用户名: 密码: 验证码:
上埋式涵洞侧向土压力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,基础设施及一些大型重点工程如南水北调中线工程、山西大水网等建设项目进行地如火如荼,这些工程往往需要穿山越岭,这就使得涵洞这种造价相对低廉的地下建筑物越来越多的出现在工程建设中。然而,涵洞埋设位置隐蔽,一旦出现问题不容易及时发现和检修,容易造成严重事故,因此这些工程设计和施工的重要性不言而喻。而目前,涵洞的土压力计算理论尚不成熟,公式繁多但没有统一的理论,甚至于各个规范里的算法、标准及适用范围都不尽相同。由此造成计算结果相差较大,或偏于保守造成资源的浪费,或偏不安全造成事故隐患。所以,继续深入研究涵洞土压力的理论具有较强的现实意义。
     本文在文献所述试验的基础上,采用ANSYS软件进行数值模拟,分析了刚性地基下沟埋式涵洞垂直土压力在沟槽宽度及边坡等因素影响下的分布规律,并得到了垂直土压力系数变化情况,所得结果与室内模型试验的结果吻合良好。在此基础上,通过建立数值模型,进一步探究了刚性地基下填土性质不同及柔性地基下地基弹模比不同对侧向土压力的影响及侧向土压力系数的变化情况,并得出了填土等沉面与侧向土压力之间的关系,同时得到了涵洞侧向土压力的分布形状变化规律。结果表明:在刚性地基条件下,随着填土高度的增加,涵洞侧向土压力的分布形状逐渐由梯形向倒梯形变化;当H/D一定,E0越大,填土等沉面高度越小,涵洞侧向土压力越大;当E0一定,H/D越大,等沉面高度越小,涵洞侧向土压力越大;涵洞侧向土压力系数随着填土高度的增加先增大后趋于定值;当填土变形模量超过30MPa时,填土变形摸量的改变对涵洞侧向土压力及侧向土压力系数影响较小。在柔性地基条件下,当地基弹模比小于50时,涵洞侧向土压力为梯形分布;当地基弹模比大于50时,分布形状逐渐变为矩形;当地基弹模比大于100后,分布形状变化极小;当H/D一定,地基弹模比越大,等沉面高度越大,涵洞的侧向土压力越小;当地基弹模比一定,H/D越小,等沉面高度越大,涵洞的侧向土压力越小。与刚性地基情况不同的是,侧向土压力系数随着填土高度的增加先不断减小后趋于稳定值。
     本文主要是采用有限元法模拟、分析填土性质及地基弹模比对上埋式涵洞侧向土压力的影响,对进一步完善涵洞计算理论具有重要意义,论文得出了一些可指导工程设计和施工的结论和建议,但仍需实际工程的检验。
With the rapid development of national economy, infrastructure and the key projects, such as the Middle Route in the South-to-North Water Transfer Project and Shanxi large-scale water conservancy network which require crossing mountains are increasing vigorously. This makes culvert of underground structures which has a low cost relatively appear more and more in construction projects. However, the buried position of culvert is concealed, it's difficult to detect and overhaul timely which will result in disastrous accidents. Therefore, the importance of design and construction of these projects is self-evident. At present, the culvert theory of earth pressure is still not mature, the formulas are numerous and there is no unified theory, and even the algorithm, standards and scope of application in various specifications are different. Hence it causes the results have great difference, either conservative which results in waste of resources or unsafe which causes hidden trouble. Therefore, further study of earth pressure theory of culvert has a strong practical significance.
     Based on the experiment described in the literature [47][48], ANSYS was used to simulate and analyze the vertical soil pressure distribution of ditch culvert in rigid foundation under the influence of the trench width and slope factors in this paper. Also, the vertical earth pressure coefficient changes were obtained, the results are in good agreement with the results of model experiment. On this basis, the influence on lateral earth pressure of different nature of filling in the rigid foundation and the different ratio of foundation elastic modulus in the flexible foundation were explored further and the variation of lateral earth pressure coefficient was obtained by the establishment of numerical model. The relationship between plane of equal settlement and lateral earth pressure of positive-buried culvert and change regularity of distribution shape of lateral earth pressure were also obtained. The results show that:under the condition of rigid foundation, with the increase of filling height, the distribution shape of lateral earth pressure changes from trapezoid to the inverted trapezoid gradually, When H/D is constant, the greater the Eo, the lower the plane of equal settlement, the greater the lateral earth pressure; When Eo is constant, the greater H/D, the lower the plane of equal settlement, the greater the lateral earth pressure; Lateral earth pressure coefficient increases firstly and then tends to a fixed value with the increase of filling height; The impact of Eo which is more than30MPa on lateral earth pressure and coefficient of lateral earth pressure is less. Under the conditions of the flexible foundation, when the ratio of foundation elastic modulus is less than50, the distribution shape of lateral earth pressure is trapezoidal; When the ratio of foundation elastic modulus is more than50, the distribution shape of lateral earth pressure becomes rectangular gradually; When the ratio of foundation elastic modulus is more than100, the distribution shape changes little; When H/D is constant, the greater the ratio of foundation elastic modulus, the higher the plane of equal settlement, the smaller the lateral earth pressure; When the ratio of foundation elastic modulus is constant, the smaller the H/D, the higher the plane of equal settlement, the smaller the lateral earth pressure. Lateral earth pressure coefficient decrease firstly and then tends to a fixed value with the increases of filling height under the flexibility foundation, which is different with rigid foundation.
