用户名: 密码: 验证码:
珠江三角洲和近岸河口海域现代沉积环境及晚更新世以来的环境演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江三角洲及其近岸河口区既是人类活动频繁区域又是陆海相互作用显著区域。因此,对于该区域现代环境研究和古环境研究都具有很大的科学价值和现实意义。
     本文对三角洲近岸河口海域78个表层沉积物样品的粒度特征、矿物成分、微量元素及其地球化学特征的研究,阐明珠江河口区表层沉积物的来源、搬运过程以及人类活动对该区沉积环境的影响,进一步探讨了其源一汇意义;通过对河口海域内3个晚更新世以来沉积岩心的粒度、碎屑矿物、微量元素以及微体古生物、孢粉和~(14)C测年数据等综合分析和对比,从时、空二维角度研究该区晚更新世以来海平面变化、气候交替、区域构造活动对该区沉积环境的影响及该区环境演变的过程。
     通过对各类矿物含量和空间分布特征的研究,矿物的分布和富集不仅受矿物自身物理化学性质和沉积条件的影响,还受到经常性近岸输沙的明显影响。不稳定重矿物的分布特征就反映了周边城市填海造田工程对海洋环境的影响。碎屑矿物以石英、长石类轻矿物为主,重矿物含量低于10%,主要为花岗岩类的副矿物兼具浅变质岩副矿物组合特征。海洋自生矿物量微,表明该区受陆源输入、近岸输入以及岛屿输沙影响,即珠江口海域主要接受珠江河系携带、搬运的物质。
     对表层沉积物微量元素地球化学研究表明,Co、Cu、Ni和Ba主要受控于母岩,一定程度上受人类活动影响,该组元素空间分布主要受水动力条件的控制。元素Sr在该区的分布和富集受海洋环境的影响明显,尤其受到该区水产养殖业的影响。Pb、Zn在该区的含量和空间分布不仅表现出陆源输入的影响,同时具有受点源输入影响的特征。富集因子分析表明,人类活动对该组元素的贡献不容忽视。
     三角洲近岸河口海域源-汇模型计算可知,每年在该海域沉降和输入到南海以及远岸海域的金属元素数量极大,现代珠江河口作为珠江向南海输移泥沙过程中最理想的沉积场所和海-陆环境过渡地带,是珠江口外以至南海海域重要的物质来源,环境意义举足轻重。
     通过对岩心沉积环境的演化和不同岩心沉积环境对比研究,认为末次冰期之前现代珠江河口和近岸海域主要是陆地环境,东侧岛屿区为侵蚀丘陵地带,末次冰期最高海平面时期,现代珠江三角洲以及珠江河口区统一为一个河口湾,且其东侧边界为现在的岛群区;末次冰期盛冰期海平面下降时期,该区域大部分出露于海平面之上,仅西部低洼地或者河流溺谷区会受到海水入侵的影响。东侧丘陵地带由于多年的侵蚀剥蚀,其高度不断下降,并开始沉积河流冲积物;冰后期大规模海侵导致海平面不断上升,现在的整个珠江河口区域逐渐由陆变海,且随着海侵的演进海洋环境影响逐渐增强,该区受到陆架水体的影响明显,成为陆架浅海环境;在距今5000年左右,海侵基本停止,海平面稳定,现代珠江三角洲向海淤进,造成海岸线向海推进。受河流冲淡水和三角洲沉积影响,高盐陆架水向海退,形成现代珠江河口湾及三角洲近岸浅海环境。因此现代珠江河口三角洲很年轻,主要形成于全新世中期以来,是海陆相互作用的产物。
     珠江三角洲区域地质构造活动对该区沉积环境演变的影响表现在末次冰期早期西江-磨刀门断裂以西发生构造下沉,导致该区地势降低,受到海洋环境的影响并最早沉积海相沉积物,东部断裂凹陷区全新世构造沉降造成海进期及其稳定后的三角洲堆积极厚的沉积物。
     岩心的沉积环境演变研究发现,珠江河口区除存在晚更新世以来两次大的海侵事件——礼乐海进和桂州海进之外,还在全新世和晚更新世过渡期存在一次短期的范围较小的海平面波动。
     植物孢粉分析反映了该区晚更新世以来热带-亚热带温暖、潮湿气候状况以及在此气候条件下的两个明显的气候阶段——末次冰期气候干凉阶段和冰后期气候暖湿阶段。孢粉分析同因子分析曲线都记录了冰期转暖之后的一次气候变冷事件——YD事件。气候的冷暖变化同海平面的升降具有极好的耦合性,反映了气候的冷暖变化是珠江三角洲和珠江河口湾环境变化的根本原因。
With active interactions between ocean and land, the near sea and estuary areas around deltas response sensitively to natural processes and human activities. So, studies of modern and paleo-environments around those areas are valuable for science and social development.
     Through the analysis of grain size, minerals and trace metal elements of 78 surficial sediments from the Pearl River estuary and near sea area, the impact of sediment sources, transport processes and human being activities on the sedimentary environments were studied. Further more, the signification of source-sink was discussed via simple model. Data of grain sizes, detrital minerals, trace elements, microfossils, sporopollen and ~(14)C dating of 3 sediment cores were used in the interpretation of the evolvement of depositional environment from late Pleistocene epoc and the impaction of sea level fluctuation, paleo-climate changes and the instability of regional tetonics on the sedimentary environments.
