用户名: 密码: 验证码:
黄河口泥沙输移及三角洲的近期演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文整合水文站水文观测资料、海面光谱测量及表层悬浮泥沙样品分析资料、拦门沙河段同步定点水文观测数据、遥感影像、水深图及前人文献资料等,借助遥感影像处理、GIS 技术及分形理论等较为系统地研究黄河入海水沙变异特征、入海泥沙扩散输移、河口拦门沙与水下三角洲的演变、岸线与潮滩的变迁及其人类活动对河口泥沙输移与三角洲近期演变的影响。结果表明,由于流域人类活动的影响日益增强,自 20 世纪 70 年代以来,黄河入海水沙量锐减,下游河道频繁断流。通过对黄河口含沙水体光谱反射特性的研究,建立了表层悬 浮 泥 沙 浓 度 遥 感 反 演 的 半 分 析 和 经 验 模 型 。 经 验 关 系 式R TM 3 / RTM2= 0.1683ln(SPM)+0.2454被应用于估测黄河口表层水体含沙量。拦门沙河段水文观测结果表明,潮流区悬沙和底沙交换活跃,最大浑浊带在落急和落憩时发育充分,其范围不超过 10km。采用单窗算法反演 Landsat TM6 影像得到海表温度,并解译出最大浑浊带的位置和范围。黄河口拦门沙是入海泥沙在河口低流速区内大量落淤沉积的结果;拦门沙的形成导致河口河道持续淤高,利津和西河口水位(3000m3/s)年均升高速率分别为 0.164m/a 和 0.170m/a(1985-1996 年)。受以东南向为主潮流输沙和潮流切变锋的控制,70%以上的黄河入海泥沙在河口沉降构建水下三角洲。由于黄河入海水沙的变化,三角洲淤积速率减缓,淤进型海岸减少,仅为蚀退型海岸长度的一半,人工海岸逐年剧增。人为活动也影响了潮滩潮沟的演替进程,潮沟的分维值下降。
This paper addresses the sediment transport in the Huanghe River mouth and the recent deltaic evolution, including the changes in water and sediment discharge, sediment transport in the river mouth, river mouth bar formation, subaqueous deltaic evolution, coastline changes and tidal flats’ evolution, in light of hydrological records, field measurements, station-based monitoring, remote sensing interpretation, bathymetric charts and so on. Due to increasing human activities along the Huanghe River drainage basin, the runoff and sediment loads reduced greatly so that seasonal channel dry-ups in the lower reach frequently occurred since 1970s. A semi-analytic spectral reflectance model was presented on basis of previous studies, and some empirical relationships are established between remote-sensing reflectance in Landsat TM bands and suspended sediment concentration (SSC) through in situ spectroradiometric measurements. The best correlation was obtained for the reflectance ratio of Landsat TM3 and TM2, i.e. RT M3 /RTM2= 0.1683ln(SSC) + 0.2454, which was further used to determine SSC in the river mouth. Synchronous hydrological measurement data show that sediment exchanges between the water column and seabed occur down stream from the limit of tidal current in the Huanghe River mouth. The highest SSC value of turbidity maximum appears at the time of maximum or slack ebb tide. Turbidity maximum moves within a range of 10km. In addition, turbidity maximum can be interpreted from sea surface temperature map retrieved from Landsat TM6 via the mono-window algorithm. River mouth bar formation is a consequence of sediment entrapment in the low current velocity zone of the river mouth. Strong riverbed aggradation in the mouth channel is highly related to the river mouth bar progradation. From 1985 to 1996, the water level (at a
    
    river discharge of 3000 m3/s) rose at a rate of 0.164 m/a and 0.170 m/a, recorded at Lijin and Xihekou Hydrological Stations, respectively. Through calculating seabed change in the subaqueous delta using GIS software, the results show that more than 70% of sediment loads from the Huanghe River were sequestrated in the river mouth area. The subaqueous deltaic evolution is dominated by SE directed tidal current and tidal shear front in the river mouth. Because of the dramatic reduction in water and sediment discharge since 1986, the progadation rate of the delta, including subaqueous and subaerial, slows down. Natural coast accretion is observed around the active river mouth. Total length of eroded coast is about twice as that of prograded one. In the recent years, land reclamation was prevailed along the delta coast and thus large portion of coasts are changed into artificial coast. As a consequence, fractal dimension value of tidal creeks reduced and the retrogressive succession of tidal flats occurred.
引文
[1] Milliman, J. D. and Meade, R. H. World-wide delivery of river sediment to the oceans. The Journal of Geology, 1983(91):1–21.
    [2] 钱意颖, 叶青超, 周文浩. 黄河干流水沙变化与河床演变. 第一版. 北京:中国建材工业出版社, 1993.
    [3] Ren, Mei-e. Impact of climate change and human activity on flow and sediment of the rivers —the Yellow River (China) example. GeoJournal, 1994(33(4)): 443-447.
    [4] Milliman, J. D. and Syvitski, J. P. M. Geomorphic / Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 1992(100): 525-544.
    [5] 黄河水利委员会. 黄河河口地区治理开发概况, 2003.
    [6] 叶青超. 黄河断流对三角洲环境的恶性影响. 地理学报, 1998(53(5)): 385-392.
    [7] 张世奇. 国家自然科学重点基金《新水沙环境下黄河口演变与整治及水土资源优化配置研究》申请书, 2003.
    [8] 恽才兴. 海岸带可持续发展与综合管理. 第一版. 北京:海洋出版社, 2002.
    [9] LOICZ (Land-Ocean Interactions in the Coastal Zone).1996. LOICZ Newsletter No.1, http://www.nioz.nl/loicz/.
    [10] LOICZ (Land-Ocean Interactions in the Coastal Zone), 2003. LOICZ Future –Beyond 2002, http://www.nioz.nl/loicz/firstpages/LOICZFuturesV10.PDF.
    [11] Chen, J. Y. The impact of sea level rise on China's coastal areas and its disaster hazard evaluation. Journal of Coastal Research, 1997(13(3)): 925-930.
    [12] Li Cong Xian, Fan Dai Du, Deng Bing and Wang De Jie. Some problems of vulnerability assessment in the coastal zone of China.2000 (http://www.survas.mdx.ac.uk/pdfs/3licongx.pdf).
    [13] Komar, P. D. Coastal Change - Scales of Processes and Dimensions of Problems, Coastal Sediments '99 - Proceedings of the 4th International Symposium on Coastal Engineering and Science of Coastal Sediment, 1999: 1-17.
    [14] 杨世伦. 海岸环境和地貌过程导论. 第一版. 北京:海洋出版社, 2003: 155-170.
    [15] 李光天, 符文侠. 我国海岸侵蚀及其危害. 海洋环境科学, 1992(11(1)): 53-58.
    [16] 夏东兴, 王文海, 武桂秋, 崔金瑞, 李福林.中国海岸侵蚀述要. 地理学报, 1993(48(5)): 468-476.
    [17] Morton Robert A., Miller Tara L., and Moore Laura J. National assessment of shoreline change: Part 1: Historical shoreline changes and associated coastal land loss along the U.S. Gulf of Mexico: U.S. Geological Survey Open-file Report 2004-1043, 2004, 45p.
    [18] Wolfgang Ludwig and Jean-Luc Probst. River sediment discharge to the oceans: Present-day controls and global budgets. American Journal of Science, 1998(298):265-295.
    [19] LOICZ (Land-Ocean Interactions in the Coastal Zone).2000. LOICZ Newsletter No.17.
    [20] Syvitski, J. P. M. Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change, 2003(39) :1 -11
    [21] McCartney M. P., Sullivan C., and Acreman M.C. Ecosystem Impacts of Large Dams, Prepared for Thematic Review II.1: Dams, ecosystem functions and environmental restoration, 2000 (http://www.dams.org/).
    
    [22] Mahmood K. Reservoir sedimentation: Impact, extent and mitigation. World Bank technical paper 71, Washington, DC, 1987.
    [23] 任美锷. 中国的三大三角洲. 第一版. 北京: 高等教育出版社, 1994.
    [24] Wang Zhao-Yin, Hu Shixiong, Wu Yongsheng, and Shao Xuejun. Delta processes and management strategies in China. Intl. J. River Basin Management, 2003(1(2)): 173–184.
    [25] Chen X. and Chen Z. Y. Coastal Erosion along the Changjiang Deltaic Shoreline, China: History and Prospective. Estuarine, Coastal and Shelf Science, 1998(46):733–742.
    [26] 陈吉余. 中国河口海岸研究回顾与展望. 华东师范大学学报(自然科学版), 1996 (1): 1-5.
    [27] Coleman, J. M.; Roberts, H. H., and Stone, G. W. Mississippi River Delta: an Overview. Journal of Coastal Research, 1998(14(3)): 698-716.
    [28] Stanley, D.J. and Warne, A.G. Nile Delta in its Destruction Phase. Journal of Coastal Research, 1998(14(3)): 794-825.
    [29] Frihy, O. E.; Dewidar, K.M., and El Banna, M.M. Natural and human impact on the northeastern Nile delta coast of Egypt. Journal of Coastal Research, 1998a (14(3)): 1109-1118.
    [30] Smith, S.E. and Abdel-Kader, A. Coastal Erosion along the Egypt Delta.Journal of Coastal Research, 1988 (4(2)): 245-255.
    [31] Frihy O. E. Nile delta shoreline changes: Aerial photographic study of a 28-year period. Journal of Coastal Research, 1988 (4(4)): 597-606.
    [32] Frihy, O. E. and Khafagy, A. A. Climate and Induced Changes in Relation to Shoreline Migration Trends at the Nile Delta Promontories, Egypt. Catena, 1991 (18):197-211.
    [33] Frihy O. E. and Komar P. D. Long-term shoreline changes and the concentration of heavy minerals in beach sands of the Nile Delta, Egypt. Marine Geology, 1993 (115(3-4): 253-261.
    [34] Fanos, A. M., Khafagy, A. A. and Dean, R.G. Protective Works on the Nile Delta Coast, Journal of Coastal Research, 1995 (11):516-528.
    [35] Frihy O. E. Some proposals for coastal management of the Nile delta coast. Ocean & Coastal Management, 1996(30(1):43-59.
    [36] Ahmed M. H. Long-term changes along the Nile delta coast: Rosetta promontory a case study. Egypt. J. Remote Sensing & Space Sci., 2000 (3):125-134.
    [37] Arnieli K , A., M Ayo , M., G Itelson,A., and B EN- A Vraham , Z. Settlements in the Nile delta. Systema Terra, 1993(2): 49–50.
    [38] Fanos Alfy Morcos. Nile River Delta,In: Summaries of Background Papers to the Report of the Workshop on the Planning and Management of Modified Mega Deltas 24 – 26 September 2001, The Hague, The Netherlands.
    [39] Frihy O. E. and Lawrence D. Evolution of the modern Nile delta promontories: development of accretional features during shoreline retreat. Environmental Geology, 2004(46(6-7)): 914 – 931.
    [40] Collins, E. The Influence of fluvial sediment supply on coastal erosion in West and Central Africa. Shoreline Management, 1986 (2): 5–12.
    [41] Abam T. K. S. Impact of dams on the hydrology of the Niger Delta. Bulletin of Engineering Geology and the Environment, 1999(57) : 239–251.
    [42] Cheng K. Ly. The role of the Akosombo Dam on the Volta river in causing coastal erosion in central and eastern Ghana (West Africa) . Marine Geology, 1980(37(3-4)): 323-332.
    