     In this paper, the finite element method is mainly used to simulate and analyze the impact of the backfill nature and the ratio of foundation elastic modulus on the lateral earth pressure of Culverts, which has great significance for improving the Computation Theory of culvert further, some conclusions and recommendations that can guide design and construction are obtained also, but this still requires test of actual project.
引文
[1]中华人民共和国交通部公路司,中国工程建设标准化协会公路工程委员会主编.JTGB01-2003,公路工程技术标准[S].北京:人民交通出版社,2004.
    [2]河北省交通规划设计院主编JTG/TD65-04-2007,公路涵洞设计细则[S].北京:人民交通出版社,2007.
    [3]中交第二公路勘察设计研究院主编JTG D30-2004,公路路基设计规范[S].北京:人民交通出版社,2004.
    [4]姜峰林.高填方涵洞EPS板减荷技术应用及数值模拟研究[D].[博士研究生学位论文].西安:长安大学,2010.
    [5]王雯璐.侧填荷载对高填方涵洞地基承载力的影响[D].[博士研究生学位论文].长春:吉林大学,2011.
    [6]张小娟.涵洞变形对洞顶垂直土压力影响的研究[D].[硕士研究生学位论文].太原:太原理工大学,2010.
    [7]王伟广.沿海地区高速公路涵洞病害成因及防治对策[J].黑龙江交通科技,2011,6:169-170.
    [8]顾安全.上埋式管道及洞室垂直土压力的研究[J].岩土工程学报,1981,3(1):3-15.
    [9]李永刚,刘孝俊,周泽涛.梯形沟埋涵洞顶部垂直土压力试验研究[J].太原理工大学学报,2011,42(6):654-659.
    [10]陈希哲.土力学地基基础[M].北京:清华大学出版社,1995.
    [11]陈长冰,梁醒培,杨伯源.大型平底浅圆仓贮料侧压力计算方法[J].农业机械学报,2007,38(5):200-203.
    [12]郭婷婷.涵洞土压力与变形及其减荷措施的试验研究[D].[硕士研究生学位论文].陕西:西北农林科技大学,2004.
    [13]Marston A, Anderson AO. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipes. Ames (Iowa):Iowa Engineering Experiment Station; 1913, Bulletin NO.31:32.
    [14]M.G.Spangler. Underground conduits—An appraisal of modem research[J]. Proceedings Am. Assoc. of civil Eng,1948, V74, Nos.
    [15]r,K.克列恩著,陈万佳译. 《散粒体结构力学》[M].中国铁道出版社,1983.07.
    [16]曾国熙.土坝下涵管竖向土压力的计算[J].浙江大学学报,1960,(1):79-98.
    [17]翁效林.高填方路堤涵洞垂直土压力性状及考虑涵洞与土体共同作用的结构设计方法研究[D].[硕士研究生学位论文].西安:长安大学,2006.
    [18]顾安全,王晓谋,折学森.上埋式管道及洞室垂直土压力的研究[C].海峡两岸土力学及基础工程研讨会论文集,杭州,1994.:472-477.
    [19]王晓谋,顾安全.关于上埋式管道垂直土压力的减荷措施研究[J].西安公路学院学报,1989,3:25-34.
    [20]刘全林,杨敏.上埋式管道上竖向土压力计算的探讨[J].岩土力学,2001,2:214-218.
    [21]林选青.高填土下结构物的竖向土压力及结构设计计算方法[J].土木工程学报,1989,22(4):27-32.
    [22]谢永利.公路建设中的岩土工程问题[C].中国岩石力学与工程学会,岩土力学与工程学会第七次学术大会论文集.西安:西安理工大学,2002:72-75.
    [23]Chen Baoguo, Zheng Junjie, LuYan'er. Soil-structure interaction of unsymmetrical trench installation culver[J]. Journal of Southeast University (English Edition),2009, No.1:94-98.
    [24]黄清酞.填埋式地下圆形结构物周边土压力分布的有限元解[J].土木工程学报,1982,15(3):53-63.
    [25]折学森,顾安全.沟谷地形中埋设管道的土压力研究[J].西安公路学院学报,1989,7(4):33-39.