     Mainly composed of quartzs and feldspars with less than 10% heavy minerals, which characterised with mineral assemblages of granitic and metamorphic rocks, detrital minerals in surficial sediments indicated the contributions of terrigenous deposition via runoff, land and islands direct inputs. Other sources of the sediments include authigenic biogenic deposition and volcanignic via tide and seawater mass from the slope. The content and distribution of several minerals such as olivine and limonite revealed the obvious influence from public works such ad sea-filling project.
     Spatial distributions of trace metal elements showed following features: Distributions of Co, Cu, Ni and Ba showed their connections with the compositions of source rocks, indicating that, they were dominated by hydrodynamics, coupled with mild anthropogenic influence. Sr were mainly controlled by sea environment factors especially aquiculture. Pb and Zn showed unnatural characteristics, and enrichment factor analysis confirmed significant anthropogenic influence.
     Modal calculation showed that, the amount of annual deposition and exportation of metal elements in the studied area was huge. As an ideal place of sedimentary environment and transition place between the sea and land, the Pearl River estuary showed important source-sink functions, providing sediments to South China Sea and around the estuary.
     Studies of 3 sediment cores revealed the following pictures. Before Late Pleistocene epoc, Pearl River estuary and near sea area were main land, with the east islands and inlets as corroded and denudated foothills. In the time in LGH, the modern Pearl river delta and Pearl river estuary was unified to be a big estuary, with the east edge as islands in the east side. In LGL, most of the area was bared in air, leaving some low area in the west influenced by the sea, the hypsography of foothills in the east becoming low and aggregated fluvial sediments for long time denudation and corrosion. In the post-glacial period, with the invadation of the sea, the area became gradually to be shallow slope area. Around 