    [43] Carriquiry J.D. and Sa′nchez A. Sedimentation in the Colorado River delta and Upper Gulf of California after nearly a century of discharge loss. Marine Geology, 1999(158):125–145.
    [44] Carriquiry José D., Alberto Sánchez and Victor F. Camacho-Ibar. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge. Sedimentary Geology, 2001( 144(1-2)): 37-62.
    [45] Michael J. Cohen, Christine Henges-Jeck & Gerardo Castillo-Moreno. A preliminary water balance for the Colorado River delta, 1992-1998. Journal of Arid Environments, 2001(49): 35-48.
    [46] Williams S. Jeffress. Coastal erosion and land loss around the United States: strategies to manage and protect coastal resources- examples from Louisiana. Coastal Ecosystems and Federal Activities Technical Training Symposium Proceedings, Gulf Shores State Park, AL, August 20-22, 2001.
    [47] John W. Day, Jr., Gary P. Shaffer, Louis D. Britsch, Denise J. Reed, Suzanne R. Hawes, and Donald Cahoon. Pattern and Process of Land Loss in the Mississippi Delta: A Spatial and Temporal Analysis of Wetland Habitat Change. Estuaries, 2000(23(4)):425-438.
    [48] Jay D. A. and Simenstad C. A. Downstream effects of water withdrawal in a small, high-gradient basin: erosion and deposition on the Skokomish River delta. Estuaries, 1996(19(3)):501-517.
    [49] Agustín Sanchez-Arcilla, Jimenez, J.A., and Valdemoro, H.I. The Ebro Delta: Morphodynamics and Vulnerability. Journal of Coastal Research, 1998(14(3)): 754-772.
    [50] Agustín Sánchez-Arcilla, Carles Ibá?ez, Vicente Gracia, Jose Jimenez, Antoni Canicio, Ebro Delta. In: Summaries of Background Papers to the Report of the Workshop on the Planning and Management of Modified Mega Deltas 24 – 26 September 2001, The Hague, The Netherlands.
    [51] Petre Gastescu and Romulus Stiuca, Danube Delta. In: Summaries of Background Papers to the Report of the Workshop on the Planning and Management of Modified Mega Deltas 24 – 26 September 2001, The Hague, The Netherlands.
    [52] Panin N. and Jipa D. Danube River Sediment Input and its Interaction with the North-western Black Sea. Estuarine, Coastal and Shelf Science, 2002(54): 551–562.
    [53] Mauro Coltori. Human impact in the Holocene fluvial and coastal evolution of the Marche region, Central Italy. Catena, 1997(30(4)) :311-335.
    [54] Berkamp, G., McCartney, M., Dugan, P., McNeely, J., Acreman, M. Dams, Ecosystem Functions and Environmental Restoration Thematic Review II.1 prepared as an input to the World Commission on Dams, Cape Town, 2000. (http://www.dams.org).
    [55] Samina Khalil. Economic valuation of the mangrove ecosystem along the Karachi coastal areas. In: Joy E. Hecht, ed., The Economic Value of the Environment: Cases from South Asia, published by IUCN in 1999. (http://www.iucnus.org/publications.html.) .
    [56] Coleman James M. and Oscar K.Huh. Major world deltas: a perspective from space, 2003. (http://cires.colorado.edu/science/pro/wdn/).
    [57] Malini B. Hema and Rao K. Nageswara. Coastal erosion and habitat loss along the Godavari delta front –a fallout of dam construction. Current science, 2004(87(9-10):1232-1236.
    [58] Hong G. H., Kremer H. H., Pacyna J., Chen-Tung Arthur Chen, H. Behrendt, W. Salomons and J. I. Marshall crossland. East Asia basins—— LOICZ global change assessment and synthesis of river catchment-coastal sea interaction and human dimensions, LOICZ reports & studies No. 26, 2002.
    
    [59] Tran Van Dien, Tran Duc Thanh and Nguyen Van Thao. Monitoring Coastal Erosion in Red River Delta, Vietnam - A Contribution from Remote Sensing Data (abstract). Asian Journal of Geoinformatics, 2003(3(3)): 73.
    [60] Tran Duc Thanh, Yoshiki Saito, Dinh Van Huy, Van Lap Nguyen, Thi Kim Oanh Ta and Masaaki Tateishi. Regimes of human and climate impacts on coastal changes in Vietnam. Regional Environmental Change, 2004(4(1)):49-62.
    [61] 陈吉余, 陈沈良. 中国河口海岸面临的挑战. 海洋地质动态, 2002(18(1)): 1-5.
    [62] Chen Ji-yu and Chen Shen-liang. Estuarine and Coastal challenges in China. Chinese Journal of Oceanology and Limnology, 2002(20(2)):174-181.
    [63] 胡镜荣. 河流入海泥沙对中国海岸带地貌发育的影响. 河北省科学院学报, 1989(1):52-62.
    [64] 阮成江, 谢庆良, 徐进. 中国海岸侵蚀及防治对策. 水土保持学报, 2000(14(1)): 44-47.
    [65] 姜梅, 夏东兴. 6000年来我国低平海岸线的冲淤变化及其对海岸带开发的影响. 黄渤海海洋, 2001(19(1)): 32-37.
    [66] 季子修. 中国海岸侵蚀特点及侵蚀加剧原因分析. 自然灾害学报, 1996(5(2)): 65-75.
    [67] 季子修, 蒋自巽, 朱季文, 杨桂山. 海平面上升对长江三角洲和苏北滨海区平原海岸侵蚀的可能影响. 地理学报, 1998(48(6)):516-526.
    [68] 万延森. 苏北古黄河三角洲的演变. 海洋与湖沼, 1989(20(1)): 66-74.
    [69] 张忍顺, 陆丽云, 王艳红. 江苏海岸侵蚀过程及其趋势. 地理研究, 2002(21(4)): 469-478.
    [70] 杨世伦, 朱骏, 赵庆英. 长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计.海洋学报, 2003(25(5)): 83-91.
    [71] 冯金良,张稳. 滦河现代三角洲演变的几何学特征,黄渤海海洋, 1997(15(3)): 22-25.
    [72] Feng Jin-liang, Zhang Wen. The evolution of the modern Luanhe River delta, north China. Geomorphology, 1998(25):269–278.
    [73] 钱春林. 引滦工程对滦河三角洲的影响. 地理学报, 1994(49(2)): 158-166
    [74] 许炯心. 人类活动对公元1194年以来黄河河口延伸速率的影响. 地理科学进展, 2001(20(1)): 1-9.
    [75] 洪尚池, 吴致尧. 黄河河口地区海岸线变迁情况分析.海洋工程, 1984 (2): 68-75.
    [76] 程义吉. 黄河河口研究与治理实践, 第一版. 郑州: 黄河水利出版社, 2001.
    [77] Islam M. R., Begum S. F., Yamaguchi Y., Ogawa K. Distribution of suspended sediment in the coastal sea off the Ganges–Brahmaputra River mouth: observation from TM data. Journal of Marine Systems, 2002 (32):307–321.
    [78] Klemas, V., Borchardt, J. F. and Treasure, W. M. Suspended sediment observations from ERTS-1. Remote Sensing of Environment, 1971-1973(2): 205-221.
    [79] Thomas, I. L. Suspended sediment dynamics from repetitive Landsat data. International Journal of Remote sensing, 1980(1(3)): 285-292.
    [80] George A. Maul and Donald V. Hansen. An observation of the gulf stream surface front structure by ship, aircraft, and satellite, 1971-1973(2): 109-116.
    [81] Klemas, V. and Polis, D. F. A study of density fronts and their effects on coastal pollutants. Remote Sensing of Environment, 1977( 6(2)):95-126.
    [82] Ferrier G.; Anderson J. M. The application of remotely sensed data in the study of frontal systems in the Tay Estuary, Scotland, U.K. International Journal of Remote Sensing, 1997(18(9)): 2035-2065.
    
