用户名: 密码: 验证码:
碳纤维表面能、表面粗糙度及化学组成的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维具有高强度、高模量、耐疲劳等优异性能,碳纤维作为复合材料的增强体已经被广泛地应用于飞机、导弹、汽车部件等众多领域。碳纤维表面特征对碳纤维及其复合材料的性能有很大的影响。本课题确立稳定地表征碳纤维表面能、表面粗糙度、化学组成的测试方法、研究国产碳纤维与T300表面的特征、碳纤维表面特征随制备复合材料过程中的工艺温度的变化。
     确定稳定的碳纤维表面特征的测试方法,以便能够得到真实的碳纤维表面特征。在碳纤维表面能的测试方法中,采用表面界面张力仪进行测试,分别研究制样方法和测试过程所采用的参数对测试结果的影响。在碳纤维表面粗糙度的测试方法中,采用原子力显微镜(AFM)进行测试,系统地研究了扫描次数以及测试过程中所采用的扫描面积这两方面因素对测试结果的影响,并借助激光共聚焦显微镜,最终确定了较好的测试参数。在碳纤维表面化学组成的测试方法中,采用X射线光电子能谱(XPS)进行测试,通过对测试结果重复性和刻蚀趋势两方面进行研究,最终确定测试过程中样品状态和采用的仪器参数。
     在已确定的稳定的测试方法的基础上,系统地研究国产碳纤维和T300的表面能、表面能的极性和色散分量、表面形貌、表面粗糙度以及表面化学组成等表面特征。研究结果表明,不同批次碳纤维的性能有所不同。对于性能较稳定的批次的碳纤维,国产碳纤维表面能的极性分量小于T300。国产碳纤维和T300表面都有数目众多的沟槽,且分布较均匀;二者粗糙度属于同一水平。国产碳纤维表面的C、Si含量大于T300表面的C、Si,而O、N含量小于T300表面的O、N。国产碳纤维本体的O、Si含量大于T300本体中的O、Si含量,而C、N含量小于T300本体结构中的C、N含量。通过对C1s谱进行分峰拟合,得到两种碳纤维表面官能团主要有-C-C-、-C-O-和-O-C=O三种,其中国产碳纤维表面-C-C-含量要高于T300表面官能团的含量,而-O-C=O含量却低于T300。
     研究在复合材料制备工艺过程中,碳纤维表面能、表面形貌、表面粗糙度及化学组成随温度的变化趋势。结果表明,国产碳纤维和T300的表面能均随着处理温度的升高,先升高而后降低。国产碳纤维表面粗糙度随处理温度的升高而增大,在200℃时粗糙度最大,而T300表面沟槽数目随处理温度的升高,先增加后减少,在180℃时粗糙度最大。两种碳纤维表面元素含量随温度的升高而发生变化,当温度达到180℃时,表面C含量最低,O含量最高。
     研究在碳纤维复合材料制备工艺过程中,碳纤维的力学性能所发生的变化。通过单丝拉伸实验和Weibull分布研究了国产碳纤维和T300单丝强度随处理温度的变化。结果表明,国产碳纤维的拉伸强度受温度的影响较大,T300的单丝拉伸强度受温度影响比较小。
Carbon fiber and its composites have been widely used in aircraft, missiles, automobile parts and many other fields, because of its high strength, high modulus and excellent fatigue performance. Surface characteristics can influence the properties of carbon fibers and their composites. of In the work, the methods to measure surface energy, surface roughness and chemical component of carbon fiber stably were determined. The differences between surface properties of domestic carbon fiber and Japanese carbon fiber (T300) have been investigated. Then the relationship between the processing temperatures and surface properties of domestic and T300 carbon fibers were also studied.
     The methods of testing the surface characteristics were determined in the work. In the method to test the surface energy of carbon fiber, the surface tensionmeter was used. Effects of the specimen preparing method and testing parameters on results were systematically studied. Finally, the specimen preparing method was standardized and the testing parameters were determined. The roughness of carbon fiber was tested by atom force microscope (AFM). In the roughness method, the optimum scanning area was determined assisted with laser scanning confocal microscope. The chemical component of carbon fiber was tested by X-ray photoelectron spectroscopy (XPS). Through the study of tested repeatability and the trend of etching, the state of sample and instrument paramenters were determined.
     Based on the determined stable methods, a systematic analysis of surface energy, polar parts and dispersive parts, surface morphology, roughness and chemical component of domestic carbon fiber and T300 was studied. Different blocks of carbon fibers had different surface characteristics. For the blocks of carbon fiber with stable characteristics, the polar surface energy of domestic carbon fiber was lower than that of T300. It was not favorable for the well wettability between domestic carbon fiber and resin during preparing composite materials. It was found that there were a number of grooves which uniformly dispersed on their surface. The depth of grooves on the surface of domestic carbon fiber was smaller than that of T300. The results of roughness measured by AFM showed that the roughness of domestic carbon fiber and T300 belonged to one range. The chemical characteristic comparison of two kinds of fibers was investigated by XPS. The results showed that the element contents of domestic carbon fiber were C, Si, which were higher than C、Si of T300. O, N of domestic carbon fiber were lower than O, N of T300. In order to investigate differences in the bodies of them, surface etching has been done. It was found that O, Si element contents of domestic carbon fiber were higher than O, Si of T300 and the other element contents were lower. Contents of functional groups were calculated by fitting C1s spectra. The results showed that there were three kinds of function groups (-C-C-, -C-O-, -O-C=O)on the surface of carbon fiber. The -C-C- content of domestic carbon fiber was higher than that of T300 and the -O-C=O content was lower.