5000 a B.P., the sea level didn't fluctuated as before, so the modern Pearl river delta intruded to the sea and the coast line intrude too, the slope sea water with high salinity fell back, therefore, study area became to be near land shallow water area just like today. All these indecated that, Pearl river was a young delta, generated from mid-Holocene Epoch, as the outcome of the interactions between the sea and the land.
     The movement of geologic structure around the Pearl River delta also had an influence on the sedimentary environment. In the early stage of the last glacial age, the subsidence of the west part of Xijiang-Modaomen Fault resulted in the transgression of the sea, received the earliest marine sedimentation. In the Holocene epoch, the tectonic sinking of the depressed area between the east Faults resulted in huge sedimentary layers as witnessed by the core NNZ1.
     Sedimentary core studies also revealed that, besides two big transgressions since, namely, Lile and Guizhou transgression, the Pearl river estuary region also suffered a short time and small scale sea level fluctuation between them.
     The pollen analysis reflected the tropical-subtropical climate characteristics since Late Pleistocene epoch and several climate changes in the period. Especially, Pollen and factor line marked Young Dryas event in this area. The well coupling of paleoclimate and sea level fluctuation reflected that the paleoclimate controlled the environmental evolvement ultimately.
引文
1 珠江三角洲近岸海洋地质环境与地质灾害调查成果报告.广州地质调查局.2004
    1 珠江三角洲近岸海洋地质环境与地质灾害调查成果报告
    [1]陈芳,童林芬,茅绍智.珠江口盆地第四纪孢粉组合及沉积环境探讨[J].地球科学~中国地质大学学报,1993,18(2):227-248
    [2]陈静生,王飞越,宋吉杰等.中国东部河流沉积物中重金属含量与沉积物主要性质关系[J].环境化学,1996,15(1):8-14
    [3]陈俊仁等.南海北部~50米古海岸线的初步研究[J].地理学报,1983,38(2).176-187.
    [4]陈丽蓉,徐文强,申顺喜,李安春.南海北部和北部湾沉积物中的矿物组合及其分布特征[J].海洋科学,1986,10(3):6-10
    [5]陈欣树,包砺彦,陈俊仁,赵希涛.珠江口外陆架晚第四纪最低海面的发现[J].热带海洋,1990,9(4).73-77.
    [6]陈耀泰,谭惠忠.珠江口伶仃洋表层沉积的粘土矿物[J].热带地理,1991,11(1):39-45
    [7]陈耀泰.珠江口伶仃洋表层沉积物的重矿物特征及其对陆架水入侵的反映[J].中山大学学报(自然科学版),1994,33(4):103-111
    [8]陈耀泰.珠江口现代沉积速率与沉积环境[J].中山大学学报(自然科学版),1992,31(2):100-107
    [9]陈耀泰.珠江入海泥沙的浓度和成分特征及其沉积扩散趋势[J].中山大学学报(自然科学版).1991,30(1):105-114
    [10]陈志华,石学法,王湘芹等.南黄海B10岩心的地球化学特征及其对古环境和古气候的反应[J].海洋学报,2003,25(1):69-77
    [11]程鹏,高抒.北黄海西部海底沉积物的粒度特征和经输运趋势[J].海洋与湖沼,2000,31(6):606-615
    [12]丁旋.十五万年以来的古气候及其研究方法综述[J].地质科技情报,1998,17(2):30-44
    [13]何为,李春初,田向平.磨刀门拦门沙区域的泥沙沉积与口门治理[J].人民珠江,2005,57-60