    [83] Klemas V., Bartlett D., Philpot W., Rogers R. and Reed L. Coastal and estuarine studies with ERTS-1 and Skylab. Remote Sensing of Environment, 1974(3(3)):153-174.
    [84] Rouse L. J. and Coleman J. M. Circulation observations in the Louisiana bight using LANDSAT imagery. Remote Sensing of Environment, 1976 (5):55-66.
    [85] Robert J. Finley and Robert W. Baumgardner, Jr. Interpretation of surface-water circulation, Aransas Pass, Texas, using landsat imagery. Remote Sensing of Environment, 1980(10(1)):3-22.
    [86] Collins, M., and Pattiaratchi, C. Identification of suspended sediment in coastal waters using airborne thematic mapper data. International Journal of Remote sensing, 1984(5(4)): 635-657.
    [87] Schroeder W. W., Oscar K. Huh, L. J. Rouse, Jr. and Wm. J. Wiseman, Jr. Satellite observations of the circulation east of the Mississippi Delta: Cold-air outbreak conditions. Remote Sensing of Environment, 1985 (18(1)): 49-58.
    [88] John R. Apel, H. Michael Byrne, John R. Proni and Ronald Sellers A study of oceanic internal waves using satellite imagery and ship data. Remote Sensing of Environment, 1976 (5): 125-135.
    [89] Curran P. J. and Novo E.M.M. The relationship between suspended sediment concentration and remotely sensed spectral Radiance: A review. Journal of Coastal Research, 1988(4(3)): 351-368.
    [90] Klemas, V. and Philpot W.D. Drift and dispersion studies of ocean-dumped waste using Landsat imagery and current drogues. Photogrammetric Engineering and Remote Sensing, 1981(47(4)):533-542.
    [91] Ochiai H. The significant application of LANDSAT data to monitoring of marine environment. Acta Astronautica, 1980(7(4-5)): 425-440.
    [92] Ferrier G. and Anderson J. M. The application of remotely sensed data in the study of frontal systems in the Tay Estuary, Scotland, U.K. International Journal of Remote Sensing, 1997(18(9)) :2035-2065.
    [93] Vasilkov A. P., Burenkov V. I., Ruddick K. G. The spectral reflectance and transparency of river plume waters. International Journal of Remote Sensing, 1999(20(13)): 2497-2508.
    [94] Gagliardini D. A., Karszenbaum H., Legeckis R., Klemas V. Application of Landsat MSS, NOAA/TIROS AVHRR, and Nimbus CZCS to study the La Plata river and its interaction with the ocean. Remote Sensing of Environment, 1984(15(1)): 21-36.
    [95] Fischer J. and Doerffer R. An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements. Advances in Space Research, 1987(7(2)):21-26.
    [96] Froidefond J.M., Lavender S., Laborde P., Herbland A. and Lafon V. SeaWiFS data interpretation in a coastal area in the Bay of Biscay. International Journal of Remote Sensing, 2002 (23(5)):881-904.
    [97] Warrick J. A., Mertes L. A. K., Siegel D. A., Mackenzie C. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS. International Journal of Remote Sensing, 2004(25(10)): 1995 – 2002.
    [98] Zhang Tinglu. Retrieval of Oceanic Constituents with Artificial Neural Network Based on Radiative Transfer Simulation Techniques. Ph.D. Thesis, 2003.
    
    [99] Doxaran D., J. Froidefond, S. Lavender and P. Castaing, Spectral signature of highly turbid waters, application with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Environment, 2002a (81): 149–161.
    [100] Li Rong-Rong, Yoram J. Kaufman, Bo-Cai Gao, and Curtiss O. Davis. Remote Sensing of Suspended Sediments and Shallow Coastal Waters. IEEE Transactions on Geoscience and Remote Sensing, 2003(41(3)):559-566.
    [101] Chuanmin Hu, Zhiqiang Chen, Tonya D. Clayton, Peter Swarzenski, John C. Brock and Frank E. Muller–Karger. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sensing of Environment, 2004 (93(3)):423-441.
    [102] Manikiam B., H. Honne Gowda, P. Manavalan, V. Jayaraman and M. G. Chandrasekhar. Study of sediment dynamics using satellite remote sensing. Advances in Space Research, 1993(13(5)):75-78).
    [103] Islam, M.R., Yamaguchi, Y., Ogawa, K. Reflectances along the courses of the Ganges and Brahmaputra Rivers and in their adjacent coastal sea. International Journal of Remote Sensing, 2000(21): 2213–2224.
    [104] Walker, N.D. Satellite assessment of Mississippi River plume variability: causes and predictability. Remote Sensing of Environment, 1996 (58): 21– 35.
    [105] Myint, S. W. and N. Walker. Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and SeaWiFS measurements: Louisiana, USA. International Journal of Remote Sensing, 2002(23(16)): 3229-3249.
    [106] Froidefond Jean-Marie, Anne-Marie Jegou, Julio Hermida, Pascal Lazure and Patrice Castain. Variability of the Gironde turbid plume by remote sensing. Effects of climatic factors. Oceanologica Acta, 1998(21(2)): 191-207.
    [107] Simpson J.H. and J. Brown. The interpretation of visible band imagery of turbid shallow seas in terms of the distribution of suspended particulates. Continental Shelf Research, 1987 (7(11–12)): 1307–1313.
    [108] Forget Philippe and Ouillon Sylvain. Surface suspended matter off the Rhone river mouth from visible satellite imagery. Oceanologica Acta, 1998(21(6)): 739-749.
    [109] Forget Philippe, Sylvain Ouillon, Florence Lahet and Pierre Broche. Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters. Remote Sensing of Environment, 1999 (68(3)):264-272.
    [110] Lahet F., Ouillon S., Forget P. Colour classification of coastal waters of Ebro river plume from spectral reflectances. International Journal of Remote Sensing, 2001(22(2)): 1639-1664.
    [111] Robinson M-C., K. P. Morris and K. R. Dyer. Deriving Fluxes of Suspended Particulate Matter in the Estuary, UK, Using Airborne Remote Sensing. Marine Pollution Bulletin, 1999(37(3-7)): 155-163.
    [112] Froidefond Jean-Marie, Laure Gardel, Daniel Guiral, Mario Parra and Jean-Fran?ois Ternon. Spectral remote sensing reflectances of coastal waters in French Guiana under the Amazon influence. Remote Sensing of Environment, 2002(80(2)): 225-232.
    [113] Stumpf, R.P. Sediment transport in Chesapeake Bay during floods: analysis using satellite and surface observations. Journal Coastal Research. , 1988(4): 1-15
    [114] Stumpf, R.P. and Pennock, J.R. Calibration of a general optical equation for remote sensing of suspended sediments in a moderatly turbid estuary. Journal of Geophysical
    Research, 1989(94(C10)): 14363-14371.
    
    [115] Ruhl C. A., D. H. Schoellhamer, R. P. Stumpf and C. L. Lindsay. Combined Use of Remote Sensing and Continuous Monitoring to Analyse the Variability of Suspended-Sediment Concentrations in San Francisco Bay, California. Estuarine, Coastal and Shelf Science, 2001(53(6)): 801-812.
    [116] Froidefond J.-M., P. Castaing, J.-M. Jouanneau. Distribution of suspended matter in a coastal upwelling area. Satellite data and in situ measurements. Journal of Marine Systems, 1996 (8): 91-105.
    [117] 黎夏. 悬浮泥沙遥感定量的统一模式及其在珠江口中的应用. 环境遥感, 1992(7(2)): 106-114.
    [118] Li Yan, Huang Wei and Fang Ming. An algorithm for the retrieval of suspended sediment in coastal waters of China from AVHRR data .Continental Shelf Research, 1998 (18(5)):487-500.
    [119] Zhu X., He Z., and Deng M., Remote sensing monitoring of ocean color in Pearl River estuary. International Journal of Remote Sensing, 2002(23(20)): 4487-4497.
    [120] 恽才兴, 蔡孟裔, 王宝全. 利用卫星象片分析长江入海悬浮泥沙扩散问题. 海洋与湖沼, 1981(12(5)): 391-401.
    [121] 何青, 恽才兴, 时伟荣. 长江口表层水体悬沙浓度场遥感分析. 自然科学进展, 1999(9(2)): 160-164.
    [122] 李炎, 李京. 基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法. 科学通报, 1999(44(17)): 1892-1897.
    [123] Kritikos, H., Yorinks, L. and Smith, H. Suspended solids analysis using ERTS-A data. Remote Sensing of Environment, 1971-1973 (2): 69-78.
    [124] Willem H. Brakel. Seasonal dynamics of suspended-sediment plumes from the Tana and Sabaki rivers, Kenya: Analysis of Landsat imagery. Remote Sensing of Environment, 1984 (16(2)): 167-173.
    [125] McCluney W. R. Remote measurement of water color. Remote Sensing of Environment, 1976 (5): 3-33.
    [126] Aranuvachapun Sasithorn and Paul H. LeBlond. Turbidity of coastal water determined from Landsat. Remote Sensing of Environment, 1981(11): 113-132.
    [127] Ritchie Jerry C., Charles M. Cooper, Jiang Yongqing. Using landsat multispectral scanner data to estimate suspended sediments in Moon Lake, Mississippi. Remote Sensing of Environment, 1987(23(1)): 65-81.
    [128] Collins, M., and Pattiaratchi, C. Identification of suspended sediment in coastal waters using airborne thematic mapper data. International Journal of Remote sensing, 1984(5(4)): 635-657.
    [129] Aquirre-Gomez, R. Detection of total suspended sediments in the North Sea using AVHRR and ship data. International Journal of Remote sensing, 2000(21(8)):1583-1596.
    [130] Ronald J. Holyer. Toward universal multispectral suspended sediment algorithms. Remote Sensing of Environment, 1978(7(4)):323-338.
    [131] Mikkelsen Ole Aarup. Variation in the projected surface area of suspended particles: Implications for remote sensing assessment of TSM. Remote Sensing of Environment, 2002(79(1)): 23-29.
    