     The changes of surface characteristics of carbon fiber treated in manufacturing process of composites were determined. Carbon fibers were treated with programmed controlled temperature experiment which was aimed to simulate actual process of manufacturing composite materials. Taking manufacturing process of CF/BMI composite for example, three temperature stages were chosen, 150℃, 180℃, 200℃. The results showed that the surface energies of domestic carbon fiber and T300 treated at 150℃were highest. Combined with SEM and AFM images, it was found that the roughness of domestic carbon fiber went higher as the treating temperature rose. The roughness of T300 increased when the temperature was lower than 180℃and decreased when it was higher than 180℃. Element contents of the two types of carbon fibers changed after they were treated at different temperatures. Treated at 180℃, the C contents on the surface of both domestic carbon fiber and T300 were lowest, but the O contents were highest.
     Change of mechanical properties of carbon fiber with manufacturing process of composites was studied. The relationship between filament tensile strength and treating temperatures was investigated by filament strength test and Weibull distribution models. The results showed that tensile strength of domestic carbon fiber was influenced more obviously than that of T300.
引文
1朱泽贺,武立付,马玉梅.碳纤维-一种高性能的新型工业材料.福建轻纺. 2000, 138(11): 1~4
    2许鹤鸣.碳纤维.科学出版社, 1979: 100~108
    3 J. B. Dennat, R. C. Bansal.碳纤维.李仍元,过梅丽.科学出版社, 1989: 15~ 17
    4罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用. 2000, 25(1): 1~7
    5罗益锋.炭纤维的新形势与新技术.新型炭材料. 1995, (10): 13~25
    6黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用. 2005, 30(5): 24~30, 40
    7 H. Li, H. Liang, F. He, et al. Air Dielectric Barrier Discharges Plasma Surface Treatment of Three-Dimensional Braided Carbon Fiber Reinforced Epoxy Composites. Surf. Coat. Technol. 2009, 203(10~11): 1317~1321
    8 G. Jiang, S. J. Pickering, E. H. Lester, et al. Characterisation of Carbon Fibres Recycled from Carbon Fibre/Epoxy Resin Composites Using Supercritical n-Propanol. Compos. Sci. Technol. 2009, 69(2): 192~198
    9 M. K. Seo, S. J. Park. Surface Characteristics of Carbon Fibers Modified by Direct Oxyfluorination. J. Colloid Interface Sci. 2009, 330(1): 237~242
    10 S. P. Huang, K. C. Zhou, Z. Y. Li. Preparation and Mechanism of Calcium Phosphate Coatings on Chemical Modified Carbon Fibers by Biomineralization. Trans. Nonferrous Met. Soc. China. 2008, 18(1): 162~166
    11 J. Wolfrum, S. Eibl, L. Lietch. Rapid Evaluation of Long-Term Thermal Degradation of Carbon Fibre Epoxy Composites. Compos. Sci. Technol. 2009, 69(3~4): 523~530
    12 K. B. Hung, J. Li, Q. Fan, et al. The Enhancement of Carbon Fiber Modified with Electropolymer Coating to the Mechanical Properties of Epoxy Resin Composites. Composites Part A. 2008, 39(7): 1133~1140
    13 H. H. Zhou, Q. Yu, Q. L. Peng, et al. Catalytic Graphitization of Carbon Fibers with Electrodeposited Ni–B Alloy Coating. Mater. Chem. Phys. 2008, 110(2~3): 434~439
    14 K. K. C. Ho, A. F. Lee, S. Lamoriniere, et al. Continuous Atmospheric Plasma Fluorination of Carbon Fibres. Composites Part A. 2008, 39(2): 364~373
    15 Y. P. Bai, Z. Wang, L. Q. Feng. Chemical Recycling of Carbon Fibers Reinforced Epoxy Resin Composites in Oxygen in Supercritical Water. Mater.Des. 2010, 31(2):999~1002
    16 A. Bakkar, V. Neubert. Corrosion Behaviour of Carbon Fibres/Magnesium Metal Matrix Composite and Electrochemical Response of its Constituents. Electrochim. Acta. 2009, 54(5): 1597~1606
    17 X. H. Zheng, Y. G. Du, J. Y. Xiao, et al. Double Layer Oxidation Resistant Coating for Carbon Fiber Reinforced Silicon Carbide Matrix Composites. Appl. Surf. Sci. 2009, 255(7): 4250~4254
    18 D. Almecija, D. Blond, J. E. Saderd, et al. Mechanical Properties of Individual Electrospun Polymer-Nanotube Composite Nanofibers. Carbon. 2009, 47(9): 2253~2258
    19 A. S. Sarac, S. Sezgin, M. Ates, et al. Electrochemical Impedance Spectroscopy and Morphological Analyses of Pyrrole, Phenylpyrrole and Methoxyphenyl- pyrrole on Carbon Fiber Microelectrodes. Surf. Coat. Technol. 2008, 202(16): 3997~4005
    20 L. Liu, Y. J. Song, H. J. Fu, et al. The Effect of Interphase Modification on Carbon Fiber/Polyarylacetylene Resin Composites. Appl. Surf. Sci. 2008, 254(17): 5342~5347
    21贺福,王茂章.碳纤维及其复合材料.科学出版社, 1995: 135~137
    22宋焕成,赵时熙.聚合物基复合材料.国防工业出版社, 1990: 110~112
    23王承鹤.塑料摩擦学-塑料的摩擦、磨损、润滑理论与实践.机械工业出版社, 1994: 56~58
    24 D. D. L. Chung. Comparison of Submicron-Diameter Carbon Filaments and Conventional Carbon Fibers as Fillers in Composite Materials. Carbon. 2001, 39(8): 1119~1125.