    [14]胡达,李春初,王世俊.磨刀门河口拦门沙演变规律的研究[J].泥沙研究,2005,4:71-75
    [15]黄向青,梁开,刘雄.深圳大鹏湾表层沉积物碎屑矿物空间分布特征[J].海洋湖沼通报,2007,1,74-82
    [16]黄玉坤,夏法,陈国能.断裂构造对珠江三角洲形成和发展的控制作用[J].海洋学报,1982(5):316-327
    [17]黄玉昆,夏法,陈国能等.广东沿岸区域构造稳定性分析及评价[J].中山大学学报(自然科学版),1986(2).1-17
    [18]黄镇国,李平日,张仲英,李孔宏.珠江三角洲第四纪沉积特征[J].地质论评,1985,31(2):159-164
    [19]黄镇国,张伟强.珠江河口磨刀门的整治与地貌演变[J].地理与地理信息科学,2005,21(6):61-73
    [20]黄镇国,宗永强,何锐如等.珠江三角洲第四系化石硅藻的指相意义[J].海洋学报,1985,7(6).744-750
    [21]金波,李廷桓.珠江口海区海底不稳定性地质因素的地震相分析[J].海洋地质与第四纪地质,1988,8(3):61-69
    [22]贾良文,吴超羽,仁杰等.珠江磨刀门枯季水文特征及河口动力过程[J].水科学进展,2006,17(1):82-88
    [23]贾良文,吴超羽,仁杰.珠江磨刀门河口动力平衡特点及人类活动对其影响[J].海洋工程,2006,24(2):53-60
    [24]柯东胜.广东近海水域重金属含量及其分布规律的研究[J].环境科学学报,1991,11(1):9-16
    [25]蓝先洪,马道修,徐明广等.珠江三角洲若干地球化学指标及指相意义[J].海洋地质与第四纪地质,1987,7(1):39-49
    [26]蓝先洪,马道修,徐明广等.珠江口近代沉积物中重金属元素分布规律的初步研究[J].南海海洋,1987,1:15-22
    [27]雷作淇,郑卓.黄茅海晚第四纪孢粉组合与环境变迁[J].热带海洋,1990,9(4).24-28.
    [28]李春初.珠江口磨刀门的河口动力与沉积[J].热带地理,1983(1):27-34
    [29]李平日,黄镇国,张中英等.珠江三角洲的第四纪地层[J].地理学报,1984,4(2)
    [30]李淑鸾.珠江口底质沉积中浮游有孔虫的分布规律[J].北京大学学报,1987(6):109-121
    [31]李淑鸾.珠江口底质中有孔虫埋葬群的分布规律[J].海洋地质与第四纪地质,1985,5(2):83-101
    [32]梁娟.磨刀门河口沉积物粒度特征与沉积环境[J].热带地理,2005,25(2):117-123
    [33]梁娟,李春初,王世俊.珠江磨刀门河口底质沉积特征及其泥沙运移趋势[J].海洋通报,2006,25(5):57-63
    [34]林晓彤,李巍然,时振波.黄河物源碎屑沉积物的重矿物特征[J].海洋地质与第四纪地质2003,23(3):17-21
    [35]林祖亨,梁舜华.珠江河口的现代沉积环境与底质重金属的含量分布[J].海洋通报,1995,14(4):43-50
    [36]刘昌龄,陈洪涛.大气中微量元素的沉降对海洋生态系统的影响[J].海洋通报,2003,22(2):89-96
    [37]刘芳文,颜文,黄小平等.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,22(5):17-24
    [38]刘沛然,黄先玉,任杰,闻平.珠江口伶仃洋泥沙运动的沉积动力作用[J].台湾海峡,2000,19(3):304-309
    [39]陆成斌,詹文欢,刘以宣.珠江口断裂的活动性与区域稳定性分析[J].热带海洋,1991,10(1):5-12
    [40]罗传秀,潘定安,施汝权.珠江三角洲江村ZX2孔沉积物粒度的环境意义[J].地层学杂志,2005,29:631-535
    [41]吕海滨,吴超羽,刘斌.珠江磨刀门整治前后水动力数值模拟[J].海洋科学,2006,30(11):57-63
    [42]马道修,徐明广,周青伟,张光威,蓝先洪.珠江三角洲沉积相序[J].1988,8(1):43-53
    [43]欧兴进,赵焕庭,宋朝景.西江磨刀门河口水文泥沙特征[J].热带海洋,1983,2(4):278-288
    [44]彭晓彤,周怀阳,翁焕新,潘建明等.珠江口沉积物主元素的组成分布特征及其地化意义[J].浙江大学学报(理学版),2003,30(6):697-703
    [45]彭晓彤,周怀阳,翁焕新等.珠江口沉积柱中重金属V、Ni和Co的分布特征、迁移机制和污染评价[J].浙江大学学报,2003,30(1):103-108
    [46]齐雨藻,张玉兰,张子安,等.从化石硅藻分析东江三角洲的沉积相[J].热带地理,1981,(3).45-50
    [47]任杰,包芸,林卫强.珠江口伶仃洋水沙纵向输移特征分析[J].热带海洋学报.2001,20(3):35-40
    [48]石学法,陈丽蓉,李坤业,杨蕙兰.西菲律宾海沉积物矿物组合及其地质意义.海洋湖沼,1994,25(3):328-335
    [49]宋明水.东营凹陷南斜坡沙四段沉积环境的地球化学特征[J].矿物岩石,2005,25(1):67-73
    [50]苏广庆,王天行.珠江口表层沉积物的重矿物分析[J].矿物学报,1992,12(1):45-53