    [132] IOCCG, Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No.3, OCCG, Dartmouth, Canada, 2000.
    [133] Gordon, H. R., T. Du, and T. Zhang, Remote sensing of ocean colour and aerosol properties:resolving the issue of aerosol absorption, Appl. Opt., 1997(36): 8670-8684.
    [134] Chomko R. M. and Gordon H. R. Atmospheric correction of ocean colour imagery: test of the spectral optimisation algorithm with SeaWiFS. Appl. Opt., 2001(40): 2973-2984.
    [135] Chomko, R. M., H. R. Gordon, S. Maritorena, and D. A. Siegel.Simultaneous retrieval of oceanic and atmospheric parameters from ocean colour imagery by spectral optimisation: a validation, Remote Sensing of Environment , 2003(84): 208-220.
    [136] Dekker, A and Bukata R.P. Remote Sensing of Inland and Coastal Waters. 2002, In: Hallikainen, MT (eds), IEEE Press, Piscataway, NJ, USA, pp. 519-534. Series editor: Ross Stone, W, Series Title: Review of Radio Science 1999-2003.
    [137] Gordon, HR, Brown, OB, and Jacobs, MM. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 1975(14): 417–427.
    [138] Aas, E. Two-stream irradiance model for deep waters. Applied Optics, 1987(26): 2095-2101.
    [139] Lahet F., Forget P., Ouillon S. Application of a colour classification method to quantify the constituents of coastal waters from in situ reflectances sampled at satellite sensor wavebands. International Journal of Remote Sensing, 2001(22 (5)): 909-914.
    [140] Morel A. and B. Gentili. Diffuse reflectance of oceanic waters.II. Bidirectional aspects. Applied Optics, 1993(32): 6864–6879.
    [141] Jerome, J., R. Bukata, J. Miller. Remote sensing reflectance and its relationship to optical properties of natural waters. International Journal of Remote Sensing, 1996 (17(16)): 3135-3155.
    [142] Wang, M., Lyzenga D.R., and V.V. Klemas. Measurement of optical properties in the Delaware Estuary. Journal of Coastal Research,1996(12(1)): 211-228.
    [143] Vasilkov, AP, VI Burenkov, and KG Ruddick. The spectral reflectance and transparency of river plume waters. International Journal of Remote Sensing, 1999(20(13)): 2497-2508.
    [144] 唐军武, 田国良, 汪小勇, 王晓梅, 宋庆君. 水体光谱测量与分析I: 水面以上测量法. 遥感学报, 2004(8(1)):37-44.
    [145] Wilson, S. B., and Anderson, J. M. A thermal plume in the Tay Estuary detected by aerial thermography. International Journal of Remote Sensing, 1984(5): 247-249.
    [146] Gibbons, D.E., G.E. Wukelic, J.P. Leighton, and M.J. Doyle. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon. Photogrammetric Engineering and Remote Sensing, 1989 (55): 903-909.
    [147] Huang W. G., A. P. Cracknell and R. A. Vaughan. Satellite Thermal Observation of the River Shannon Plume. Estuarine, Coastal and Shelf Science, 1993(36(3)): 207-219.
    [148] Li X., W. Pichel, P. Clemente-Colón, V. Krasnopolsky, J. Sapper. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. International Journal of Remote Sensing, 2001(22(7)): 1285-1303.
    [149] Závody, A.M, Mutlow, C.T. and Llewellyn-Jones, D.T. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer. Journal of Geophysical Research, 1995 (100(C1)): 937-952.
    
    [150] Fisher Jeremy I. and Mustard John F. High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sensing of Environment, 2004 (90): 293–307.
    [151] Qin, Z., A. Karnieli and P. R. Berliner. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to Israel-Egypt border region. International Journal of Remote Sensing, 2001 (22(18)): 3719-3746.
    [152] 覃志豪, Zhang Minghua, Arnon Karnieli, Pedro Berliner. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 2001(56(4)): 456-466.
    [153] Nichol, J. E. A GIS-based approach to microclimate monitoring in Singapore’s high rise housing estates. Photogrammetric Engineering and Remote Sensing, 1994(60(10)): 1225–1232.
    [154] Weng, Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 2001(22(10)): 1999-2014.
    [155] 赵英时等编著. 遥感应用分析原理与方法.第一版. 北京: 科学出版社, 2003.
    [156] Li Rongxing, Ruijin Ma, Kaichang Di. A Comparative Study of Shoreline Mapping Techniques. The 4th International Symposium on Computer Mapping and GIS for Coastal Zone Management, Halifax, Nova Scotia, Canada, June 18-20, 2001.
    [157] Li Rongxing, Ruijin Ma, Kaichang Di. Digital Tide-Coordinated Shoreline. Marine Geodesy, 2002(25):27–36.
    [158] Pajak, M. J. and Leatherman, S.P. The high water line as shoreline indicator: Journal of Coastal Research, 2002(18(2)): 329-337.
    [159] Moffitt, Francis H. History of Shore Growth from Aerial Photographs. Shore and Beach, 1969(4):23-27.
    [160] Stafford, D.B. and Langfelder, J. Air Photo Survey of Coastal Erosion. Photogrammetric Engineering, 1971(37):565-575.
    [161] Robinson Edward. Coastal changes along the coast of Vere, Jamaica over the past two hundred years: data from maps and air photographs. Quaternary International, 2004(120(1)):153-161.
    [162] Li Rongxing, Jung-Kuan Liu, Yaron Felus. Spatial Modeling and Analysis for Shoreline Change Detection and Coastal Erosion Monitoring. Marine Geodesy, 2001(24(1)): 1-12.
    [163] Frihy, O. E., Dewidar, Kh. M., Nasr, S. M. and El Raey, M. M. Change detection of the northeastern Nile Delta of Egypt: shoreline changes, spit evolution, margin changes of Manzala lagoon and its islands. International Journal of Remote Sensing, 1998b (19(10)): 1901-1912.
    [164] Kevin White and El-Asmar Hesham M. Monitoring changing position of coastlines using Thematic Mapper imagery, an example from the Nile Delta. Geomorphology, 1999(29(1-2):93-105.
    [165] El-Asmar Hesham M. and Kevin White. Changes in coastal sediment transport processes due to construction of New Damietta Harbour, Nile Delta, Egypt. Coastal Engineering, 2002(46(2):127-138.
    [166] Perez A. Calzadilla, M.C.J. Damen, D. Geneletti and T.W. Hobma. Monitoring a recent delta formation in a tropical coastal wetland using remote sensing and GIS. Case study: Guapo River delta, Laguna de Tacarigua, Venezuela. Environment, Development and Sustainability, 2002(4): 201–219.
    
    [167] Fromard F., C. Vega and C. Proisy. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Marine Geology, 2004(208(2-4)): 265-280.
    [168] Lee, M.T., Allison, M.A., and Baltzer, F., 1998. A remote sensing/geochronology study of coastal morphology associated with episodic Amazon sediment supply. AGU Ocean Sciences Meeting, February, 1998.
    [169] Allison Mead A. and Michael T. Lee. Sediment exchange between Amazon mudbanks and shore-fringing mangroves in French Guiana. Marine Geology, 2004(208(2-4)):169-190.
    [170] Yang Xiaojun, Damen, M. C. J., Van Zuidam, R.A. Use of thematic mapper imagery with a geographic information system for geomorphic mapping in a large deltaic lowland environment. International Journal of Remote Sensing, 1999(20(4)): 659-681.
    [171] 陈先德. 黄河水文. 第一版. 郑州:黄河水利出版社, 1996.
    [172] 庞家珍, 姜明星. 黄河河口演变(Ⅰ)——(一)河口水文特征. 海洋湖沼通报, 2003(3): 1-13.
    [173] 李殿魁, 杨玉珍, 程义吉, 顾玉荷, 杨作升, 焦益龄, 曹文洪等. 延长黄河口清水沟流路行水年限的研究. 第一版. 郑州:黄河水利出版社, 2002.
    [174] 山东省科学技术委员会编. 山东省海岸带和海涂资源综合调查报告集—黄河口调查区综合调查报告.第一版. 北京:中国科学技术出版社, 1991.
    [175] 王凤聪, 苏志清. 黄河口门外滨海区潮流的分布特征. 海洋湖沼通报, 1989(2): 8-11.
    [176] 刘凤岳. 黄河冲淡水及其混合锋面的观测研究. 海洋科学, 1989(5): 33-36.
    [177] 刘凤岳. 河口拦门沙地貌特征. 海洋通报, 1990(5): 72-76.
    [178] 刘凤岳. 黄河入海干流随潮流变化的特征及泥沙运动方向. 海洋湖沼通报, 1985(2): 20-23.
    [179] 吴秀杰, 田素珍, 王丽娜. 黄河口五号桩海域海浪的基本特征. 黄渤海海洋, 1989(7(3)): 37-42.
    [180] 成国栋, 薛春汀. 黄河三角洲沉积地质学. 第一版. 北京:地质出版社, 1997.
    [181] 周长江, 申宪忠. 黄河海港海洋环境. 第一版. 北京:海洋出版社, 2001.
    [182] Zhang Dian, Shi Changxing. Sedimentary causes and management of two principal environmental problems in the Lower Yellow River. Environmental Management, 2001(28(6)): 749–760.
    [183] 黄世光, 王志豪. 近代黄河三角洲海域泥沙的冲淤特. 泥沙研究, 1990(2): 13-22.
    [184] 黄世光, 王志豪. 黄河1964-1976年刁口流路泥沙冲淤及其分布特点. 海洋地质与第四纪地质, 1991(11(1)): 15-28.
    [185] 孙效功, 杨作升, 陈彰榕. 现行黄河口海域泥沙冲淤的定量计算及其规律探讨. 海洋学报, 1993(15(1)): 129~136.
    [186] Li, G., Wei, H., Yue, S., Cheng, Y., Han, Y. Sedimentation in the Yellow River delta, part II: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998(149(1-4)): 103-121.
    [187] 薛允传. 近代黄河三角洲景观格局及演化研究. 中国科学院研究生院博士学位论文, 2003.
    [188] 李广雪, 刘守全, 姜玉池, 魏合龙, 庄克琳, 杨子赓, 李阳, 鹿洪友, 徐英霞. 黄河三角洲北部海底刺穿初步研究. 中国科学: D辑, 1999(29(4)): 379-384.
    [189] Li, G. X., Zhuang, K. L., and Wei, H. L. Sedimentation in the Yellow River delta, part III: seabed erosion and diapirism in the abandoned subaqueous delta lobe. Marine Geology,
    2000(168): 129-144.
    