    25翁蕾蕾.高性能碳纤维的生产和应用.印染助剂. 2006, 23(5): 1~3.
    26许静波,秦海燕.碳纤维干燥致密化设备干燥机的研制.天津纺织科技. 2008, (183): 59~63
    27赵稼祥.碳纤维的发展与应用.纤维复合材料. 1996, (4): 46~50
    28余波.碳纤维生产发展及市场前景.上海化工. 2007, 32(9): 46~49
    29陈绍杰.碳纤维再聚焦.高科技纤维与应用. 2009, 34(1): 1~8
    30 D. Loidl, O. Paris, H. Rennhofer, et al. Skin-Core Structure and Bimodal Weibull Distribution of the Strength of Carbon Fibers. Carbon. 2007, 45(14): 2801~2805
    31 W. Johnson, W. Watt. The Microstructure of Carbon Fibers. Nature. 1976, 12(215): 384~386
    32殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感. 2004, 25(1):51~54
    33李新莲,温月芳,杨永岗.影响粘胶基碳纤维收率和性能的因素研究.高科技纤维与应用. 2004, 29(2): 33~38
    34杨序刚,王依民.粘胶纤维碳化过程中的形态学结构.中国纺织大学学报. 1997, 3(4): 1~7.
    35马运志.沥青基碳纤维的发展和应用.山东纺织经济. 2006, (3): 74~76.
    36 A. Fukunaga, T. Konmami, S. Ueda, et al. Plasma Treatment of Pitch-Based Ultra High Modulus Carbon Fiber. Carbon, 1999, 37(7): 1087~1093
    37康勇,项素云,梁培亮.沥青基碳纤维表面复合处理的研究.功能高分子学报. 1999, 12(4): 450~452
    38 L. M. Manocha, A. Warrier, S. Manocha, et al. Microstructure of Carbon- Carbon Composites Reinforced with Pitch-Based Ribbon-Shape Carbon Fibers. Carbon. 2003, 41(7): 1425~1436
    39贺福,杨永岗.酚醛基活性碳纤维.高科技纤维与应用. 2003, 28(5): 19~16
    40廖若谷,史铁钧,周玉波等.酚醛基电纺纤维的制备和分散形态研究.高分子学报. 2006, (2): 345~349
    41 J. L. Hu, J. H. Huang, Y. K. Chih, et al. Effects of Thermal Treatments on the Supercapacitive Performances of PAN-Based Carbon Fiber Electrodes. Diamond Relat. Mater. 2009, 18(2~3): 511~515
    42 S. Wang, Z. H. Chen, W. J. Ma, et al. Influence of Heat Treatment on Physical– Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32(3): 291~295
    43 H. Li, Y. G. Yang, Y. F. Wen, et al. A Mechanism Study on Preparation of Rayon Based Carbon Fibers with (NH4)2SO4/NH4Cl/Organosilicon Composite Catalyst System. Compos. Sci. Technol. 2007, 67(13): 2675~2682
    44 Y. H. Chen, Q. L. Wu, N. Pan, et al. Rayon-Based Activated Carbon Fibers Treated with both Alkali Metal Salt and Lewis Acid. Microporous and Mesoporous Mater. 2008, 109(1~3): 138~146
    45 Y. C. Chiang, C. Y. Lee, H. C. Lee. Surface Chemistry of Polyacrylonitrile-and Rayon-Based Activated Carbon Fibers after Post-Heat Treatment. Mater. Chem. Phys. 2007, 101(1): 199~210
    46 Z. K. Ma, J. L. Shi, Y. Song, et al. Carbon with High Thermal Conductivity, Prepared from Ribbon-Shaped Mesosphase Pitch-Based Fibers. Carbon. 2006, 44(7): 1298~1352
    47 C. S. Park, B. S. Kang, D. W. Lee, et al. Fabrication and Characterization of a Pressure Sensor Using a Pitch-Based Carbon Fiber. Ceram. Int. 2007, 84(5~8):1316~1319
    48 X. H. Shao, W. C. Wang, X. J. Zhang. Experimental Measurements and Computer Simulation of Methane Adsorption on Activated Carbon Fibers. Carbon. 2007, 45(1): 188~195
    49 S. Jagannathan, H. G. Chae, R. Jain, et al. Structure and Electrochemical Properties of Activated Polyacrylonitrile Based Carbon Fibers Containing Carbon Nanotubes. J. Power Sources. 2008, 185(2): 676~684
    50廖肃然,魏媛.碳纤维的结构与表面性质.郑州纺织工学院学报. 1998, 9(2): 54~58
    51侯锋辉,邓红兵,李崇俊等.碳纤维结构的常用表征技术.纤维复合材料. 2008, 3(18): 18~20
    52黄祖飞.聚丙烯腈基碳纤维中微孔洞的一维多取向小角X射线散射研究.高等学校化学学报. 2004, 25(6): 1124~1127
    53 Y. H. Chen, Q. L. Wu, Pan Ning, et al. Rayon-Based Activated Carbon Fibers Treated with Both Alkali Metal Salt and Lewis Acid. Microporous Mesoporous Mater. 2008, 109(1~3): 138~146
    54 Y. Sheng, C. H. Zhang, Y. Xu, et al. Investigation of PAN-based Carbon Fiber Microstructure by 2D-SAXS. Carbon, 2010, 48(1):316
    55 A. H. Wazir, L. Kakakhel. Preparation and Characterization of Pitch-Based Carbon Fibers. New Carbon Mater. 2009, 24(1): 83~88
    56 K. K. C. Ho, G. Beamson, G. Shi, et al. Surface and Bulk Properties of Severely Fluorinated Carbon Fibres. J. Fluorine Chem. 2007, 128(11): 1359~1368
    57 H. H. Zhou, Q. Yu, Q. L. Peng, et al. Catalytic Graphitization of Carbon Fibers with Electrodeposited Ni–B Alloy Coating. Mater. Chem. Phys. 2008, 110(2~3): 434~439
