用户名: 密码: 验证码:
塔里木盆地塔地区下奥陶统构造应力场数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造应力场是影响油气运移、聚集乃至保存和破坏的重要因素之一,不仅形成了油气运移的通道与油气聚集的圈闭,不连续状态的瞬间构造应力和连续状态的长期构造应力还为油气运移提供了驱动力。本文针对塔隆起断裂特征及其演化史,以下奥陶统灰岩为主要研究对象,应用大型有限元分析软件ANSYS运用接触算法模拟了晚奥陶世、泥盆纪、三叠纪、新近纪的构造应力场,研究该区的应力分布特征,并应用到裂缝预测和油气运聚来。
     对应于三期裂缝,塔地区与裂缝形成和油气成藏有重要影响的四次构造运动为加里东晚期运动、海西早期运动、印支运动和喜山运动。将塔隆起的构造演化史划分为四个阶段。通过对研究区内主要断裂构造解析,认为塔隆起具有垂向分层、南北分带、东西分段的构造格局。
     在构造解析的基础上,建立了与四期构造运动对应的四个不同时代的地质模型,在不同时期,施加不同的边界条件。塔地区发育的多期次断裂构造,对构造应力场有很强的扰动作用,通过反复试算,认为用接触算法能够较好地模拟断层的动力学特征,塔地区多条断裂呈现压扭-走滑性质,采取减小摩擦系数、减小法向刚度、增大切向刚度、增大最大允许穿透值的方式来表现走滑断层。模拟过程,首次将盆模软件TSM、建模软件Autocad与大型有限元分析软件Ansys结合起来,实现了三者之间的矢量信息转换。
     对下奥陶统碳酸盐岩四个不同时代的构造应力场模拟结果显示,主压应力场受东部车尔臣—星星峡走滑断裂影响显著,在隆起区沿断裂带呈条带状低值分布,在不同时期塔Ⅰ号断裂带无一例外地都位于主压应力场的最低区,反映了塔断裂带尤其是塔Ⅰ号断裂带是油气运移的有利指向区。主拉应力场沿断裂带呈条带状高值分布,在断裂的上盘是拉应力高值区,易形成张裂缝,在断裂走向发生变化和断裂的倾末端也是拉应力高值区,是张裂缝发育的重要构造部位。主拉应力场和剪应力场受车尔臣—星星峡走滑断裂的影响明显减弱。
     在模拟结果分析的基础上,预测油气运移的有利区带为塔隆起北斜坡的塔Ⅰ号断裂带,预测裂缝发育的有利区带为塔Ⅰ号断裂带东段、塔26井区、塔45井区以及塔2号断裂带倾末端与塔5-48井断裂带交汇处。
Tectonic stress field is one of the important factors which affect the oil and gas migration, accumulation, preservation and destruction. Moreover, tectonic stress field can form the channel of hydrocarbon migration and the trap of hydrocarbon accumulation. Instantaneous tectonic stress of discontinuous state and long-term tectonic stress of continuous state can also provide hydrocarbon migration with a driving force. In this paper, according to fracture characteristics of Tazhong uplift and its evolution, with middle-lower Ordovician limestone as main study object, large-scale finite element analysis software (ANSYS) was applied to simulate tectonic stress field of Late Ordovician, Devonian, Triassic and Neogene by contact algorithm. The research on the stress distribution characteristics of Tazhong area can apply to crack prediction and hydrocarbon migration and accumulation.
     Corresponding to the three phase crack, four tectonic movements-the late Caledonian movement, the early Hercynian movement, Indo-Chinese Movement and Himalayan Movement-seriously affected hydrocarbon formation and accumulation in Tazhong area. The tectonic evolution history of Tazhong uplift is divided into four stages. By analysis of the main fault structure in Tazhong area, Tazhong uplift has three structure situations including vertical stratification, north-south sub-zone and east-west subsection.