    [190] 刘勇, 李广雪, 邓声贵, 赵东波, 温国义. 黄河废弃三角洲海底冲淤演变规律研究. 海洋地质与第四纪地质, 2002(22(3)): 27-34.
    [191] 李广雪. 黄河口搬运泥沙的动力条件. 海洋地质动态, 1996(6): 4-6.
    [192] Wiseman, W. J., Yang, Z. Sh., Bornhold, B. D., Keller, G. H., Prior, D. B., Wright, L. D. Suspended sediment advection by tidal currents off the Huanghe River (Yellow River) delta. Geo-Marine Letters, 1986(6): 107-113.
    [193] Wright, L. D., Wiseman, W. J., Bornhold, B. D., Prior, D. B., Suhayda, J. N., Keller, G. H., Yang, Z. Sh., Fan Y. B. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature, 1988(332(14)): 629-632.
    [194] Wright, L. D., Wiseman, W. J., Yang, Z. Sh., Bornhold, B. D., Keller, G. H., Prior, D. B., Suhayda, J. N. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe River (Yellow River). Continental Shelf Research, 1990(10(1)): 1-40.
    [195] 李广雪, 成国栋, 魏合龙, 潘为刚, 任于灿, 丁东, 周永青, 赵杰仁. 现代黄河口区流场切变带. 科学通报, 1994(39(10)): 928-932.
    [196] 曾庆华, 张世奇, 胡春宏, 尹学良, 李泽刚, 焦益龄. 黄河口演变及整治.第一版. 郑州: 黄河水利出版社, 1997.
    [197] Li, G., Yang, Z., Yue, Sh., Zhuang, K., Wei H. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 2001(21(6-7)): 607-625.
    [198] 张世奇. 黄河口输沙及冲淤变形计算研究. 水利学报, 1990(1): 23-33.
    [199] 庞重光, 杨作升. 黄河口泥沙异重流的数值模拟. 青岛海洋大学学报, 2001(31(5)): 762-768.
    [200] Wang Hou-jie, Yang Zuo-sheng, Liu Rui-jie, Zhang Jun, and Chang Rui-fang. Numerical modeling of the seabed morphology of the subaqueous Yellow River delta. International Journal of Sediment Research, 2001(16(4): 486-498.
    [201] 许学工. 利用遥感图像推求泥质海岸滩涂低潮线的方法探讨. 山东师范大学学报(自然科学版), 1986(4): 34-43.
    [202] 范兆木, 郭永盛. 黄河三角洲沿岸遥感动态分析图集. 北京: 海洋出版社, 1992.
    [203] 黄海军,李成治, 郭建军. 卫星影像在黄河三角洲岸线变化研究中的应用. 海洋地质与第四纪地质, 1994(14(2)): 29-37.
    [204] 吉祖稳, 胡春宏, 曾庆华, 闫颐. 运用遥感卫星照片分析黄河河口近期演变. 泥沙研究, 1994(3): 12-22.
    [205] 李福林, 庞家珍, 姜明星. 黄河三角洲海岸线变化及其环境地质效应. 海洋地质与第四纪地质, 2000(20(4)): 17-21.
    [206] 刘宝银, 王岩峰. 近期黄河口沙嘴演变遥感信息的拓扑模型研究. 海洋学报, 2000(22(2)): 41-47.
    [207] 杨虎, 郭华东, 王长林. TM-SAR数据融合在黄河口沙咀动态监测中的应用. 地理学与国土研究, 2001(17(4)): 15-19.
    [208] 尹延鸿. 现代黄河三角洲海岸的冲淤及造陆速率. 海洋地质动态, 2003(19(7)): 13-18.
    [209] 常军, 刘高焕, 刘庆生. 黄河三角洲海岸线遥感动态监测. 地球信息科学, 2004 a(6(1)): 94-98.
    
    [210] 常军, 刘高焕, 刘庆生. 黄河口海岸线演变时空特征及其与黄河来水来沙关系. 地理研究, 2004b(23(3)): 339-346.
    [211] 尹延鸿, 周永青, 丁东. 现代黄河三角洲海岸演化研究. 海洋通报, 2004(23(2)): 32-40.
    [212] 孙效功, 杨作升. 利用输沙量预测现代黄河三角洲的面积增长. 海洋与湖沼, 1995(26(1)): 76-82.
    [213] 李福林, 姜明星. 黄河清水沟流路河口三角洲增长面积预测. 海洋湖沼通报, 1999(3): 16-22.
    [214] 刘曙光, 李从先,丁坚, 李希宁, Ivanov V. V. 黄河三角洲整体冲淤平衡及其地质意义. 海洋地质与第四纪地质, 2001a (21(4)): 13-17.
    [215] 刘曙光, 李希宁, 李从先. 黄河三角洲冲淤平衡的来沙量临界值分析. 人民黄河, 2001b(23(3)): 20-21.
    [216] 许炯心. 黄河三角洲造陆过程中的陆域水沙临界条件研究. 地理研究, 2002(21(2)): 163-170.
    [217] 孙效功, 赵海虹, 崔承琦. 黄河三角洲潮滩潮沟体系的分维特征. 海洋与湖沼, 2001(32(1)): 74~80.
    [218] 崔承琦, 李师汤, 孙小霞, 施建堂. 黄河三角洲海岸岸线和潮水沟体系发育及其分维研究—黄河三角洲潮滩海岸时空谱系研究Ⅲ. 海洋通报, 2001(20(6)): 60~70.
    [219] 庞家珍, 司书亭. 黄河河口演变 I.近代历史变迁. 海洋与湖沼, 1979(10(2)): 136-141.
    [220] 薛春汀. 现代黄河三角洲叶瓣的划分和识别. 地理研究, 1994(13(2)): 59-66.
    [221] 王恺忱. 黄河河口演变规律及其对下游河道的影响. In:李保如主编. 黄河水利委员会水利科学研究所科学研究论文集(第二集). 第一版. 郑州:河南科学技术出版社, 1990: 154-201.
    [222] 王爱华, 业治铮. 现代黄河三角洲的结构、发育过程和形成模式. 海洋地质与第四纪地质, 1990(10(1)): 1-12.
    [223] 庞家珍. 论黄河三角洲流路演变及河口治理的指导原则. 人民黄河, 1994(17(5)): 1-4.
    [224] 庞家珍, 司书亭. 黄河河口演变 Ⅲ. 河口演变对黄河下游的影响. 海洋与湖沼, 1982(13(3)): 218-224.
    [225] 王恺忱. 黄河河口与下游河道的关系及治理问题. 泥沙研究, 1982(2): 1-10.
    [226] 周文浩, 范昭. 黄河下游河床纵剖面的变化. 泥沙研究, 1983(4): 14-25.
    [227] 尹学良. 黄河口的河床演变. 泥沙研究, 1986(4): 14-26.
    [228] 王恺忱. 黄河河口发展影响预估计算方法. 泥沙研究, 1988(3): 39-49.
    [229] 励强, 陆中臣. 沿程淤积与溯源淤积对黄河下游演变影响的数值模拟. 地理科学, 1989(9(4)): 336-345.
    [230] 魏合龙, 李广雪, 周永青. 黄河下游沿程冲淤及溯源冲淤的对比研究. 海洋地质与第四纪地质, 1996(16(4)): 55-61.
    [231] 张德茹, 梁志勇, 袁玉萍. 黄河口河段演变及延伸距离的分析. 泥沙研究, 1997(2): 51-55.
    [232] 景可. 黄河下游河道泥沙淤积形式探讨. 泥沙研究, 1986(1): 30-37.
    [233] 师长兴, 叶青超. 黄河河口延伸对下游淤积影响的定量研究. 科学通报, 1996(41(15)): 1399-1401.
    [234] 尹学良, 陈金荣, 刘峡. 黄河下游纵剖面的形成. 泥沙研究, 1997(1): 24-34.
    
