用户名: 密码: 验证码:
松南长岭断陷营城组火山岩储层参数测井评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火山岩油气藏广泛分布于世界许多含油气盆地,其中蕴藏着丰富的油气资源。近年来,随着对油气资源需求的增加和勘探难度的加大,积极探索火山岩油气勘探新领域,寻找新的储量接替区已成为一个重要的勘探方向。
     松南气田深层气藏火山岩储层,岩石成分、结构的复杂性和孔隙空间的多重性以及极不均匀的随机分布,导致储层具有很强的非均质性。因此给有效划分储层、计算储层参数以及正确识别孔隙流体性质带来了极大的困难。为了应对松南气田深层火山岩气藏勘探中储层评价面临的难题,就要形成比较有效的测井储层评价技术,尤其是流体识别与饱和度评价。
     本次研究针对松南长岭断陷营城组火山岩储层,首先进行测井特征分析、四性关系分析,确定出每口井的火山岩界面以及各种骨架参数,为以后的储层参数计算奠定基础。随后探讨了包括孔隙度、含水饱和度等储层参数以及流体识别的一些方法。分别采用岩心资料回归法、声波速度公式法以及威利公式对储层进行基质孔隙度计算,分别计算了每种方法的相对误差与绝对误差,其中岩心资料回归法的误差最小,效果最好;对于裂缝孔隙度,分别采用深浅侧向电阻率法和考虑裂缝产状的线性简化方程来求取;对于渗透率,采用岩心渗透率与测井数据回归得到相应的渗透率公式。
     含水饱和度求取,分别采用阿尔奇公式、基于导电路径的饱和度模型、双孔隙模型和三孔隙模型进行求取,都有较好的效果,但各种方法都存在优缺点。阿尔奇公式计算的是基质含水饱和度,没有考虑裂缝和孔洞的影响,基于导电路径饱和度模型在计算背景电导率和a值等参数时所用的方法比较粗糙不够精确,而且这种方法对低阻比较敏感,计算的含水饱和度值偏大,双孔隙模型和三重孔隙模型导电机制是一致的,双孔隙模型是三重孔隙模型的一个特例,三重孔隙模型因为考虑了裂缝和连通孔洞对胶结指数m的影响,计算的含气饱和度比双孔隙模型略大。与试气结论的比较来看,三重孔隙模型计算效果最好。
     进行气水识别,主要采用图版法、中子密度孔隙度交会图法、利用偶极阵列声波测井资料的纵横波时差比法、体积压缩系数法、泊松比法以及纵波等效弹性模量差比法进行气水层的识别。各种方法都具有一定的优缺点,图版法应用简明直观,但应用效果受到试气点的多少以及资料点是否具有代表性的限制。利用偶极横波测井资料,对气层有较强的指示性,但不是所有井都有这种资料。体积压缩系数法需要用到骨架密度值,因此骨架密度的求取也会影响到该方法的应用效果。如果具备了偶极横波测井资料,储层的岩性、物性、裂缝情况以及岩石承受的有效应力等因素也会影响流体识别的效果。为了有效地识别气水层,应该将各种方法有效地结合起来综合应用。
Volcanic reservoirs are widely distributed in many basins in the world, which is rich in oil and gas resources. In recent years, with the increased demand for oil and gas resources and exploration to increase difficulty, actively exploring new areas of volcanic gas exploration to find new reserves replacement has become an important of exploration.
     The complexity of rock composition and structure and the multiplicity of the pore space and the uneven random distribution of Songnan Gas Reservoir results the reservoir stratum highly heterogeneous. Accordingly it was difficulty to effectively divide the reservoir, reservoir parameters and correctly identify the nature of pore fluid. In order to solve the difficulty problem in deep gas exploration of Songnan gas reservoir evaluation, it is necessary to form a more complete and efficient reservoir evaluation logging.
     The main objective of this thesis is to complete the theoretical evaluation of geophysical logging and interpretation technique.