    58 L. Dobia, V. Stary, P. Glogar, et al. Analysis of Carbon Fibers and Carbon Composites by Asymmetric X-Ray Diffraction Technique. Carbon. 1999, 37(3): 421~425
    59 H. M. Chiang, T. C. Chen, S. D. Pan, et al. Adsorption Characteristics of Orange II and Chrysophenine on Sludge Adsorbent and Activated Carbon Fibers. J. Hazard. Mater. 2009, 161(2~3): 1384~1390
    60 D. Q. Mo, D. Q. Ye. Surface Study of Composite Photocatalyst Based on Plasma Modified Activated Carbon Fibers with TiO2. Surf. Coat. Technol. 2009, 203(9): 1154~1160
    61 S. Jagannathan, H. G. Chae, R. Jain, et al. Structure and Electrochemical Properties of Activated Polyacrylonitrile Based Carbon Fibers ContainingCarbon Nanotubes. J. Power Sources. 2008, 185(2): 676~684
    62 D. L. Castello, E. R. Pinero, D. C. Amoros, et al. Characterization of Pore Distribution in Activated Carbon Fibers by Microbeam Small Angle X-Ray Scattering. Carbon. 2002, 40(14): 2727~2735
    63 A. Bismarck, C. J.Wuertz. Basic Surface Oxides on Carbon Fibers. Carbon. 1999, 37(7): 1019~1020
    64贺福.碳纤维及其应用技术.化学工业出版社, 2004: 202~205
    65 H. C. Huang, D. Q. Ye, B. C. Huang. Nitrogen Plasma Modification of Viscose-Based Activated Carbon Fibers. Surf. Coat. Technol. 2007, 201(24): 9533~9540
    66李东风,王浩静,贺福等. T300和T700炭纤维的结构与性能.新型碳材料. 2007, 22(1): 59~64
    67 I. D. Harry, B. Saha, I. W. Cumming. Surface Properties of Electrochemically Oxidised Viscose Rayon Based Carbon Fibres. Carbon. 2007, 45(4): 766~774
    68贺福,杨永岗,王润娥.用SEM研究PAN基碳纤维的表面缺陷.高科技纤维与应用. 2002, 27(6): 25~29
    69 Z. Z. Zhang, H. J. Song, X. H. Men, et al. Effect of Carbon Fibers Surface Treatment on Tribological Performance of Polyurethane (PU) Composite Coating. Wear. 2008, 264(7~8): 599~605
    70 A. S. Sarac, Y. Bardavit. Electrografting of Copolymer of Poly[N-Vinylcarba- Zole–Co-Styrene] and Poly[N-Vinylcarbazole-Co-Acrylonitrile] onto Carbon Fiber: Cyclovoltammetric(CV), Spectroscopic (UV-Vis, FT-IR-ATR), And Morphological Study (SEM). Prog. Org. Coat. 2004, 49(2): 85~94
    71 J. Li, X. H. Cheng. Friction and Wear Properties of Surface-treated Carbon Fiber-Reinforced Thermoplastic Polyimide Composites Under Oil-lubricated Condition. Mater. Chem. Phys. 2008, 108(1): 67~72
    72 E. S. Pino, L. D. B. Machado, C. Giovedi. Improvement of Carbon Fiber Surface Properties Using Electron Beam Irradiation. Nucl. Sci. Tech. 2007, 18(1): 39~41
    73 X. Z. Zhang, Y. D. Huang, T. Y. Wang, et al. Influence of Fibre Surface Oxidation-Reduction Followed by Silsesquioxane Coating Treatment on Interfacial Mechanical Properties of Carbon Fibre/Polyarylacetylene Composites. Composites Part A. 2007, 38(3): 936~944
    74 T. Kitada, M. Nagano, T. Shimohara, et al. Poster 7 Wind-Driven NOx Removal by Flow-Through Fences with ACF (Activated Carbon Fiber): Evaluation of the Fence's Efficiency in Reduction of Ambient NOx and the Surface Microstucture. Developments in Environmental Sciences. 2007, 6:747~749
    75 F. Winter, G. L. Bezemer, C. Spek, et al. TEM and XPS Studies to Reveal the Presence of Cobalt and Palladium Particles in the Inner Core of Carbon Nanofibers. Carbon, 2005, 43(2): 327~332
    76 R. I. Kvon, G. N. Iíinich, A. L. Chuvilin, et al. XPS and TEM Study of New Carbon Material: N-Containing Catalytic Filamentous Carbon. J. Mol. Catal. A: Chem. 2000, 158(1): 413~416
    77 M. Lancin, C. Marhic. TEM Study of Carbon Fibre Reinforced Aluminium Matrix Composites: Influence of Brittle Phases and Interface on Mechanical Properties. J. Eur. Ceram. Soc. 2000, 20(10): 1493~1503
    78 Y. G. Ko, U. S. Choi, J. S. Kim, et al. Novel Synthesis and Characterization of Activated Carbon Fiber and Dye Adsorption Modeling. Carbon, 2002, 40(14): 2661~2672
    79张艳华.γ-射线辐照改性芳纶纤维及对复合材料性能的影响.哈尔滨工业大学. 2008: 30~32
    80姜再兴.碳纤维/聚芳基乙炔复合材料界面改性及其机制研究.哈尔滨工业大学. 2008: 28~30
    81 S. J. Park, Y. S. Jang. Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced Phenolic Resin Matrix Composites. J. Colloid Interface Sci. 2001, 237(1): 91~97
    82 Y. S. Lee, B. K. Lee. Surface Properties of Oxyfluorinated PAN-Based Carbon Fibers. Carbon. 2000, 40(13): 2461~2468
