutral push-pull chromophores for nonlinear optical imaging of cell Membranes, Org. Biomol. Chem.,2010,8,142-145. (d) Lu H., Xiong L. Q., Liu H. Z., Yu, M. X., Zhen S., Li F. Y, You X. Z., A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging, Org. Biomol. Chem.2009,7,2554-2558.(e) Tian Y S., Lee, H. Y, Lim, C. S., Park, J., Kim, H. M., Shin, Y N., Kim, E. S., Jeon, H. J., Park, S. B., Cho, B. R., A Two-Photon Tracer for Glucose Uptake, Angew. Chem.2009,121,8171-8175. (f) Gao Y H., Wu J. Y, Li Y M., Sun P. P., Zhou H. P., J. Yang X., Zhang S. Y, Jin B. K., Tian Y P., A sulfur-terminal Zn (Ⅱ) complex and its two-photon microscopy biological imaging application, J. Am. Chem. Soc.,2009,131,5208-5213. (g) Reinhardt B. A., Highly active two-photon dyes:design, synthesis, and characterization toward application, Chem. Mater.1998,10,1863-1874. (h) Yan P., Millard A. C., Wei M. D., Leow L. M., Unique Contrast Patterns from Resonance-Enhanced Chiral SHG of Cell Membranes, J. Am. Chem. Soc.2006, 128,11030-11031. (i) Yan P., Xie A. F., Wei M. D., Leow L. M., Amino(oligo)thiophene-Based Environmentally Sensitive Biomembrane Chromophores, J. Org. Chem.,2008,73,6587-6594.
    [22]Liu X., Sun Y, Zhang Y, Miao F., Wang G., Yu X., A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm, Org. Biomol. Chem., 2011, 9,3615-3618.
    [23]Song G., Miao F., Sun Y, Yu X., Sun J., Wong W.-Y, Fluorescence turn-on probes for intracellular RNA distribution and their imaging in confocal and two-photon fluorescence microscopy, Sensors and Actuators B:chemical.2012,173,329-337.
    [24]Zhang Y Wang J., Jia P., Yu X., Liu H., Liu X., Two-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt, Org. Biomol. Chem.,2010,8,4582-4588.
    [25]Yang Z., Zhao N., Sun Y., Miao F., Liu Y, Liu X., Zhang Y., Ai W, Song G., Shen X., Yu X., Sun J., Wong W.-Y, Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells, Chem. Commun.,2012,48,3442-3444.
    [26]Miao F., Song G., Sun Y., Liu Y., Guo F., Zhang W, Tian M., Yu X., High selectively fluorescence imaging of intracellular acidic compartments with a new one-photon ratiometric and two-photon turn-on acidic pH probe, Biosens. Bioelectron.,2013,50,42-49.
    [27](a) Li L., Shen X., Xu Q.-H., Yao S. Q., A Switchable Two-Photon Membrane Tracer Capable of Imaging Membrane-Associated Protein Tyrosine Phosphatase Activities, Angew. Chem. Int. Ed,2013,52,424-428. (b) Mondal J. A., Nihonyanagi S., Yamaguchi S., Tahara T., Structure and Orientation of Water at Charged Lipid Monolayer/Water Interfaces Probed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy, J. Am. Chem. Soc.2010,132, 10656-10657.
    [28]Shen X. Y., Yuan W. Z., Liu Y, Zhao Q., Lu P., Ma Y, Williams I. D., Qin A., Sun J. Z., Tang B. Z., Fumaronitrile-Based Fluorogen:Red to Near-Infrared Fluorescence, Aggregation-Induced Emission, Solvatochromism, and Twisted Intramolecular Charge Transfer, J. Phys. Chem. C.2012,116,10541-10547.
    [29]Shen X. Y., Wang Y, Zhao E., Yuan W. Z., Liu Y, Lu P., Qin A., Ma Y, Sun J. Z., Tang B. Z., Effects of Substitution with Donor-Acceptor Groups on the Properties of Tetraphenylethene Trimer:Aggregation-Induced Emission, Solvatochromism, and Mechanochromism, J. Phys. Chem. C.2013,117,7334-7347.
    [30]Jin L., Millard A. C., Wuskell J. P., Dong X., Wu, D., Clark H. A., Loew L. M., Characterization and Application of a New Optical Probe for Membrane Lipid Domains, Biophys. J.2006,90,2563-2575.