    [51]孙白云 黄河、长江和珠江三角洲沉积物物中碎屑矿物的组合特征[J].海洋地质与第四纪地质 1990,10(3):23-34
    [52]童国榜,柯曼红,于淑凤.河北平原第四纪孢粉组合及其地质意义[J].海洋地质与第四纪地质,1983,3(4):91-104
    [53]涂霞.南海东北部海区有孔虫的分布及其与海洋环境的关系[J].热带海洋,1983,2(1):11-19
    [54]汪桂荣,珠江三角洲全新世硅藻[J].古生物学报,1998,37(3).305-325
    [55]王芳文,颜文,王文质等.珠江口沉积物重金属污染及其潜在生态危害评价[J].海洋环境科学.2002,21(3):
    [56]王建美,于光耀,陈宗镛.珠江口伶仃洋海区的潮流数值模拟[J].海洋学报,1992,14(2):26-35
    [57]王世俊,胡达,李春初.磨刀门河口近期演变及其排洪效应[J].海洋通报,2006,25(2):21-26
    [58]王随继.西江和北江三角洲区的水沙特点及河道演变特征[J].沉积学报,2002,20(3):376-381
    [59]王益友,郭文莹,张国栋.几种地区化学标志在近乎凹陷阜宁群沉积环境中的应用[J].同济大学学报,1979(2):51-60
    [60]王增焕,林钦,李纯厚等.珠江口表层沉积物铜、铅、锌、镉的分布与评价[J].环境科学研究,2004,17(4):5-11
    [61]王增焕,林钦,李纯厚等.珠江口重金属变化特征与生态评价[J].中国水产科学,2004,11(3):214-220
    [62]韦刚健,李献华,陈()蔚Nw93~5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录[J].地球化学,2001,30(5):450-458
    [63]韦桃源,陈中原,魏子新等.长江河口区第四纪沉积物中的地球化学元素分布特征及其古环境意义[J].第四季研究,2006,26(3):397-404
    [64]严钦尚,张国栋,项立嵩等.苏北金湖凹陷阜宁群的海侵和沉积环境[J].地质学报,1979,1:74-83
    [65]杨蕾,李春初,田向平.珠江磨刀门河口表层沉积物中重金属含量及其分布特征[J].生态环境,2006,15(4):490-494
    [66]杨雪舞,于红兵,孙宗勋,梁添明.黄茅海河口湾现代动力地貌体系和冲淤过程分析[J].热带海洋,1997,16(1):49-59
    [67]杨雪舞、王文介.珠江口黄茅海河口湾水动力沉积和泥沙运动的统计研究[J].海洋工程.1994,12(4):42-52
    [68]杨振京,童国榜.银川盆地中更新世以来孢粉组合与环境变化[J].地球学报,2001,22(4):369-374
    [69]应秩甫.伶仃洋西滩槽沟发育的动力分析[J].热带海洋,1984,3(4):10-17
    [70]应秩甫.珠江口伶仃洋峰的类别及其对沉积的影响[J].热带海洋.1994,13(2):25-33
    [71]张富元,章伟艳,杨群慧.南海东部海域沉积物粒度分布特征[J].沉积学报,2003,21(3):452-460
    [72]张虎男.断块型三角洲[J].地理学报,1980,35(1):58-67
    [73]张玉兰,余素华.深圳地区晚第四纪孢粉组合及古环境演变[J].海洋地质与第四纪地质,1999,19(2):109-114
    [74]张祖麟,陈宗团,徐立,洪华生.珠江口外伶仃洋的现代沉积速率及重金属污染[J].海洋通报,1998,17(3):54-59
    [75]赵焕庭,陈木宏,余家桢,袁家义.珠江三角洲海进层微体古生物的初步研究[J].热带海洋,1987,6(1).28-38.
    [76]赵焕庭.珠江河口演变的基本过程[J].热带海洋,1984,3(4):1-10
    [77]赵焕庭.珠江三角洲的水文特征[J].热带海洋,1983,2(2):108-118
    [78]赵希涛.中国全新世珊瑚礁的发育及其对海平面变化与构造运动的反映[J].中国科学,1982,B辑11.1041-1049.
    [79]郑建禄,何锦文,朱克勤.珠江口海域重金属的河口化学研究Ⅴ.表层沉积物中粘土矿物的分布[J].海洋学报,1984,6(2):197-206
    [80]郑卓,王建华.珠江三角洲北部晚第四纪孢粉植物群的古环境意义[J].热带海洋,1998,17(3):1-9
    [81]钟建强,詹文欢,古森昌等.珠江三角洲新构造运动与地壳稳定性分析[J].华南地震,1996,16(2):57-63
    [82]周厚云,郭国章,余素华.珠江口SX97孔7000a B.P.以来石英矿物含量反映的气候变化[J].热带海洋学报,2001,20(4):1-5
    [83]周厚云,余素华,郭国章.珠江口SX97孔7000Ab.p.的气候环境变化及流域相应[J].地理科学,2001,(4):368-372
    [84]周英.珠江口沿岸区水动力条件及悬移质运动[J].南海海洋,1985(1):59-64
    [85]朱素琳,梁百和,吴华新,罗永明.珠江口及邻近海岸表层沉积物重矿物的初步研究[J].海洋通报,1983,2(1):22-31
    [86]朱素林等.珠江口外西侧海岛沿岸表层砂质沉积物中重矿物的初步研究[J].地质地球化学,1985,(5):68-71
    [87]朱卫勤,霍春兰.珠江三角洲现代沉积物中重矿物的初步研究[J].126-139
    [88]黄镇国,李平日,张仲英.华南晚更新世以来的海平面变化,中国海平面变化[M].海洋出版社,1986,176-194.