     The main research contents include:
     1. It conducted the data and analyzed the region’s geology, core and logging data.
     2. It analyzed the logging features and relationships of Four Characters, which includes lithology and reservoir characteristics (porosity, permeability), oiliness and physical properties and determined the top and the bottom reservoir interface and a variety of rock frame parameters of each well for the subsequent calculation of reservoir parameters.
     3. This thesis calculated porosity the porosity, including matrix porosity, fracture porosity an total porosity calculations. Among them, the matrix porosity is acquired from the core data regression, rate formula and directly calculating the Willie formulas, the fracture porosity calculated using the resistivity method of LLD and LLS logging and simplified equation considering the occurrence of fractures, the total porosity calculated using neutron or density logging data, but for wells containing borehole enlargement only neutron calculations.
     4. In reservoir permeability calculation, the permeability was calculated mainly using core permeability with logging data of the corresponding regression formula.
     5. Reservoir water saturation was calculated using respectively Archie formula, saturation model based on conductive path, two-pore system model and three-pore system model. For Lining formula, it is more suitable for calculation of the reservoir saturation of non-homogeneous but it is difficulty to strike each parameters of the formula because data limitations the paper did not use the method.
     6.Reservoir fluid identification adopted the technology of plate, neutron and density porosity cross plots, using dipole array acoustic logging data DSI wave slowness ratio, volume compression coefficient method, Poisson Ratio method and P-wave modulus difference ratio method for identification of gas and water layer.
     7.Form the calculation of reservoir parameters and fluid identification of a comprehensive explanation it was divided into several gas-bearing section and the water layers.
     The research in the use of conventional logging data calculation of reservoir parameters and fluid identification, try a number of ways, from the application and the analysis, obtained for the following understanding:
     1. Calculated on the Archie water saturation: the result calculated from the formula of the Archie is water saturation of rock matrix. In practice, it is need to accurately determine the m, n and other petro-physical parameters, and requires a lot of core rock electronic experimental data, and need to carry sophisticated equipment, it need the higher the cost.
     2.Conductive path-based model of water saturation:This method is more sensitive to low resistivity values,and the values of water saturation obtained may be too large.
     3.Li Ning model on water saturation: Li Ning model taking into account the anisotropy of rocks, deduced through mathematical precision, and has a strong general, but in practice, if you want to get higher accuracy, requires too many parameters, to data limitations.
     4.On the dual porosity model and the triple pore water saturation model: dual porosity model and the triple-porosity models are identical in nature, in which the double porosity model is a special case of the triple porosity model. Both of which are for the complex with cracks and holes calculated porosity reservoir. The essence of both is derived exactly as cracks and holes of the system to change the cementation index m. Accordingly it corrected the saturation caused by the change due to the heterogeneity of the reservoir water. Therefore, in order to accurately obtain the m value, it requires accurately determine the matrix porosity, fracture porosity and total porosity, etc. Using conventional logging data with NMR data, micro-resistivity tomography scans and other imaging logging data will facilitate the determination of various porosities.
     5.On the detection of gas formation: gas and water layer identification plate method, while more concise application of intuitive, but the application effects is restricted by the oil test results and the number of testing points and data points whether or not representative. Using dipole shear wave logging data, the instructions on the gas is strong, but not all wells have the data, data access to this method brings certain limitations. Some indicators of law, such as the method of calculation of volume compression coefficient matrix need to use density values, so the density of the strike will also affect the skeleton to the method and its application. If you have a dipole shear wave logging data, reservoir lithology, physical properties, as well as cracks in the rock withstanding stress and other factors also affect the effective recognition of the effect of fluid. In order to effectively identify gas and water layer, various methods should be combined effectively integrated application.
引文
[1] Aguilera M S , Aguilera R. Improved model s for pet rophysical analysis of dual porosity reservoirs , Pet rophysics , 2003 , 44(1) :21~35.