    [31](a) Klymchenko A. S., Oncul S., Didier P., Schaub E., Bagatolli L., Duportail G., Me'ly Y, Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone, Biochim. Biophys. Acta.,2009,1788,495-499. (b) M'Baye G., Me'ly Y, Duportail G., Klymchenko A. S., Liquid Ordered and Gel Phases of Lipid Bilayers:Fluorescent Probes Reveal Close Fluidity but Different Hydration, Biophys. J.,2008,95, 1217-1225.
    [32]Hauland R. P., Handbook of Fluorescent probes and Research and products,2002, chapte13,505-507.
    [33]Manders E. M., Stap J., Brakenhoff G. J., van Driel R., Aten J. A., Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy, J. Cell Sci,1992,103,857-862.
    [34]Angelova M. I., Dimitrov D. S., Liposome electroformation, Faraday Discuss. Chem. Soc.,1986,81,303-311.
    [35]Leung C. W. T., Hong Y., Chen S., Zhao E., Lam J. W. Y., Tang B. Z., A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking, J. Am. Chem. Soc.,2013,135,62-65.
    [36]Wang Z., Chen S., Lam J. W. Y, Qin W., Kwok R.T. K., Xie N., Hu Q., Tang B. Z., Long-Term Fluorescent Cellular Tracing by the Aggregates of AIE Bioconjugates, J. Am. Chem. Soc,2013,135,8238-8245.
    [1]Zheng M., Librizzi D., Kihc A., Liu Y., Renz H., Merkel O. M., et al, Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graftpolycaprolactone-block-poly(ethylene glycol) copolymers, Biomaterials,2012,33,6551-6558.
    [2]Braasch D. A., Jensen S., Liu Y, Kaur K., Arar K.,? White, M. A., et al, RNA interference in mammalian cells by chemically-modified RNA, Biochem.,2003,42, 7967-7975.
    [3]Knowles R. B., Sabry J. H., Martone M. E., Deerinck T. J., Ellisman M. H., Bassell G. J., et al. Translocation of RNA granules in living neurons, J. Neurosci.,1996,16, 7812-7820.
    [4]Cervantes S., Prudhomme J., Carter D., Gopi K. G., Li Q., Chang Y. T., et al. High-content live cell imaging with RNA probes:advancements in high throughput antimalarial drug discovery, BMC.Cell. Biology.,2009,10,45-54.
    [5]Honcharenko D., Zhou C, Chattopadhyaya J., Modulation of pyrene fluorescence in DNA probes depends upon the nature of the conformationally restricted nucleotide, J. Org Chem.,2008,73,2829-2842.
    [6]Alabi C. A., Love K. T., Sahay G., Stutzman T., Young W. T., Langer R., et al, FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes, ACS NANO,2012,6,6133-6141.
    [7]Kam Y, Rubinstein A., Nissan A., Halle D., Yavin E., Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon, Molecular Pharmaceutics,2012,9,685-693.
    [8]Santangelo P. J., Nix B., Tsourkas A., Bao G., Dual FRET molecular beacons for mRNA detection in living cells, Nucleic. Acids. Res.,2004,32:e57.
    [9]Sando S., Kool E.T., Imaging of RNA in bacteria with self-ligating quenched probes, J.Am. Chem.Soc.,2002,124,9686-9687.
    [10]Paige J. S., Wu K. Y., Jaffrey S. R., RNA mimics of green fluorescent protein, Science,2011,333,642-645.
    [11]Bann D. V., Parent L. J., Application of live-cell RNA imaging techniques to the study of retroviral RNA trafficking, Viruses,2012,4,963-979.
    [12]Bao G., Rheel W. J., Tsourkas A. Fluorescent probes for live-Cell RNA detection, Annu. Rev. Biomed. Eng.,2009,11,25-47.
    [13]Kubota T., Ikedal S., Yanagisawa H., Yuki M, Okamoto A., Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living Cell, PLoS.ONE.,2010,9, e13003.
    [14]Catrina I. E., Marras S. A. E, Bratu D. P., Tiny Molecular beacons: LNA/2-O-methyl RNA Chimeric Probes for imaging dynamicm RNA Processes in living cells, ACS. Chem. Biol,2012,7,1586-1595.