    83 K. K. C. Ho, S. Lamoriniere, G. Kalinka, et al. Interfacial Behavior between Atmospheric-Plasma-Fluorinated Carbon Fibers and Poly(Vinylidene Fluoride). J. Colloid Interface Sci. 2007, 313(2): 476~484
    84 X. Feng, N. Dementev, W. G. Feng, et al. Detection of Low Concentration Oxygen Containing Functional Groups on Activated Carbon Fiber Surfaces through Fluorescent Labeling. Carbon. 2006, 44 (7):1203~1209
    85 J. I. Paredes, A. M. Alonso, J. M. D. Tascón. Atomic-Scale Scanning Tunneling Microscopy Study of Plasma-Oxidized Ultrahigh-Modulus Carbon Fiber Surfaces. J. Colloid Interf. Sci. 2003, 258(2): 276~282
    86 Q. L. Wu, S. Y. Gu, J. H. Gong, et al. SEM/STM Studies on the Surface Structure of a Novel Carbon Fiber from Lyocell. Synth. Met. 2006, 156(11~13): 792~795
    87 F. Wang, S. Arai, S. Morimoto, et al. Ni-Fluorinated Vapor Growth Carbon Fiber (VGCF) Composite Films Prepared by an Electrochemical Deposition Process. Electrochem. Commun. 2004, 6(3): 242~244
    88 J. Li. The Research on the Interfacial Compatibility of Polypropylene Composite Filled with Surface Treated Carbon Fiber. Appl. Surf. Sci. 2009, 255(20): 8682~8684
    89 J. Y. Lee, L. T. Drzal. Surface Characterization and Adhesion of Carbon Fibers to Epoxy and Polycarbonate. Int. J. Adhes. Adhes. 2005, 25(5): 389~394
    90 J. I. Paredes, A. M. Alonso, J. M. D. Tascon. Surface Characterization of Submicron Vapor Grown Carbon Fibers by Scanning Tunneling Microscopy. Carbon. 2001, 39(10): 1575~1587
    91 S. R. Dhakate, O. P. Bahl. Effect of Carbon Fiber Surface Functional Groups on the Mechanical Properties of Carbon-Carbon Composites with HTT. Carbon. 2003, 41(6): 1193~1203
    92 T. Ramanathan, A. Bismarck, E. Schulz, et al. Investigation of the Influence of Acidic and Basic Surface Groups on Carbon Fibres on the Interfacial Shear Strength in an Epoxy Matrix by Means of Single-Fibre Pull-out Test. Compos. Sci. Technol. 2001, 61(4): 599~605
    93 B. Lindsay, M. L. Abel, J. F. Watts. A Study of Electrochemically Treated PAN Based Carbon Fibres by IGC and XPS. Carbon. 2007, 45(12): 2433~2444
    94 B. K. Kim, S. K. Ryu, B. J. Kim, et al. Adsorption Behavior of Propylamine on Activated Carbon Fiber Surfaces as Induced by Oxygen Functional Complexes. J. Colloid Interf. Sci. 2006, 302(2): 695~697
    95 R. D. Allingtona, D. Attwood, I. Hamertona, et al. Developing Improved Models of Oxidatively Treated Carbon Fibre Surfaces, Using Molecular Simulation. Composites Part A. 2004, 35(10): 1161~1173
    96 Y. P. Bai, Z. Wang, L. Q. Feng. Interface Properties of Carbon Fiber/Epoxy Resin-Composite Improved by Supercritical Water and Oxygen in Supercritical Water. Mater. Des. doi:10.1016/j.matdes.2009.09.003
    97 M. H. Kim, K. Y. Rhee, H. J. Kim, et al. Surface Modification of Carbon/ Epoxy Prepreg Using Oxygen Plasma and its Effect on the Delamination Resistance Behavior of Carbon/Epoxy Composites. Mater. Sci. Eng. A. 2007, 448(1~2): 269~274
    98吴人洁.现代分析技术在高聚物中的应用.上海科学技术出版社, 1987: 15
    99 M. Serantoni, A. S. Sarac, D. Sutton. FIB-SIMS Investigation of Carbazole- Based Polymer and Copolymers Electrocoated onto Carbon Fibers, and an AFM Morphological Study. Surf. Coat. Technol. 2005, 194(1): 36~41
    100 S. Polizu, M. Maugey, S. Poulin, et al. Nanoscale Surface of Carbon Nanotube Fibers for Medical Applications: Structure and Chemistry Revealed by TOF- SIMS Analysis. Appl. Surf. Sci. 2006, 252(19): 6750~6753
    101 F. Watanabe, Y. Korai, I. Mochida, et al. Structure of Melt-Blown Mesophase Pitch-Based Carbon Fiber. Carbon. 2000, 38(5): 741~747
    102 P. E. Vickers, J. F. Watts, C. Perruchot, et al. The Surface Chemistry and Acid-Base Properties of a PAN-Based Carbon Fibre. Carbon. 2000, 38(5): 675 ~689
    103 Z. Jing, Z. Q. Zhang, L. H. Meng. Effects of Ozone Method Treating Carbon Fibers on Mechanical Properties of Carbon/Carbon Composites. Mater. Chem. Phys. 2006, 97(1): 167~172