    [90]黄镇国,李平日,张仲英等.1982.珠江三角洲形成和发育演变[M].广州:科学普及出版社.1-278
    [91]蓝东兆,程兆第,刘师成.南海晚第四纪沉积硅藻[M].北京:海洋出版社,1995
    [92]李平日,乔彭年,郑洪汉,方国祥,黄光庆.珠江三角洲一万年来环境演变[M].海洋出版社 1991
    [93]刘宝珺.沉积岩石学[M].北京:地质出版社,1980
    [94]龙云作等.珠江三角洲沉积地质学[M].北京:地址出版社,1997
    [95]任明达,王乃梁.现代沉积环境概论[M].北京:科学出版社,1985
    [96]汪品先等.十五万年来的南海[M].上海:同济大学出版社,1995
    [97]张虎才编著.元素表生地球化学特征及理论基础[M].兰州:兰州大学出版社,1997,1-456
    [98]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001
    [99]赵焕庭.珠江河口演变[M].北京:海洋出版社,1990
    [100]赵一阳,鄢明才.中国陆架浅海沉积物地球化学[M].北京:科学出版社,1992
    [101]中华人民共和国国家技术监督局.GB 13909-1992.海洋调查规范海洋地质地球物理调查.北京:中国标准出版社.1993.10-01
    [102]中华人民共和国国家技术监督局.GB 17378.5—1998.海洋监测规范.北京:中国标准出版社,1999-01-01
    [103]Adamo P,Arienzo M,Imperato M,Naimo D,Nardi G.,Stanzione D.Distribution and partition of heavy metals in surface and sub~surface sediments of Naples city port.Chemosphere,2005,61(6):800-809
    [104]Barcellos C,de Lacerda LD,Ceradini S.Sediment origin and budget in Sepetiba Bay(Brazil)~an approach based on multi~elemental analysis.Environmental Geology,1997,32(3):203-209
    [105]Bayhan E,Erigin M,Temel A,Keskin S.Sedimentology and mineralogy of sufficial bottom deposits from the Aegean-Canakkale-Marmara transition(Eastern Mediterranean):effects of marine and terrestrial factors.Marine Geology,2001,175:297-315
    [106]Blaser P,Zimmermann S,Luster J,Shotyk W.Critical examination of trace element enrichments and depletions in soils:As,Cr,Cu,Ni,Pb and Zn in Swiss forest soils.The Science of the Total Environment,2000,249:257-280
    [107]C.C.M.Ip,X.D.Li,G.Zhang,et.al.Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary,South China.Environmental pollution,2004,132:157-172
    [108]Celine S.L.Lee,Xiang Dong Li,Gan Zhang,Jun Li,AiJun Ding,Tao Wang.Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou,South China~Evidence of the Long~range transport of air contaminants.Atmospheric environment,2007,41,432-447
    [109]Chen C.W.,Kao C.M.,Chen C.F.,Dong C.D..Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor.Taiwan.Chemosphere,2007,66:1431-1440
    [110]Chen JS,Wang FY,Li XD,et al.Geographical variations of trace elements of the mahor rivers in eastern China.Evriron Geol,2000,39(12):1334-1340
    [111] Chen X.H.. Allocation and variation of sediment for branching channels main river in the pearl delta - -a case study of the west and north river delta. Tropic Geography, 2000, 20(1): 22-26
    