    [15]Santangelo P., Nitin N., Bao G., Nanostructured probes for RNA detection in living cells, Ann. Biomed.Eng.,2006,34,39-50.
    [16]Krishan A., Dandekar P. D., DAPI fluorescence in nuclei isolated from tumors, J Histochem. Cytochem.,2005,53,1033-1036.
    [17]Pendergrass W., Wolf N., Poot M.. Efficacy of MitoTracker GreenTM and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues, Cytometry A.,2004,61,162-169.
    [18]Yu J., Parker D., Pal R., Poole A., Cann M. J., A europium complex that selectively stains nucleoli of cells, J. Am. Chem.Soc.,2006,128,2294-2299.
    [19]Kumar C. V., Asuncion E. H., DNA binding studies and site selective fluorescence sensitization of an anthryl probe, J.Am. Chem. Soc.,1993,115,8541-8553.
    [20]Li Q., Kim Y, Namm J., Kulkarni A., Rosania G. R., Ahn Y. H., et al, RNA-selective, live cell imaging probes for studying nuclear structure and function, Chem. Biol.,2006,13,615-623.
    [21]Haugland R. P., in:M.T.Z. Spence (Eds.). A Guide to Fluorescent and Labeling Technologies,10th ed. The Handbook,2005, pp.710-711.
    [22]Li L., Shen X., Xu Q.-H, Yao S.Q., A Switchable Two-Photon Membrane Tracer Capable of Imaging Membrane-Associated Protein Tyrosine Phosphatase Activities, Angew. Chem. Int. Ed,2013,52,424-428.
    [23]Oheim M., Michael D. J., Geisbauer M., Madsen D., Chow R. H., Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches, Adv. Drug. De.l Rev.,2006,58,788-808.
    [24]Dedov V. N., Coxb G. C., Roufogalis B. D., Visualisation of mitochondria in living neurons with single-and two-photon fuorescence laser microscopy, Micron,2001, 32,653-660.
    [25]Cho E. E., Drazic J., Ganguly M., Stefanovic B., Hynynen K., Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening, J. Cereb. Blood. Flow. Metab.,2011,31,1852-1862.
    [26]Hoptand A., Neher E., Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J.,2001,80,2029-2036.
    [27]Potter S. M., Vital imaging:two photons are better than one, Curr. Biol,1996,6, 1595-1598.
    [28]Li C., Liu Y., Wu Y, Sun Y, Li F., The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes, Biomaterials,2013,34,1223-1234.
    [29]Patterson G. H, Piston D.W., Photobleaching in two-photon excitation microscopy, Biophys. J.,2000,78,2159-2162.
    [30]van Zandvoort M. A. M. J., de Grauw C. J., Gerritsen H. C, Broers J. L.V, oude Egbrink M. G. A., Ramaekers F. C. S., et al, Discrimination of DNA and RNA in cells by a vital fluorescent probe:Life time imaging of SYTO13 in healthy and apoptotic cells, Cytometry,2002,47,226-235.
    [31]Zhang M., Yu M., Li F., Zhu M., Li M., Gao Y, et al, A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging, J.Am. Chem.Soc.,2007,129,10322-10323.
    [32]Lee J. H., Lim C. S., Tian Y. S., Han J. H., Cho B. R., A two-photon fluorescent probe for thiols in live cells and tissues, J. Am.Chem. Soc.,2010,132,1216-1217.
    [33]Koo C. K., Wong K. L., Man C. W. Y., Tam H. L., Tsao S. W., Cheah K. W., et al, Two-photon plasma membrane imaging in live cells by an amphiphilic, water-soluble cyctometalated platinum(Ⅱ) complex, Inorg. Chem.,2009,48, 7501-7503.
    [34]Gaus K., Gratton E., Kable E. R.W., Jones A.S., Gelissen I., Kritharides L., et al, Visualizing lipid structure and raft domains in living cells with two-photon microscopy, PNAS,2003,100,15554-15559.
    [35]Yang Z., Zhao N., Sun Y., Miao F., Liu Y., Yu X., et al. Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells, Chem. Commun.,2012,48,3442-3444.