    104 T. Mukundan, V. A. Bhanu, K. B. Wiles, et al. A Photocrosslinkable Melt Processible Acrylonitrile Terpolymer as Carbon Fiber Precursor. Polymer. 2006, 47(11): 4163~4171
    105黄英,张英,余云照,等.用于高性能碳纤维制造的纺丝油剂的研究.复合材料—基础、创新、高效:第十四届全国复合材料学术会议论文集(上). 2006, 10: 58~62
    106郭鹏宗,白玉俊. KMnO4改性对聚丙烯腈原丝结构和性能的影响.功能材料. 2007, 11(38): 1800~1805
    107 V. K. Kaushik. Surface Characterization of KMnO4 Treated Carbon Fiber Precursors Using X-Ray Photoelectron Spectroscopy. Polym. Test. 2000, 19(1): 17~25
    108刘杰,王培华,李玉梅.民用PAN大丝束的热氧稳定化、炭化研究.第四届全国新型炭材料学术研讨会议论文集. 1999: 145~148
    109 S. Blazewicz. Carbon Fiber from a SO2 Treated PAN Precursor. Carbon. 1989, 27(6): 777~883
    110 T. H. Ko, L. C. Huang. Preparation of High-Performance Carbon Fibers from PAN Fiber Modified with Cobaltous Chloride. J. Mater. Sci. 1992, 27(9): 2429 ~2436
    111 T. H. Ko, S. C. Liau, M. F. Lin. Preparation of Graphite Fibers from a Modified PAN Precursor. J. Mater. Sci. 1992, 27(22): 6071~6078
    112翁蕾蕾.高性能碳纤维的生产和应用.印染助剂. 2006, 23(5):1~3
    113李青山,沈新元.腈纶生产工学.中国纺织出版社, 2000: 98
    114 D. P. Bahl, R. B. Mathur, T. L. Dnami. Modification of Polyacrylonitrile Fibers to Make Them Suitable for Conversion into High Performance Carbon Fibers. Mater. Sci. Eng. A. 1985, 73: 105~110
    115殷永霞,沃西源.碳纤维表面改性研究进展.航天返回与遥感. 2004, 25(1): 51~54
    116 W. H. Lee, J. G. Lee, P. J. Reucroft. XPS Study of Carbon Fiber SurfacesTreated by Thermal Oxidation in a Gas Mixture of O2/(O2+N2). Appl. Surf. Sci. 2001, 171(1~2):136~142
    117 F. Kern, R. Gadow. Liquid Phase Coating Process for Protective Ceramic Layers on Carbon Fibers. Surf. Coat. Technol. 2002, 151~152: 418-423
    118 L. Darmstadt, L. Summchen, J. M. Ting, et al. Effects of Surface Treatment on the Bulk Chemistry and Structure of Vapor Grown Carbon Fibers. Carbon. 1997, 35(10~11):1581~1585
    119 L. Szazdi, J. Gulyas, B. Pukanszky. Electrochemical Oxidation of Carbon Fibres: Adsorption of the Electrolyte and its Effect on Interfacial Adhesion. Composites Part A. 2002, 33(10):1361~1365
    120 A. Bismarck, A. F. Lee, A. S. Sarac, et al. Electrocoating of Carbon Fibres: A Route for Interface Control in Carbon Fibre Reinforced Poly(methyl- methacrylate). Compos. Sci. Technol. 2005, 65(10):1564~1573
    121 N. Lopattananon, S. A. Hayes, F. R. Jones. Stress Transfer Function for Interface Assessment in Composites with Plasma Copolymer Functionalized Carbon Fibres. J. Adhes. 2002, 78(4):313~350
    122 G. Wei, K. Shirai, K. Fujiki, et al. Grafting of Vinyl Polymers onto VGCF Surface and the Electric Properties of the Polymer-Grafted VGCF. Carbon. 2004, 42(10):1923~1929
    123 S. J. Park, B. J. Kim. Roles of Acidic Functional Groups of Carbon Fiber Surfaces in Enhancing Interfacial Adhesion Behavior. Mater. Sci. Eng., A. 2005, 408(1~2): 269~273
    124 K. R. Ko, S. K. Ryu, S. J. Park. Effect of Ozone Treatment on Cr(VI) and Cu(II) Adsorption Behaviors of Activated Carbon Fibers. Carbon. 2004, 42(8~9): 1864~1867
    125 H. L. Cao, Y. D. Huang, Z. Q. Zhang. Uniform Modification of Carbon Fibers Surface in 3-D Fabrics Using Intermittent Electrochemical Treatment. Compos. Sci. Technol. 2005, 65(11~12): 1655~1662
    126 S. H. Wen, D. D. L. Chung. The Role of Electronic and Ionic Conduction in the Electrical Conductivity of Carbon Fiber Reinforced Cement. Carbon. 2006, 44(11): 2130~2138
    127 J. R. Lee, M. H. Kim, S. J. Park. Surface Modification of Carbon Fibers by Anodic Oxidation and its Effect on Adhesion. Key Eng. Mater. 2000, 183(2): 1105~1110
    128 H. L. Cao, Y. D. Huang, Z. Q. Zhang, et al. Effect of Electro Chemical Treat- ment in Aqueous Ammonium Bicarbonate on Surface Properties of PAN-Based Carbon Fibers. J. Harbin Inst. Technol. 2004, 11(2): 168~173
    129刘杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究.化工进展. 2004, 23(3): 282~285
    130 J. Park, B. J. Park. Electrochemically Modified PAN Carbon Fibers and Interfacial Adhesion in Epoxy-Resin Composite. J. Mater. Sci. Lett. 1999, 18(1): 47~49