    [235] Whitlock, C. H., Poole, L. R., Usry, J. W., Houghton, W. M., Witte, W. G., Morris, W. D., and Gurganus, E. A. Comparison of reflectance with backscatter and absorption parameters for turbid waters. Applied Optics, 1981(20(3)): 517– 522.
    [236] 唐军武, 陈清莲, 谭世祥, 董庆, 苗伟, 冯林新. 海洋光谱测量与数据分析处理方法. 海洋通报, 1998(17(1)): 71-79.
    [237] 李铜基, 唐军武, 陈清莲, 任洪启. 光谱仪测量离水辐射率的处理方法. 海洋技术, 2000(19(3)): 11-16.
    [238] 李铜基, 唐军武, 陈清莲, 任洪启. 光谱仪测量离水辐射亮度的方法. 热带海洋学报, 2001(20(4)): 56-60.
    [239] 汪小勇, 李铜基, 唐军武, 杨安安. 二类水体表观光学特性的测量与分析——水面之上法方法研究. 海洋技术, 2004(23(2)): 1-6.
    [240] 水利电力部水利司主编.水文测验手册. 第一版. 水利电力出版社, 1975. pp.204.
    [241] 田庆久, 郑兰芬, 童庆禧. 基于遥感影像的大气辐射校正和反射率反演方法. 应用气象学报, 1998(9(4)): 456-461.
    [242] Mcgovern, E. A., N. M. Holden, S. M. Ward, and J. F. Collins. The radiometric normalization of multitemporal Thematic Mapper imagery of the midlands of Ireland-A case study. International Journal of Remote Sensing, 2002(23(4)): 751–766.
    [243] Hadjimitsis, D. G., Clayton, C. R. I. and Hope, V. S. An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 2004(25(18)): 3651-3674.
    [244] 阿布都瓦斯提·吾拉木,秦其明, 朱黎江. 基于 6S 模型的可见光、近红外遥感数据的大气校正. 北京大学学报(自然科学版), 2004(40(4)): 611-618.
    [245] Chavez, P. S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 1988(24): 459-479.
    [246] Chavez, P. S., Jr. Image-based atmospheric corrections——revisited and improved. Photogramm. Eng. Remote Sens., 1996(62): 1025-1036.
    [247] Islam, M.R., Yamaguchi, Y., Ogawa, K. Reflectances along the courses of the Ganges and Brahmaputra Rivers and in their adjacent coastal sea. International Journal of Remote Sensing, 2000(21(11)): 2213–2224.
    [248] Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., and Macomber, S.A. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects?. Remote Sensing of Environment, 2001(75): 230-244.
    [249] Markham, B. L., and Barker, J.K. Spectral characteristics of the LANDSAT Thematic Mapper sensors. International Journal of Remote Sensing, 1985(6): 697–716.
    [250] Markham, B. L. and Barker, J. L. Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures, EOSAT Landsat Technical Notes, 1986(1): 3-8.
    [251] Irish, R. R. Landsat 7 science data user's handbook, Report 430-15-01-003-0, National Aeronautics and Space Administration, 2000 (http://ltpwww.gsfc.nasa.gov/IAS/handbook /handbook_toc.html).
    [252] Serra, P., Pons, X., and Sauri, D. Post-classification change detection with data from different sensors: some accuracy considerations. International Journal of Remote Sensing, 2003(24(16)): 3311-3340.
    
    [253] 邬伦, 刘瑜, 张晶, 马修军, 韦中亚, 田原. 地理信息系统——原理、方法和应用. 第一版. 北京:科学出版社, 2001.
    [254] Mobley, C. D. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 1999(38(36)): 7442-7455.
    [255] Mueller J., Davis C., Arnone R., Frouin R., Carder K., Lee Z. P., Steward R. G., Hooker S., Mobley C. D. and McLean S. Above-water radiance and remote sensing reflectance measurements and analysis protocols. In: Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (Revision 2). NASA, 2000: 98-107 (Greenbelt,MD: NASA Goddard Space Flight Center).
    [256] Ouillon S., Petrenko A., Gaggelli J., Garcia N., Rimmelin P., Deschamps P.-Y., Becu G., Thieuleux F. Above-water measurements of reflectance in the Gulf of Lions. In, Proc. 7th Int. Conf. Remote Sensing for Marine and Coastal Environments (CD-Rom), Veridian, Miami, 20-22 May 2002.
    [257] Gyanesh Chander and Brian Markham. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Transactions on Geoscience and Remote Sensing, 2003(41(11)): 2674-2677.
    [258] Sobrino José A., Juan C. Jiménez-Mu?oz, Leonardo Paolini. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 2004(90): 434–440.
    [259] Buettner, K. J. K. and C. D. Kern. The determination of infrared emissivities of terrestrial surfaces. J. Geophys.Res., 1965(70): 1329–1337.
    [260] Saunders, P. M. Airial measurement of the sea surface temperature in the infrared. J. Geophys. Res., 1967(72): 4109–4117.
    [261] Saunders, P. M. Radiance at sea and sky in the infrared window 800–1200 cm–1. J. Opt. Soc. Amer., 1968(58): 645–652.
    [262] Mikhaylov, B. A. and V. M. Zolotarev. Emissivity of liquid water. Atmos. Oceanic Phys., 1970(6): 52.
    [263] Davies, J. A., P. J. Robinson and M. NunezField. determination of surface emissivity and temperature for Lake Ontario. J. Appl. Meteor., 1971(10): 811–819.
    [264] Liu, W.-Y., R. T. Field, R. G. Gantt and V. Klemas. Measurement of the surface emissivity of turbid waters. Remote Sensing of Environment, 1987(21): 97–109.
    [265] Masuda, K., T. Takashima and Y. Takayama Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sensing of Environment, 1988(24): 313–329.
    [266] Masanori Konda, Norihisa Imasato, Katsuya Nishi and Takashi Toda. Measurement of the sea surface emissivity, Journal of Oceanography, 1994(50): 17-30.
    [267] 朱晓华, 王建, 陈霞. 海岸线空间分形性质探讨—以江苏省为例. 地理科学, 2001(21(1)): 70-75.
    [268] 梁东方, 李玉梁, 江春波. 测量分维的“数盒子”算法的研究.中国图象图形学报, 2002(7A(3)): 246~250.
    [269] 冯平, 冯焱. 河流形态特征的分维计算方法. 地理学报, 1997(52(4)): 324~330.
    [270] 李国英. 黄河调水调沙. 中国水利, 2002a(11): 29-33.
    [271] 李国英. 黄河调水调沙. 人民黄河, 2002b(24(11)): 1-4.
    [272] 许炯心. 不同来源水沙对黄河入海泥沙通量的影响. 海洋与湖沼, 2002(33(5): 536-545.
    
    [273] Ritchie, J.C., F.R. Schiebe, and J.R. McHenry. Remote sensing of suspended sediment in surface water. Photogrammetric Engineering and Remote Sensing, 1976(42): 1539-1545.
    [274] Ritchie, J.C., C.M. Cooper, and F.R. Schiebe. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon lake, Mississippi. Remote Sensing Environment, 1990(33): 137-148.
    [275] Tolk, B., L. Han, and D. Rundquist. The Impact of Bottom Brightness On the Spectral Reflectance From Suspended Sediments In Surface Waters. International Journal of Remote Sensing, 2000(21(11)): 2259-2268.
    [276] Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., Clark, D. K. A semi-analytic radiance model of ocean color. Journal of Geophysical Research, 1988(93(D9)): 10909-10924.
    [277] Sathyendranath, S., Prieur, L., and Morel, A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. International Journal of Remote Sensing, 1989(10(8)): 1373–1394
    [278] Lahet, F., Ouillon, S., Forget, P., A three-component model of ocean colour and its application in the Ebro river mouth area, Remote Sensing of Environment, 2000(72(2)): 181-190.
    [279] Bowers, D. G., Harker, E. L., and Stephan, B., Absorption spectra of inorganic particles in the Irish Sea and their relevance to remote sensing of chlorophyll. International Journal of Remote Sensing, 1996(17(12)): 2449–2460.
    [280] Bowers, D. G., Boudjelas, S., and Harker, E. L., The distribution of fine suspended sediments in the surface waters of the Irish Sea and its relation to tidal stirring. International Journal of Remote Sensing, 1998(19(14)): 2789-2805.
    [281] Smith R. C. and Baker K. S. Optical properties of the clearest natural waters (200-800nm). Appl. Opt., 1981(20): 177-184.
    [282] Hale G. M. and Querry M. R. Optical constants of water in the 200nm to 200μm wavelength region, Applied Optics, 1973(12): 555-563.
    [283] Bricaud, A., Morel, A. and L. Prieur. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 1981(26): 43-53.
    [284] Morel, A., and B. Gentili. Diffuse reflectance of oceanic waters: its dependance on sun angle as influence by molecular scattering contribution. Applied Optics, 1991(30): 4427-4438.
    [285] Bricaud A., Babin M., Morel A. and Claustre H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research, 1995(100): 13321-13332.
    [286] Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., Hoepffner. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 2003(108(C7): 3211, doi:10.1029/2001JC000882.
    [287] Buiteveld, H., J.H.M. Hakvoort and M. Donze. The optical properties of pure water. Ocean Optics XII, SPIE , 1994(2258): 174-183.
    [288] Bricaud, A., Morel, A. and Prieur, L. Optical efficiency factors of some phytoplankters. Limnology and Oceanography. 1983(28): 816-832.
    