    [36]Ohulchanskyy T. Y, Pudavar H. E., Yarmoluk S. M, Yashchuk V. M., Bergey E. J., Prasad P. N., A monomethine cyanine dye cyan 40 for two-photon-excited fluorescence detection of nucleic acids and their visualization in live cells, Photochem.Photobiol,2003,77,138-145.
    [37]Zhang Y., Wang J., Jia P., Yu X., Liu H., Liu X., et al, Two-photon fluorescence imaging of DNA in living plant turbid tissue with carbazole dicationic salt, Org. Biomol.Chem.,2010,8,4582-4588.
    [38]Miao F., Song G., Sun Y, Liu Y., Guo F., Zhang W., Tian M., Yu X., Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe, Biosensors and Bioelectronics,2013,50,42-49.
    [39]Liu X., Sun Y., Zhang Y., Miao F., Wang G., Yu X., et al, A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm, Org. Biomol. Chem., 2011,9,3615-3618.
    [40]Xu C., Webb W. W., Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. So.c Am B.,1996, 13,481-491.
    [41]Albota M. A., Xu C., Webb W. W., Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Optics.,1998,37, 7352-7356.
    [42]Chang C., Chu J. F., Kuo H., Kang C. C., Lin S., Chang T., Solvent effect on photophysical properties of a fluorescence probe:BMVC, J. Luminesc.,2006, 119,84-90.
    [43]Malak H., Castellano F. N., Gryczynski I., Lakowicz J. R., Two photon excitation of ethidium bromide labeled DNA, Biophys. Chem.,1997,67,35-41.
    [44]Liu X., Sun Y., Zhang Y., Zhao N., Zhao H., Yu X., et al. A Series of carbazole cationic compounds with large two-photon absorption cross sections for imaging mitochondria in living Cells with two-photon fluorescence microscopy, J. Fluoresc.,2011,21,497-506.
    [45]Hong Y., Lama J. W. Y., Tang B. Z., Aggregation-induced emission:phenomenon, mechanism and applications, Chem. Commun.,2009,29,4332-4353.
    [46]Lyng R., Hard T. B., Norden, Induced CD of DNA Intercalators:Electric Dipole Allowed Transitions, Biopolymers.,1987,26,1327-1345.
    [47]Larsson A., Carlsson C., Jonsson M., Albinsson B., Characterization of the Binding of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy, J. Am. Chem Soc,1994,116,8459-8465.
    [1]Catrina I. E., Marras S. A. E., Bratu D. P., Tiny Molecular Beacons:LNA/2'-O-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells, Anal. Chem.,2013,85,2200-2207.
    [2]Wang Z., Rana T. M., RNA-Protein Interactions in the Tat-trans-Activation Response Element Complex Determined by Site-Specific Photo-Cross-Linking, Biochemistry,1998,37,4235-4243.
    [3]Prevette L. E., Mullen D. G., Banaszak Holl M. M., Polycation-Induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA, Mol. Pharmaceutics,2010,7,2370-2370.
    [4]Chen J., Taneja R., Yin D., Seo P. R., Young D., MacKerell A. D.., Polli J. E., Chemical Substituent Effect on Pyridine Permeability and Mechanistic Insight from Computational Molecular Descriptors, Mol. Pharmaceutics,2006,3, 745-755.
    [5]Zwolinski B. J., Eyring H., Reese C. E., Diffusion and Membrane Permeability, J. Phys. Chem.,1949,53,1426-1453.
    [6]Lisa E. Prevette, Douglas G. Mullen and Mark M. Banaszak Hol, Polycation-Induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA, Mol Pharmaceutics,2010,7, 870-883.
    [7]M. Rubart, Two-Photon Microscopy of Cells and Tissue, Circ. Res.,2004,95, 1154-1166.
    [8]Liu X, Sun Y, Zhang Y, Miao F, Wang G, Yu X, et al. A 2,7-carbazole-based dicationic salt for fluorescence detection of nucleic acids and two-photon fluorescence imaging of RNA in nucleoli and cytoplasm, Org Biomol Chem,2011, 9,3615-3618.
    [9]程能林,溶剂手册(第三版),北京:化学工业出版社,2002.
    [10]White J. G., Amos W. B., Fordham M., An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell. Biology.,1987,105,41-48.