    131 S. J. Park, B. J. Park, S. K. Ryu. Electrochemical on Activated Carbon Fiber for Increasing the Content and Rate of Cr (VI) Adsorption. Carbon. 1999, 37(8): 1223~1226
    132 S. K. Ryu, B. J. Park, S. J. Park. XPS Analysis of Carbon Fiber Surfaces- Anodized and Interfacial Effects in Fiber-Epoxy Composites. J. Colloid Interface Sci. 1999, 215(1): 167~169
    133 A. Fukunaga, S. Ueda. Anodic Surface Oxidation for Pitch-based Carbon Fibers and the Interfacial Bond Strengths in Epoxy Matrices. Compos. Sci. Technol. 2000, 60(2): 249~254
    134 A. Bismarck, M. E. Kumru, J. Springer, et al. Surface Properties of PAN-based Carbon Fibers Tuned by Anodic Oxidation in Different Alkaline Electrolyte Systems. Appl. Surf. Sci. 1999, 143(1~4): 45~55
    135 A. N. Sil, M. Pawlak, P. K. Mukherjee, et al. The Influence of Debye Plasma on the Ground State Energies of Exotic Systems. J. Quant. Spectrosc. Radiat. Transfer. 2008, 109(5): 873~880
    136 V. Cech, R. Prikryl, R. Balkova, et al. Plasma Surface Treatment and Modification of Glass Fibers. Composites Part A. 2002, 33(10): 1367~1372
    137 G. M. Wu. Oxygen Plasma Treatment of High Performance Fibers for Composites. Mater. Chem. Phys. 2004, 85(1): 81~87
    138 H. C. Huang, D. Q. Ye, B. C. Huang. Nitrogen Plasma Modification of Viscose Based Activated Carbon Fibers. Surf. Coat. Technol. 2007, 201(24): 9533~ 9540
    139 S. J. Park, B. J. Kim. Influence of Oxygen Plasma Treatment on Hydrogen Chloride Removal of Activated Carbon Fibers. J. Colloid Interface Sci. 2004, 275(2): 590~595
    140 A. Miguel, R. J. Young. Raman Spectroscopy Study of HM Carbon Fibres: Effect of Plasma Treatment on the Interfacial Properties of Single Fibre/Epoxy Composites. Part I: Fibre characterization. Carbon. 2002, 40(6): 845~855
    141 J. I. Paredes, A. M. Alonso. Oxygen Plasma Modification of Submicron Vapor Grown Carbon Fibers as Studied by Scanning Tunneling Microscopy. Carbon. 2002, 40(7): 1101~1108
    142 M. D. Garcia, F. J. Lopez, M. P. Mendoza. Effect of Some Oxidation Treatme-nts on the Textural Characteristics and Surface Chemical Nature of an Activated Carbon. J. Colloid Interface Sci. 2000, 222(2): 233~240
    143 S. Kodama, H. Habaki, H. Sekiguchi, et al. Surface Modification of Adsorbents by Dielectric Barrier Discharge. Thin Solid Films. 2002, 407(1~2): 151~155
    144 H. C. Wen, K. Yang, K. L. Qu, et al. Effects of Ammonia Plasma Treatment on the Surface Characteristics of Carbon Fibers. Surf. Coat. Technol. 2006, 200(10): 3166~3169
    145 J. P. Boudou, J. I. Paredes, A. Cuesta, et al. Oxygen Plasma Modification of Pitch-Based Isotropic Carbon Fibres. Carbon. 2003, 41(1): 41~56
    146 D. Lee, S. H. Hong, K. H. Paek, et al. Adsorbability Enhancement of Activated Carbon by Dielectric Barrier Discharge Plasma Treatment. Surf. Coat. Technol. 2005, 200(7): 2277~2282
    147 H. Bubert, W. Brandl, S. Kittel, et al. Analytical Investigation of Plasma treated Carbon Fibres. Anal. Bioanalytical Chem. 2002, 374(7~8): 1237~1241
    148 M. A. Montes, R. J. Young. Raman Spectroscopy Study of High Modulus Carbon Fibres: Effect of Plasma treatment on the Interfacial Properties of Single-Fibre-Epoxy Composites. Part II: Characterisation of the Fibre-matrix Interface. Carbon. 2002, 40(6): 857~875
    149 L. Fernandez, A. Arbelaiz, A. Valea, et al. A Comparative Study on the Influence of Epoxy Sizings on the Mechanical Performance of Wozen Carbon Fibre-Epoxy Composites. Polym. Compos. 2004, 25(3): 319~330
    150 S. P. Huang, B. Y. Huang, K. H. Zhou, et al. Effects of Coatings on the Mechanical Properties of Carbon Fiber Reinforced HAP Composites. Mater. Lett. 2004, 58(27~28): 3582~3585
    151 B. Lin, R. Sureshkumar, J. L. Kardos. Electropolymerization of Pyrrode on PAN-based Carbon Fibers: Experimental Observation and a Multiscale Modeling Approach. Chem. Eng. Sci. 2001, 56(23): 6563~6575