    [112] Chen Zhouyuan, Chen Zhenglou, Zhang Weigou. Quaternary stratigraphy and trance- element indices of the Yangtze Delta, Eastern China, with special referene to marine transgressions. Quaternary Research, 1997,47(2): 181 -191
    
    [113] Cobelo-Garcia A, Prego R. Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contamination. Marine Pollution Bulletin , 2003, 46: 1253- 1262
    
    [114] DeMora S, Sheikholeslami MR, Wyse E, Azemard S, Cassi R. An assessment of metal contamination in coastal sediments of the Caspian Sea. Marine Pollution Bulletin, 2004, 48: 61- 77
    
    [115] Dyer K R, Estuarine hydrography and sedimentation, Camridege University Press, Taunton, England, 1979, 1-15
    
    [116] Ehrmann W, Polozek K, The heavy mineral record in the Pliocene to Quaternary Sediments of the CIRS-2 drill core, Mc-Murdo Sound, Antarctica. Sedimentary Geology, 1999,128:223- 244
    
    [117] Einax JW, Soldt U. Geostatistical and multivariate statistical methods for the assessment of polluted soils-merits and limitations. Chemomet. Intell. Lab. Syst. 1999,46: 79-91
    
    [118] Grabemann 1, Uncles RJ, Krause G, Stephens JA. Behaviour of turbidity maxima in the tamar(U.K.) and Weser (F.R.G) estuaries. Estuarine, Coastal and Shelf Science, 1997, 45: 235- 246
    
    [119] Graham E, Richard J Howarth, Nombela MA. Metals in the sediments of Ensenada de San Simon (inner Ria de Vigo), Galicia, NW Spain. Applied Geochemistry, 2003, 18: 973-996
    
    [120] Guerra-Garcia Jose M, Garcia-Gomez J. Carlos. Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. Journal of Environmental Management, 2005, 77(1): 1 -11
    
    [121] He XB, et al. Heavy mineral record of the Holocene environment on the Loess Plateau in China and its pedogenetic significance. Catena 1997,29: 323-332
    
    [122] Hills P, Zhang L, Liu JH. Transboundary pollution between Guangdong Province and Hong Kong: threats to water quality in the Pearl River Estuary and their implications for environmental policy planning. Journal of Environmental Planning and Manangement, 1998, 41: 375-396
    [123] Huaiyang Zhou, Xiaotong Peng, Jianming Pan. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary, China. Continental shelf research. 2004,24:1857-1875
    
    [124] Lau MM, Rootham RC, Bradley GC. A strategy for the management of contaminated dredged sediment in Hong Kong. Journal of Environmental Management, 1993, 38: 99- 114
    
    [125] Lee CSL, Li XD, Zhang G, Li J, Ding AJ, Wang T. Heavy metals and Pb isotopic composition of aerosols in urban and suburban areas of Hong Kong and Guangzhou, South China-Evidence of the long-range transport of air contaminants. Atmospheric Environment, 2007, 41(2): 432-447
    
    [126] Li CC, Lei YP, He W. Land- ocean interaction in modern delta formation and development: A case study of the Pearl River delta, China. Science in China(series B), 2001, 44(): 63-71
    
    [127] Li XD, Wai OWH, Li YS, Coles B, Eamsy MH, Thornton I. Heavy metal contaminants in sediment profiles of the Pearl River Estuary. Applied Geochemistry, 2000 15: 567-581
    
    [128] Lin S, Hsieh IJ, Huang KM, Wang CH . Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 2002, 182: 377-394
    
    [129] Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Enviromental Pollution, 2003, 121:377-388
    
    [130] Lorenzo Giusti. Heavy metal contamination of brown seaweed and sediments form the UK coastline between the Wear river and the Tees river. Environ Intern, 2001, 26:275-286
    
    [131] McCready S, Gavin F. Birch, Edward R. Long. Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity - A chemical dataset for evaluating sediment quality guidelines. Environment International, 2006 32: 455-465
    
    [132] Mislankar P G, Gujar A R. Heavy mineral distribution in the surficial sediments from the eastern continental margin of India and their implications on palaeoenvironment. India Journal of Earth Science, 1996, 23:91-97
    
    [133] Mitchell SB, West JR, Arundale AMW, Guymer I, Couperthwaite JS. Dynamics of the turbidity maxima in the upper Humber estuary system, U.K. Marine Pollution Bulletin, 1998, 37: 190-205
    
    [134] Morillo J, Usero J, Gracia I. Heavy metal distribution in marine sediments from the southwestcoast of Spain, 2004, Chemosphere 55: 432-442
    [135] Pablo Muniz, Eva Danulat, Beatriz Yannicelli, Javier Garcia-Alonso, Gabriela Medina, Marcia C.Bicego, (2004) Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo Harbour (Uruguay). Environment international 29: 1019-1028
    