    [26]郝宪武,白青侠.填埋式管道土压力的弹粘性有限元分析[J].西北建筑工程学院学报,1994(3):6-11.
    [27]白冰.高填土下刚性结构物竖向土压力减荷方法[J].岩土力学,1997,18:35-39.
    [28]刘静.高填土路堤下涵洞受力的数值仿真[C].中国岩石力学与工程学会,岩土力学与工程学会第七次学术大会论文集.西安:西安理工大学,2002:302-305.
    [29]李永刚,孙建生.土坝下软基涵洞施工力学分析[J].岩土力学,2001,22(4):436-439.
    [30]李永刚,孙建生.软基涵洞土压力分析[J].土木工程学报,2003,36(6):96-99.
    [32]白子韶.埋地高分子柔性管的受力形态分析研究[D].[硕士研究生学位论文].合肥:合肥工业大学,2003.
    [33]冯忠居,顾安全.大型沟埋式管道侧向土压力的研究[J].西安公路学院学报, 1995,15(1):27-30.
    [34]吴文峰.地下埋管的受力分析及结构优化研究[D].[硕士研究生学位论文].南京:河海大学,2001.
    [35]李小山.上埋式地下管道横向力学性状研究[D].[硕士研究生学位论文].杭州:浙江大学,2003.
    [36]温庆杰.钢筋混凝土圆管涵受力性能的试验与理论研究[D].[硕士研究生学位论文].长沙:湖南大学,2004.
    [37]吕镇锋.EPS板减荷措施在高填土盖板涵中的应用研究[D].[硕士研究生学位论文].西安:长安大学,2007.
    [38]American Association of State Highway and Transportation Officials.1-56051-273-3, AASHTO LRFD Bridge Design Specifications[S]. Washington (D.C),2004.
    [39]华东水利学院主编.水工设计手册第七卷[Z].北京:水利电力出版社,1989.
    [40]中交公路规划设计院主编.JTG D60—2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [41]铁道第三勘察设计院主编.TB10002.1—2005,铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.
    [42]北京市市政工程设计研究总院主编.GB50332—2002,给水排水工程管道结构设计规范[S].北京:中国建筑工业出版社,2002.
    [43]北京市市政工程设计研究总院主编.GB50069—2002,给水排水工程构筑物结构设计规范[S].北京:中国建筑工业出版社,2002.
    [44]李永刚.沟埋式和上埋式涵洞土压力统一计算理论研究[D].[博士研究生学位论文].太原:太原理工大学,2009.
    [45]华东水利学院,大连工学院,西北农学院主编.水工混凝土结构(下册)[M].北京:水利电力出版社,1975.
    [46]钮新强,汪基伟,章定国.水工混凝土设计手册[Z].北京:中国水利水电出版社,2010.
    [47]何晓峰.沟埋式刚性圆涵顶部土压力试验研究[D].[硕士研究生学位论文].太原:太原理工大学,2006.
    [48]马洪亮.高填土刚性涵洞受力性状的试验模拟研究[D].[硕士研究生学位论文].太原:太原理工大学,2007.
    [49]上官方.涵洞填土等沉面及其对涵洞土压力的研究[D].[硕士研究生学位论文].太原:太原理工大学,2011.
    [50]Turner MJ, Clough RW, Martin HC, Topp LJ. Stiffness and deflection analysis of complex structures. J Aero Sci,1956(23):805-23.
    [51]R.W. Clough. Thoughts about the origin of the finite element method[J]. Computers and Structures,2001 (79):2029-2030.
    [52]朱佰芳.有限单元法原理与应用[M].北京:水利电力出版社,1979.
    [53]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [54]郝文化ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [55]Kemal Haciefendioglu, Alemdar Bayraktar, Yasemin Bilici. The effects of ice cover on stochastic response of concrete gravity dams to multi-support seismic excitation[J]. Cold Regions Science and Technology,2009,55(3):295-303.
    [56]X.G. Hua, Z.Q. Chen. Full-order and multimode flutter analysis using ANSYS[J]. Finite Elements in Analysis and Design,2008,44(9-10):537-551.
    [57]Aitor Arriaga, Rikardo Pagaldai, Ane Miren Zaldua, etc. Impact testing and simulation of a polypropylene component. Correlation with strain rate sensitive constitutive models in ANSYS and LS-DYNA[J]. Polymer Testing,2010,29(2):170-180.
    [58]中华人民共和国住房和城乡建设部主编.GB50268—2008,给水排水管道工程施工及验收规范[S].北京:中国建筑工业出版社,2008.
    [59]陈希哲.土力学地基基础[M].第4版,北京:清华大学出版社,2004.
    [60]K.M. El-Sawy. Three-dimensional modeling of soil-steel culverts under the effect of truckloads[J]. Thin-Walled Structures,2003(41):747-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700