    152 A. S. Sarac, M. Serantoni, S. A. M. Tofail, et al. Morphological and Spectroscopic Analyses of Poly[N-Vinylcarbazone-Co-Vinylbenzenesulfonic acid] Compolymer Electrografted on Carbon Fiber: the Effect of Current Density. Appl. Surf. Sci. 2004, 229(1~4): 13~18
    153 H. J. Wang, P. Z. Gao, Z. H. Jin. Preparation and Oxidation Behavior of Three- dimensional Braide Carbon Fiber Coated by SiC. Mater. Lett. 2005, 59(4): 486~490
    154 S. J. Park, Y. S. Jang. X-Ray Diffraction and X-Ray Photoelectron Spectro- scopy Studies of Ni-P Deposited onto Carbon Fiber Surfaces: Impact Properites of a Carbon-Fiber-Reinforced Matrix. J. Colloid Interface Sci. 2003, 263(1):170~176
    155 P. C. Varelidis, R. L. McCullough, C. D. Papaspyrides. The Effect on the Mechanical Properties of Carbon/Epoxy Composites of Polyamide Coatings on the Fibers. Composites Science and Technology. 1999, 59(12): 1813~1823
    156 T. H. Ko, L. C. Huang. The Influence of Cobaltous Chloride Modification on Physical Properties and Microstructure of Modified PAN Fiber during Carbonization. J. Appl. Polym. Sci. 1998, 70(12): 2409~2415
    157 Y. Yang, B. S. Zhang, W. D. Xu, et al. Preparation and Electromagnetic Characteristics of a Novel Iron-Coated Carbon Fiber. J. Alloys Compd. 2004, 365(1~2): 300~302
    158 P. Z. Gao, H. Xiao, H. J. Wang, et al. A Study on the Oxidation Kinetics and Mechanism of Three-Dimensional(3D) Carbon Fiber Braid Coated by Gradient SiC. Mater. Chem. Phys. 2005, 93(1): 164~169
    159 I. Nilvako, S. Kensuke. High Strengthening of PAN Based CF by Imposing of a High Magnetic Field in Graphitization Process. Tanso. 2000, 191: 37~41
    160 A. Kootsookos, A. P.Mouritz. Seawater Durability of Glass and Carbon- Polymer Composites. Compos. Sci. Tech. 2004, 64(10~11): 1503~1511.
    161王东川,刘启志,柯枫.碳纤维增强复合材料在汽车上的应用.汽车工艺与材料. 2005, (4): 33~36
    162 D. L. Lorenzis, J. G. Teng. Near-Surface Mounted FRP Reinforcement: An Emerging Technique for Strengthening Structures. Composites Part B. 2007,
    38(2): 119~143
    163 Z. K. Szabo, G. Balazs. Near Surface Mounted FRP Reinforcement for Strengthening of Concrete Structures. Periodica Polytechnic: Civil Engineering. 2007, 51(1): 33~38.
    164 S. T. Liu, D. J. Oehlers, R. Seracino. Tests on the Ductility of Reinforced Concrete Beams Retrofitted with FRP and Steel Near-Surface Mounted Plates. J. Compos. Construction. 2006, 10(2): 106~114.
    165钱伯章.碳纤维复合材料面临发展契机.新材料产业. 2008, (11): 43~46
    166秦岩,周镇.碳纤维技术进展及应用前景.国外建材科技. 2003, 24(3): 43~45
    167钱水林.碳纤维的应用及市场需求分析.石油化工技术与分析. 2008, (1): 26~29
    168关蓉波,杨永岗,郑经堂.炭纤维乳液上浆剂.新型炭材料. 2002, 17(3):49~51,55
    169 G. H. Chen, X. Ding. Strength Distribution Analysis of Typical Staple Fiber. J.Donghua University. 2005, 20(4):9~12
    170 Y. P. Zhang, X. G. Wang, N Pan, et al. Weibull Analysis of the Tensile Behavior of Fibers with Geometrical Irregularities. J. Mater. Sci. 2002, 37(7): 1401~1406
    171沈真,章怡宁,杨胜春等.国产碳纤维工程化应用中的若干问题.材料工程. 2008,增刊: 346~353
    172纪茂,钱律,张崇方等.国产与进口聚丙烯睛基碳纤维的结构和性能.北京科技大学学报. 1997, 19(4): 369~373
    173张凤翻,申屠年.国产碳纤维规模化应用值得注意的工艺问题.高科技纤维与应用. 2008, 33(3): 1~4
    174 Y. N. Wen, X. S. Jiang, J. Yin. Polymeric Michler’s Ketone Photoinitiators: the Effect of Chain Flexibility. Prog. Org. Coat. 2009, 66(1): 65~72
    175 Z. W. Xu, L. Chen, Y. D. Huang, et al. Wettability of Carbon Fibers Modified by Acrylic Acid and Interface Properties of Carbon Fiber/Epoxy. Eur. Polym. J. 2008, 44(2): 494~503
    176 E. Fitzer. PAN-Based Carbon Fibers-Present State and Trend of the Technology from the Viewpoint of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters. Carbon. 1989, 27(5): 621~645
    177 G. X. Zhang, S. H. Sun, D. Q. Yang, et al. The Surface Analytical Characterization of Carbon Fibers Functionalized by H2SO4/HNO3 Treatment. Carbon. 2008, 46(2): 196 ~205
    178 W. M. Chen, Y. H. Yu, P. Li, et al. Effect of New Epoxy Matrix for T800 Carbon Fiber/Epoxy Filament Wound Composites. Compos. Sci. Technol. 2007, 67(11~12): 2261~ 2270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700