    [2] Aguilera R F , Aguilera R. At riple porosity model for petrol physical analysis of naturally f ractured reservoirs , 2004 , 45(2) :157~166.
    [3] Koning T.Oil and gas production from basement reservoirs:Examples from Indonesia,USA and Venezuela[A].Petfoud N,McCaffrey K J W.Hydrocarbons in crystalline rocks[C].London,The Geological Society of London,2003.83-93.
    [4] Li Ning,Wu Hongliang,Feng Qingfu, et al.Matrix porosity calculation in volcanic and dolomite reservoirs and its application[J].Applied Geophysics,2009,6(3):287-298.
    [5] Potter J,Konnerup Madsen J.A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks[A].Petfoud N,McCaffrey K J W.Hydrocarbons in crystalline rocks[C].London,The Geological Society of London,2003.151-175.
    [6] Rigby A F.Fracture identification in an igneous geothermal reservoir Surprise Valley.California,SPWLA,21st annual logging symposium,1980.
    [7] Rui-Lin Liu,Ning Li,Qing-fu Feng,et al.Application of the triple porosity model in well-log effectiveness estimation of the carbonate reservoir in Tarim oilfield[J].Journal of Petroleum Science and Engineering,2009,68:40-46.
    [8] Sanyal S.K.,Juprasert S.,Jubasche J..An evaluation of rhyolite-basalt-volcanic ash sequence from welllogs[J].The log analyst,1980,Jan-Feb.
    [9] Schutter S R.Hydrocarbon occurrence and exploration in and around igneous rocks[A].Petford N,McCaffrey K J W.Hydrocarbons in crystalline rocks[C].London,The Geological Society of London,2003.7-35.
    [10] Scott keys W.Borehole geophysics in igneous and metamorphic rocks.The Log Analyst,1979,July-August,14-28.
    [11] Yuli Mitsuhata,Koichi Mat suo,Mat sto Minegishi,Magnetotelluric survey for exploration of a volcanic rock reservoir in the Yurihara oil and gas field,Japan[J].Geophysical Prospecting,1999,47(2):195-218.
    [12]卞德智,邱子刚.模糊数学识别火山岩岩性的方法及地质效果——测井资料的地质应用[M].北京:石油工业出版社,1991,57-67.
    [13]蔡正旗,张荣义,郑超,等.碳酸盐岩裂缝-孔隙型储集层综合预测方法研究——以川东大池干井构造带T1j22储集层预测为例[J].石油勘探与开发,2005,32(5):65-68.
    [14]陈忠强.火山岩储层的饱和度模型研究及应用[J].石油天然气学报(江汉石油学院学报),2006,28(3):79-81.
    [15]代诗华,罗兴平,王军,等.火山岩储集层测井响应与解释方法[J].新疆石油地质,1998,19(6):465-469.
    [16]邓攀,陈孟晋,高哲荣,等.火山岩储层构造裂缝的测井识别及解释[J].石油学报,2002,23(6):32-36.
    [17]范宜仁,黄隆基,代诗华.交会图技术在火山岩岩性与裂缝识别中的应用[J].测井技术,1999,23(1):53-56.
    [18]高美娟.用于储层参数预测的神经网络模式识别方法研究[D].大庆:大庆石油学院,2005.
    [19]郭占谦.火山作用与油气田的形成和分布[J].新疆石油地质,2002,23(3):183-185.
    [20]胡松,喻璐.裂缝性储层饱和度计算方法综述[J].国外测井技术,2009,172:8-12.
    [21]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272.
    [22]景永奇.利用裂缝指示曲线判别花岗岩潜山纵向裂缝发育带[J].测井技术,1999,23(1):38-42.
    [23]孔令福.辽河盆地东部凹陷火山岩储层测井评价方法研究[D].大庆:大庆石油学院,2003.
    [24]李宁,付有升,杨晓玲,等.大庆深层流纹岩全直径岩心实验数据分析[J].测井技术,2005,29(6):480-483.