    [289] Morel, A., Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), Journal of Geophysical Research, 1988(93): 10,749 –10,768.
    [290] Morel A., and S. Maritorena. Bio-optical properties of oceanic waters: a reappraisal. Journal of Geophysical Research, 2001(106): 7163-7180.
    [291] Slawomir B. W. and Dariusz S. Modeling the Optical Properties of Mineral Particles Suspended in Seawater and their Influence on Ocean Reflectance and Chlorophyll Estimation from Remote Sensing Algorithms. Applied Optics, 2004(43(17)): 3489-3503.
    [292] 和瑞莉, 李静, 张石桂. 黄河流域泥沙密度试验研究. 人民黄河, 1999(21(3)): 5-7.
    [293] Twardowski M., E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research, 2001(106): 14129-14142.
    [294] Choubey V. K. and V. Subramanian. Spectral response of suspended sediments in water under controlled conditions. Journal of Hydrology, 1991(122(1-4)): 301-308.
    [295] Aranuvachapun S. and D. E. Walling. Landsat-MSS radiance as a measure of suspended sediment in the Lower Yellow River (Hwang Ho). Remote Sensing of Environment, 1988(25(2)): 145-165.
    [296] Novo E. M . M., Hanson J. D . and Curran P . J. T he effect of sediment t ype o n t he relationship between reflectance and suspended sediment concentration. International Journal of Remote Sensing, 1989(10(7)): 1283-1289.
    [297] Topliss B. J. Spectral variations in upwelling radiant intensity in turbid coastal waters. Estuarine, Coastal and Shelf Science, 1986(22(4)): 395-414.
    [298] Froidefond, J. M.; Castaing, P.. Mirmand, M.; Ruch, P. Analysis of the turbid plume of the Gironde (France) Based on SPOT radiometric data. Remote Sensing of Environment, 1991(36): 149-163.
    [299] Chen Zhimin, Paul J., CurranJim D. Hansom. Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sensing of Environment, 1992(40(1)): 67-77.
    [300] Wang, M., DR Lyzenga, and VV Klemas, Measurement of optical properties in the Delaware Estuary, Journal of Coastal Research, 1996 (12(1)): 211-228.
    [301] Ouillon, S. An inversion method for reflectance in stratified turbid waters. International Journal of Remote Sensing, 2003(24(3)): 535-548.
    [302] 赵学英, 马浩禄, 张在厚. 黄河高含沙水体光谱特性研究. 人民黄河, 1985(2): 9-15.
    [303] 黄海军, 李成治, 郭建军. 黄河口海域悬沙光谱特征的研究. 海洋科学, 1994(5): 40-44
    [304] 傅克忖, 荒川久幸. 悬沙水体不同波段反射比的分布特征及悬沙量估算实验研究. 海洋学报, 1999(21(3)): 134-140.
    [305] 韩震, 恽才兴, 蒋雪中. 悬浮泥沙反射光谱特性实验研究. 水利学报, 2003(12): 118-122.
    [306] Zhang Shuo, Wei-Bin Gan and Venugopalan Ittekkot. Organic matter in large turbid rivers: the Huanghe and its estuary, Marine Chemistry, 1992(38(1-2)): 53-68.
    [307] Dekker, A.G., Malthus, T.J., Wijnen, M.M. and Seyhan, E. The effect of spectral band width and positioning on the spectral signature analysis of inland waters. Remote Sensing of Environment, 1992(41(2/3)): 211-226.
    
    [308] Topliss, B. J., Almos, C. L.; Hill, P. R. Algorithms for remote sensing of high concentration, inorganic suspended sediment, International Journal of Remote Sensing, 1990(11(6)): 947-966.
    [309] Doxaran, J. Froidefond and P. Castaing. A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters, International Journal of Remote Sensing, 2002b (23(23)): 5079–5085.
    [310] 朱鹏程. 盐水楔、最大浑浊带与河床冲淤. 海洋通报, 1984(3(1)): 79-86.
    [311] 沈焕庭, 潘定安著. 长江河口最大浑浊带. 第一版. 北京: 海洋出版社, 2001.
    [312] 沈焕庭, 贺松林, 潘定安, 李九发. 长江河口最大浑浊带研究. 地理学报, 1992(47(3)): 472-479.
    [313] Schubel J. R. Size distributions of the suspended particles of the Chesapeake Bay turbidity maximum. Netherlands Journal of Sea Research, 1969(4(3)): 283-309.
    [314] Schubel J. R. Tidal variation of the size distribution of suspended sediment at a station in the Chesapeake Bay turbidity maximum. Netherlands Journal of Sea Research, 1971(5(2)): 252-266.
    [315] Allen, G. P. and Castaing, P. Suspended sediment transport from the Gironde estuary (France) onto the adjacent continental shelf. Marine Geology, 1973(14(5)): 47-53.
    [316] Allen G. P., J. C. Salomon, P. Bassoullet, Y. Du Penhoat and C. de Grandpré. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology, 1980(26(1-3)): 69-90.
    [317] Castaing, P. and G. P. Allen. Mechanisms controlling seaward escape of suspended sediment from the Gironde: A macrotidal estuary in France. Marine Geology, 1981(40(1-2)): 101-118.
    [318] Avoine, J., G. P. Allen, M. Nichols, J. C. Salomon and C. Larsonneur. Suspended-sediment transport in the Seine estuary, France: Effect of man-made modifications on estuary––shelf sedimentology. Marine Geology, 1981(40(1-2)): 119-137.
    [319] Jean-Paul Dupont, Robert Lafite, Marie-Fran?oise Huault, Pierre Hommeril and Robert Meyer. Continental/marine ratio changes in suspended and settled matter across a macrotidal estuary (the Seine estuary, northwestern France), Marine Geology, 1994(120(1-2)): 27-40.
    [320] Brenon, I. and P. Le Hir. Modelling the Turbidity Maximum in the Seine Estuary (France): Identification of Formation Processes, Estuarine, Coastal and Shelf Science, 1999(49(4)): 525-544.
    [321] Guy Gelfenbaum. Suspended-sediment response to semidiurnal and fortnightly tidal variations in a mesotidal estuary: Columbia River, U.S.A. Marine Geology, 1983(52(1-2)): 39-57.
    [322] Christopher R. Sherwood, David A. Jay, R. Bradford Harvey, Peter Hamilton and Charles A. Simenstad. Historical changes in the Columbia River Estuary. Progress In Oceanography, 1990(25(1-4)): 299-352.
    [323] Uncles R. J. and Stephens J. A. Nature of the Turbidity Maximum in the Tamar Estuary, U.K. Estuarine, Coastal and Shelf Science, 1993(36(5)): 413-431.
    [324] Uncles, R. J., Barton, M. L. and Stephens, J. A. Seasonal Variability of Fine-sediment Concentrations in the Turbidity Maximum Region of the Tamar Estuary. Estuarine, Coastal and Shelf Science, 1994(38(1)): 19-39.
    
    [325] Grabemann, I., Uncles, R. J., Krause, G. and Stephens, J. A. Behaviour of Turbidity Maxima in the Tamar (U.K.) and Weser (F.R.G.) Estuaries, Estuarine, Coastal and Shelf Science, 1997(45(2)): 235-246.
    [326] Woodruff, J. D., Geyer, W. R., Sommerfield, C. K. and Driscoll, N. W. Seasonal variation of sediment deposition in the Hudson River estuary. Marine Geology, 2001(179(1-2)): 105-119.
    [327] Orton, P. M. and Kineke, G. C. Comparing Calculated and Observed Vertical Suspended-Sediment Distributions from a Hudson River Estuary Turbidity Maximum. Estuarine, Coastal and Shelf Science, 2001(52(3)): 401-410.
    [328] 贺松林, 茅志昌. 长江河口最大浑浊带含沙量垂线分布状态的分析. 海洋湖沼通报, 1993(3): 21-27.
    [329] 李九发, 时伟荣, 沈焕庭. 长江河口最大浑浊带的泥沙特性和输移规律. 地理研究, 1994(13(1)): 51-59.
    [330] 贺松林, 孙介民. 长江河口最大浑浊带的悬沙输移特征. 海洋与湖沼, 1996(27(1)): 60-66.
    [331] Li Jiufa and Zhang Chen. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, 1998(148(3-4)): 117-124.
    [332] 董礼先. 椒江河口高混浊水混合过程分析. 海洋与湖沼, 1998(29(5)): 535-541.
    [333] 李伯根, 谢钦春, 夏小明, 李炎. 椒江河口最大浑浊带悬沙粒径分布及其对潮动力的响应. 泥沙研究, 1999(1): 18-26.
    [334] Li, B. G., Eisma, D., Xie, Q. Ch., Kalf, J., Li, Y. and Xia, X. Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China, Journal of Sea Research, 1999(42(2)): 105-116.
    [335] Wai, O. W. H., Wang, C. H., Li, Y. S. and Li, X. D. The formation mechanisms of turbidity maximum in the Pearl River estuary, China, Marine Pollution Bulletin, 2004(48(5-6)): 441-448.
    [336] 茅志昌, 沈焕庭. 长江河口与瓯江河口最大浑浊带的比较研究. 海洋通报, 2001(20(3)): 8-14.
    [337] 李泽刚. 黄河口拦门沙的形成机制. 海洋学报, 1993(15(1)): 84-91.
    [338] 庞重光, 杨作升, 张军, 雷坤. 黄河口最大浑浊带特征及其时空演变. 黄渤海海海洋, 2000(18(3)): 41-46.
    [339] 黄河水利科学研究院. 黄河河口泥沙问题研究, 2003.
    [340] Huang, W. G., Cracknell, A. P. and Vaughan, R. A. Satellite thermal observations of the River Shannon plume. Estuarine, Coastal and Shelf Science, 1993(36): 207 -219.
    [341] 李广雪. 黄河入海泥沙扩散与河海相互作用. 海洋地质与第四纪地质, 1999(19(3)): 1-10.
    [342] Li Guangxue, Yue Shuhong, Zhuang Keling, Wei Helong. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research, 2001(21(6-7)): 607-625.
    [343] 沈焕庭, 贺松林, 茅志昌, 李九发. 中国河口最大浑浊带刍议. 泥沙研究, 2001(1): 23-29.
    [344] 姚运达, 沈焕庭, 潘定安, 肖成猷. 河口最大浑浊带若干机理的数值模型研究. 泥沙研究, 1994(4): 10-20.
    