    [136] Peng XT, Zhou HY, Ye Y, Chen G Q. Characteristics of Sediment Grain Size and Their Implications for Bottom Hydrodynamic Environment in the Pearl River Estuary. Acta Sedimentologica Sinica, 2004, 22(3): 487-493
    
    [137] QuSheng Li, ZhiFeng Wu,Bei Chu, et al, Heavy metal in coastal wetland sediments of the Pearl River Estuary, China. Envirionmental pollution, 2007, 1 -7
    
    [138] Richard J. Howarth, MA Nombela. Metals in the sediments of Ensenada de San Simon(inner Ria de Vigo), Galicia, NW Spain. Applied Geochemistry, 2003, 18: 973-996
    
    [139] Roussiez V, Ludwig W, Monaco A, Probst JL, Bouloubassi I, Buscail R, Saragoni G. Sources and sinks of sediment-bound contaminants in the Gulf of Lions (NW Mediterranean Sea): A multi-tracer approach. Continental Shelf Research, 2006, 26:1843-1857
    
    [140] Rubio B, Nombela MA, Vilas F. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo(NW Spain): An Assessment of Metal Pollution. Marine Pollution Bulletin, 2000, 40: 968-980
    
    [141] Ruiz F. Trace metals in estuarine sediments from the southwestern Spanish coast. Marine Pollution Bulletin, 2001, 42(6): 482-489
    
    [142] Schafer J, Dorr W. Heavy mineral analysis and typology of detrital zircons: a new approach to provenance study (Saxothuringian Flysch, Germany). Jounal of Sedimentary Research 1997, 67(3): 451-461
    
    [143] Selvaraj K, Mohan VR, Szefer P. Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Marine pollution Bulletin, 2004 49(33): 174-185
    
    [144] Shine JP, Ika RV, Ford TE. Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbour marine sediments. Environmental Science and Technology, 1995,29: 1781 - 1788
    
    [145] Shotyk W. Peat bog archives of atmospheric metals deposition:Geochemical assessment of peat profiles, natural variations in metal concentrations, and metasl enrichment factors. Enciron Rev, 1996, 4(2):149-183
    
    [146] Simeonov V, Massart DL, Andreev G, Tsakovski S. Assessment of metal pollution based on multivariate statistical modeling of 'hot spot' sediments from the Black Sea. Chemosphere , 2000,41: 1411 - 1417
    [147] Su Jilan. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental shelf Research, 2004, 24:1745-1960
    
    [148] Turekian KK, Wedepohl, KH. Distribution of the elements in some major units of the earth's crust. Geol.Soc.Amer.Bull, 1961, 72
    
    [149] Vald'es J, Vargas G, Sifeddine A, Ortlieb L, Guinez M. Distribution and enrichment evaluation of heavy metals in Mejillones Bay(23°S), Northern Chile: geochemical and statistical approach. Marine Pollution Bulletin, 2005, 50: 1558-1568
    
    [150] W.X.Liu, X.D.Li, Z.G.Shen.. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Envirionmental pollution, 2003, 121:377-388
    
    [151] Wang SJ, Hu D, Li CC . The Recent Evolution of Modaomen Estuary and its Effect on Flood Drainage. Marine Sciene Bulletin, 2006, 25(2): 21-26
    
    [152] Willams TP, Bubb JM, Lester JN. Metal accumulation within saltmarsh environments: a review. Marine Pollution Bulletin, 1994, 28: 277-290
    
    [153] Yang L, Li CC, Tian XP. Concentrations and content distribution of heavy metals in surface sediments in Modao Men distributary mouth of Pearl River estuary. Ecology and Environment, 2006, 15(3): 490-494
    
    [154] Zhang J, Liu CL. Riverine composition and estuarine geochemistry of particulate metals in China-Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 2002, 54: 1051-1070
    
    [155] Zhou HY, Peng XT, Pan JM. Distribution, source and enrichment of some chemical elements in sediments of the Pearl River Estuary. China. Continental Shelf Research, 2004, 24: 1857-1875
    
    [156] Zwolsman JJG, van Eck GTM, Burger G. Spatial and Temporal Distribution of Trace Metals in Sediments from the Scheldt Estuary, South-west Netherlands. Estuarine. Coastal and Shelf Science , 1996, 43(1):55-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700