    [25]李群.松辽盆地长岭凹陷隐蔽油气藏勘探研究[J].地球科学——中国地质大学学报,2002,27(6):770-774.
    [26]李善军,肖承文,汪涵明,等.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释[J].地球物理学报,1996,39(6).
    [27]刘福春,马继坤,关键.松辽盆地长岭凹陷油气成藏规律研究[J].录井工程,2006,4(17):66-71.
    [28]罗静兰,邵红海,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报,2003,24(1):31-38.
    [29]莫修文.低阻储层导电模型的建立和测井方法研究[D].长春:长春科技大学,1998.
    [30]牛嘉玉,张映红,袁选俊,等.中国东部中、新生代火山岩石油地质研究、油藏勘探前景及面临问题[J].特种油气藏,2003,10(1):7-12.
    [31]欧阳健,王英杰.裂缝型复杂岩性地层的测井解释[M].测井年会论文集,1988,219-223.
    [32]潘保芝,张丽华,单刚义,等.裂缝和空洞储层孔隙模型的理论进展[J].地球物理学进展,2006,21(4):1232-1237.
    [33]尚林阁,潘保芝.应用模糊数学统计识别花岗岩古潜山裂缝的方法与效果[J].长春地质学院学报,1986,No.4.
    [34]首皓,王维红,刘洪,等.复杂储层三重孔隙结构评价方法及其应用[J].石油大学学报(自然科学版),2005,29(6):23-26.
    [35]孙建孟,程芳,王景花,等.渤海岐口油田低阻油气层饱和度解释模型研究[J].测井技术,1996,20(4):239-243.
    [36]孙建孟,王克文,李伟.测井饱和度解释模型发展及分析[J].石油勘探与开发,2008,35(1):101-107.
    [37]王贵清.大港油田气层测井识别技术[J].国外测井技术,2004,19(6):10-14.
    [38]王军.富台潜山油藏复杂储层测井评价方法及其应用[J].石油学报,2005,3(26):86-89.
    [39]王克文,孙建孟,关继腾,等.储层岩石电性特征的逾渗网络模型研究[J].石油学报,2007,18(1):101-106.
    [40]王青,李国平,赵新民.复杂储集空间储集层测井解释方法研究[J].测井技术,2003,27(5):389-393.
    [41]王维东.火山岩储层油气水层测井识别方法研究[D].大庆:大庆石油学院,2005.
    [42]吴昌志,顾连兴,任作伟,等.中国东部中、新生代含油气盆地火山岩油气藏成藏机制[J].地质学报,2005,79(4):522-529.
    [43]吴海波.松辽盆地北部深层火山岩储层裂缝特征及测井评价[D].长春:吉林大学地球探测科学与技术学院,2004.
    [44]许风光,邓少贵,范宜仁,等.火山岩储层测井评价进展综述[J].勘探地球物理进展,2006,29(4):239-243.
    [45]杨晓玲.徐家围子地区酸性火山岩储层测井解释与流体识别方法研究[J].长春:吉林大学地球探测科学与技术学院,2008.
    [46]张大伟.松辽盆地南部长岭断陷火山岩气藏储量评价与计算[J].勘探技术,2009,10(4):47-52.
    [47]张凤敏,孙广博,于俊文,等.根据油藏流体饱和度形成条件建立碎屑岩油层含油饱和度解释模型[J].石油勘探与开发,2004,31(5):63-65.
    [48]张丽华,潘保芝,单刚义.应用三重孔隙模型评价火山岩储层[J].测井技术,2008,32(1):37-40.
    [49]张丽华.火山岩储层测井评价方法研究[D].长春:吉林大学地球探测科学与技术学院,2009.
    [50]张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):671-676.
    [51]赵杰,王宏建,王鹏.大庆探区复杂储层测井综合评价技术[J].中国石油勘探,2004,9(4):49-54.
    [52]朱建华,王晓艳.核磁测井识别火山岩气层应用研究[J].国外测井技术,2007,22(4):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700