    [345] Parker, W. R. Observations on fine sediment transport phenomena i n turbid c oastal environments. Continental Shelf Research, 1987(7): 1285-1293.
    [346] Mehta, A. J. On estuarine cohesive sediment suspension behavior. Journal of Geophysical Research, 1989(94(C10)): 14303–14314.
    [347] 时钟,凌鸿烈. 长江口细颗粒悬沙浓度垂向分布. 泥沙研究, 1999(2): 59-64.
    [348] Schiebe, F. R., Ritchie J.C., and McHenry J.R. Influence of suspended sediments on the temperature of surface waters in reservoirs. Verh. International Ver. Limnology, 1976(19): 133-136.
    [349] 崔金瑞, 夏东兴. 黄河口拦门沙形成机制. 海洋通报, 1991(10(6)): 55-60.
    [350] 李泽刚. 黄河口拦门沙的形成与演变. 地理学报, 1997(52(1)): 84-91.
    [351] 叶青超. 黄河口拦门沙发育动态. 地理研究, 1996(15(1)): 58-65.
    [352] 吉祖稳, 胡春宏. 黄河口拦门沙演变分析. 泥沙研究, 1995(3): 1-10.
    [353] 吉祖稳, 胡春宏. 黄河口拦门沙近期演变及模式探讨. 人民黄河, 1995(8): 1-5.
    [354] 陈樟熔. 现行黄河口拦门沙的形态和演化. 青岛海洋大学学报, 1997(4): 539-545.
    [355] 庞家珍, 刘浩泰, 王勇, 韩慧卿, 姜明星. 黄河口拦门沙与盐水楔特征及其演变. 海洋湖沼通报, 1997(3): 1-10.
    [356] 王恺忱, 王开荣. 黄河口拦门沙的特性与治理问题, 人民黄河.2002(24(2): 10-11, 23.
    [357] 茅志昌, 潘定安, 沈焕庭. 长江河口悬沙的运动方式与沉积形态特征分析. 地理研究, 2001(20(2)): 170-177.
    [358] 黄胜, 卢启苗. 河口动力学.第一版.北京: 水利电力出版社, 1993.
    [359] 薛鸿超, 顾家龙, 任汝述. 海岸动力学.第一版.北京:人民交通出版社, 1980.
    [360] 叶青超. 黄河流域环境演变与水沙运行规律研究. 第一版. 济南: 山东科学技术出版社, 1994.
    [361] 张德茹, 梁志勇, 袁玉萍. 黄河口河段演变及延伸距离的分析. 泥沙研究, 1997(2): 51-55.
    [362] Shi, Ch., Zhang, D., You, L., 2003. Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology 199(1-2): 13-25.
    [363] 薛春汀. 现代黄河三角洲叶瓣的划分和识别. 地理研究, 1994(13(2)): 59-66.
    [364] 胡春宏, 曹文洪. 黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变基本规律. 泥沙研究, 2003(5): 1-8.
    [365] 李泽刚. 黄河河口变动性及其治理性. 人民黄河, 1992(1): 14-17.
    [366] Bornhold, B. D., Yang, Z. S., Keller, G. H., Prior, D. B., Wiseman, W. J., Wang, Q., Wright, L. D., Xu, W. D. and Zhang, Z. Y. Sedimentary framework of the modern Huanghe (Yellow River) Delta. Geo-Marine Letters, 1986(6): 77-83.
    [367] Prior, D. B., Yang, Z. S., Bornhold, B. D., Keller, G. H., Lin, H. Z., Wiseman, W. J., Wright, L. D. and Lin, T. C. The subaqueous delta of the modern Huanghe (Yellow River): Geo-Marine Letters, 1986(6): 67-75.
    [368] 杨作升, Keller G. H., 陆念祖, Prior, D. B., 林天亮, Bornhold, B. D., 许卫东, Wright, L. D., 曾文华, Wiseman, W.J. 现行黄河口水下三角洲海底地貌及不稳定性. 青岛海洋大学学报, 1990(20(1)): 7- 21.
    [369] 王永红, 沈焕庭. 河口海岸环境沉积速率研究方法. 海洋地质与第四纪地质, 2002(22(2)) : 115-120.
    
    [370] 师长兴, 章典, 尤联元, 李炳元. 黄河口泥沙淤积估算问题和方法——以钓口河亚三角洲为例. 地理研究, 2003(22(1)): 49-59.
    [371] Milliman J. D., Shen H. T., Yang Z. S. and Meade R. H. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 1985(4(1)): 37-45.
    [372] 张莉莉, 李九发, 吴华林, 沈焕庭. 长江河口拦门沙冲淤变化过程研究. 华东师范大学学报(自然科学版), 2002(2): 73-80.
    [373] 康兴伦, 王品爱, 袁毅, 朱校斌, 李培泉, 纪正训. 黄河口海域沉积速率的研究. 海洋科学, 1988(5): 25-30.
    [374] 孙效功, 杨作升, 陈彰榕. 现行黄河口海域泥沙冲淤的定量计算及其规律探讨.海洋学报, 1993(15(1)): 129~136.
    [375] 黄世光, 王志豪. 近代黄河三角洲海域泥沙的冲淤特征. 泥沙研究, 1990(2): 13-22.
    [376] 胡春宏, 吉祖稳, 王涛. 黄河口海洋动力特性与泥沙的输移扩散. 泥沙研究, 1996(2): 13~22.
    [377] 刘凤岳, 高明德. 黄河口烂泥湾的特征及其开发. 海洋科学, 1986(10(1)): 20-23.
    [378] 董年虎. 黄河口清水沟流路泥沙淤积分布及扩散. 黄渤海海洋, 1997(15(2)): 33-37.
    [379] 王志豪, 黄世光. 利用近年施测海图及古海图研究黄河三角洲的变迁.海岸工程, 1988(7(22)): 47-58.
    [380] 庞家珍, 姜明星. 黄河河口演变(Ⅱ)——1855 年以来黄河三角洲流路变迁及海岸线变化及其他. 海洋湖沼通报, 2003(4): 1-13.
    [381] 任明达, 柳林, 王安龙. 粉砂淤泥质潮滩的多波段与多时相卫片解译. 海洋学报, 1990(12(6)): 741~748.
    [382] 崔承琦, 李师汤, 孙小霞, 施建堂, 范德江. 黄河三角洲海岸岸线和潮水沟体系发育及其分维研究—黄河三角洲潮滩海岸时空谱系研究Ⅲ.海洋通报, 2001(20(6)): 60~70.
    [383] 孙效功, 赵海虹, 崔承琦. 黄河三角洲潮滩潮沟体系的分维特征.海洋与湖沼, 2001, 32(1): 74~80.
    [384] 薛允传, 尹延鸿, 高抒. 黄河三角洲北部潮间带沉积物的粒度特征. 海洋科学, 2001, 25(5): 50~54
    [385] Crutzen, P. J., and Stoermer, E. F., The “Anthropocene”. Global change News Letter, 2000(41): 17-18 (http://www.igbp.kva.se/uploads/nl_41.pdf).
    [386] 任美锷. 海平面上升与地面沉降对黄河三角洲影响初步研究. 地理科学, 1990(10(1)): 48-57.
    [387] 刘东生. 全球变化与可持续发展科学, 地学前缘, 2002(9(1)): 1-9.
    [388] IGBP. The third IGBP Congress: Connectivities in the Earth System. Banff, Canada, 19-24 June 2003. (http://www.igbp.kva.se/congress/).
    [389] 任美锷. 黄河输沙量的过去、现在和未来. 科学(上海), 2003(55(1)): 37-40.
    [390] 任美锷. 人类活动对中国北部海岸带地貌和沉积作用的影响. 地理科学, 1989a(9(1)): 1-7.
    [391] 任美锷. 人类活动对密西西比河三角洲最近演变的影响. 地理学报, 1989b(44(2)): 221-229.
    [392] 王玉明, 张学战, 王玲, 周建波. 黄河流域 20 世纪 90 年代天然径流量变化分析. 人民黄河, 2002(24(3)): 9-11.
    [393] 穆兴民, 李靖, 王飞, 徐学选. 黄河天然径流量年际变化过程分析. 干旱区资源与环境, 2003(17(2)): 1-5.
    
    [394] 许炯心. 流域降水和人类活动对黄河入海泥沙通量的影响.海洋学报, 2003(25(5)): 125-135.
    [395] 徐建华, 李雪梅, 杨汉颖, 罗珺. 黄河中游水利水保工程减水减沙及其对黄河下游的影响. 人民黄河, 1997(7): 45-47.
    [396] 许炯心. 黄河中游多沙粗沙区水土保持减沙趋势分析.人民黄河, 2004(26(5)): 33-36.
    [397] 刘正杰, 卜杰华, 杨希刚. 黄河流域水土保持现状及”十五”发展意见. 人民黄河, 2001(8): 22-23.
    [398] 冉大川, 刘斌, 王宏. 水土保持措施对黄河减水减沙作用的分析. 中国水土保持. 2002(10): 35-36.
    [399] 潘鸿雷, 王倩. 水库修建对黄河水沙问题的负面影响. 水土保持通报, 2003(23(4)): 73-76.
    [400] 韦洪莲, 倪晋仁, 王裕东. 三门峡水库运行模式对黄河下游水环境的影响. 水利学报, 2004(9): 9-17.
    [401] 李春晖, 杨志峰. 黄河干流主要水库对径流的影响. 人民黄河, 2004(26(7)): 15-16.
    [402] 李希宁,刘曙光. 影响黄河河口来水来沙量的因素分析. 人民黄河, 2004(26(9)): 15-16.
    [403] 廖义伟, 赵咸榕. 2003 年黄河调水调沙试验. 人民黄河, 2003(25(11)): 25-26.
    [404] 李国英 . 黄河第三次 调水调 沙 试验的 设 计、实 施 、效果与 认识 , 2004(http://www.yellowriver.gov.cn/).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700