    [11]Brackenhoff G. J., Voort H. T. M, Spronsen E. A., et al, Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy, Nature,1985,317,748-749.
    [12]Piston D. W., Bennett B. D., Ying G., Imaging of cellular dynamics by two-photon excitation microscopy, J. Microsc. Soc. Am.,1995,1,25-34.
    [13]Shao N., Jin J. Y., Cheung S. M., Yang R. H., Chan W. H., Mo T., A Spiropyran-Based Ensemble for Visual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels, Angew. Chem. Int. Ed.,2006,45, 4944-4948.
    [14]Wang W., Rusin O., Xu X., Detection of Homocysteine and Cysteine, J. Am. Chem. Soc.,2005,127,15949-15958.
    [15]Yuan L., Lin W. Y., Yang Y. T. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles, Chem. Commun.,2011,47,6275-6277.
    [16]Lin W. Y, Long L. L., Yuan L., Cao Z. M., Chen B. B., Tan W., A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift, Org. Lett.,2008,10,5577-5580.
    [17]Li H.L., Fan J. L., Wang J. Y., Tian M. Z., Du J. J., Sun S. G., Sun P. P., Peng, X. J. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine, Chem. Commun.,2009,5904-5906.
    [18]Milojevich C.B., Silverstein D. W., Jensen L., Camden J. P., Surface-Enhanced Hyper-Raman Scattering Elucidates the Two-Photon Absorption Spectrum of Rhodamine 6G, J. Phys. Chem. C,2013,117,3046-3054
    [1]Okamoto K., Shaw J. M., Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes, Annu. Rev. Genet.,2005,39:503-536.
    [2]. Hollenbeck P. J., Saxton W. M., The axonal transport of mitochondria, J.Cell. Sci., 2005,118,5411-5419.
    [3]. Westermann B., Merging mitochondria matters:cellular role and molecular machinery of mitochondrial fusion, EMBO.Rep.,2002,3,527-531.
    [4]Frank S., Gaume B., Bergmann-Leitner E. S, Leitner W. W., Robert E. G., Catez F., The role of dynaminrelated protein 1, a mediator of mitochondrial fission, in apoptosis, Dev. Cell.,2001,1,515-525.
    [5]Bereiter-Hahn J1, Voth M., Dynamics of mitochondria in living cells:shape changes, dislocations, fusion, and fission of mitochondria, Microsc. Res. Tech.,1994 27, 198-219.
    [6]Chen L. B.,.Mitochondrial membrane potential in living cells, Annu. Rev.Cell. Biol, 1988,4,155-181.
    [7]Jensen R. E., Aiken H. A. E., Cerveny K. L., Sesaki H., Yeast Mitochondrial Dynamics:Fusion, Division, Segregation, and Shape, Microscopy Research and Technique,2000,51,573-583.
    [8]Nunnari J., Marshall W. F., Straight A., Murray A.,. Sedat J. W, Walter P., Mitochondrial Transmission during Mating in Saccharomyces cerevisiae Is Determined by Mitochondrial Fusion and Fission and the Intramitochondrial Segregation of Mitochondrial DNA, Molecular Biology of the Cell,1997,8, 1233-1242.
    [9]Villa A.M., Doglia S. M., Ethidium bromide as a vital probe of mitochondrial DNA in carcinoma cells, European Journal of Cancer,2009,45,2588 -2597.
    [10]Rimpelova S., Kralova J., Zaruba K., Martasek P., Ruml T., Rational Design of Chemical Ligands for Selective Mitochondrial Targeting, Bioconjugate. Chem., 2013,24,1445-1454.
    [11]Birky, C.W., Relaxed and stringent genomes:why cytoplasmic genes don't obey Mendel's laws, J. Hered,1994,85,355-365.
    [12]de Graaf A. O., van den Heuvel L. P., Dijkman H. B. P. M., de Abreu R., Birkenkamp K. U., de Witte T., van der Reijden B., Smeitink J. M., Jansen J. H., Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis, Exp. Cell Res., 2004,299,533-540.
    [13]Leung C. W. T., Hong Y., Chen S., Zhao E., Lam J. W. Y., Tang B. Z., A Photostable AIE Luminogen for Specific Mitochondrial Imaging and Tracking, J. Am. Chem. Soc.,2013,135,62-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700