     On the base of structural analysis, four geological models in four different periods were established corresponding to four tectonic movements, and different boundary conditions were imposed according to different periods. Multi-stages fault structure of Tazhong area disturbed tectonic stress field strongly. By contrast and repeated calculation, the contact algorithm can simulate the dynamic characteristics of faults preferably. Due to multi-fraction have the character of pressure-twisting and strike-slip, reducing friction coefficient and normal stiffness, and increasing tangential stiffness and maximum value of allowable penetration were used to represent strike-slip faults. In the process of simulation, basin-model software TSM, modeling software AutoCAD and large-scale finite element analysis software Ansys were firstly combined to use and made a progress in conversion of vector information during three software.
     By simulating tectonic stress field of middle-lower Ordovician carbonate rocks in four different periods, principal compressive stress field, which was affected markedly by the eastern strike-slip fault named Cherchen-xingxingxia, presented strip-shape and low-value distribution along fault zone in uplift area. Tazhong 1st fault in different periods were all at the minimum value area of main press stress field, which reflected Tazhong fault zone, especially the 1st fault was a well directed area for hydrocarbon migration. The main tensile stress field was banded distribution of high-value along fault zone. The hanging wall of fault was the high-value area of tensile stress and easy to form a tensile crack. The change area of fracture trend and trip fracture were also the high-value area of tensile stress and important structure area developing tensile crack. The affection on main tensile stress and shear stress field was weakened from Cherchen-xingxingxia strike-slip fault.
     Based on the analysis of simulation, the favorable area of hydrocarbon migration was the 1st fracture in Tazhong uplift, while the favorable areas of crack developing were the east of 1st fault, Tazhong 26 well area, Tazhong 45 well area and the junction by the 2nd trip fault and Tazhong 5-48 well faults.
引文
[1] Barton C A, Zoback M D, Moos D. Fluid flow along potentially active faults in crystalline rock. Geology, 1995, 23: 683~686.
    [2] Borradaile G J,Henry B.Tectonic application of magnetic susceptibility and its anisotropy. Earth Science Review,1997,42:49~93.
    [3] E.M.斯麦霍夫著,陈定宝等译.裂缝性油气储集层勘探的基本理论与方法.北京:石油工业出版社,1985.
    [4] Hooper E D. Fluid migration along growth faults in compacting sediment. Journey of Petroleum, 1991, 4(4): 161~180.
    [5] Hrouda F,Hruskova I.On the detection of weak strain parallel to the bedding by magnetic anisotropy: a mathematical study.StudGeophysGeodyn,1990,34:327~341.
    [6] Hunt J M. Generation and migration of petroleum from abnormal pressured fluid compartment. AAPG Bulletin, 1990, 74(1): 1~12.
    [7] Net,son R A著,柳广第等译.天然裂缝性储集层地质分析.北京:石油工业出版杜,1991.
    [8] Petit J P,Mattauer M.Paleostress superimposition deduced from mesoscale structures in limestone:the Matelles exposure,Languedoc,France.J.Struct.Geol.,1995,17(2):245-256.
    [9] Rouchet J D. Stress field: A key to oil migration. AAPG Bulletin, 1981, 65(1): 74~85.
    [10] Thomas M M, Clouse J A. Scaled physical mode of secondary oil migration. AAPG Bulletin,1995,79(1): 19~29.
    [11]Van Golf—Racht T D著.陈钟祥等译.裂缝性油藏工程基础.北京:石油工业出版社,1985.
    [12]安欧.地壳动力学在石油开发的应用—(四)构造应力场与石油勘探.地壳构造与地壳应力文集(19),2006:8-26.
    [13]陈新军.塔里木盆地塔地区构造-沉积特征及相互关系研究:[博士学位论文].北京:国地质大学,2005.
    [14]单家增.构造模拟实验在石油地质学的应用.北京:石油工业出版社,1996.
    [15]邓俊国,刘泽荣.油气藏成藏期构造应力场与油气聚集.地质论评,1993,39(4):336-342.
    [16]丁长辉,单玄龙,李强等.塔里木盆地车尔臣断裂系地质结构与构造演化.世界地质,2008,27(1):36-42.
    [17]丁原辰.塔里木盆地北部油田古应力的AE法测量.地质力学学报,1996,2(2):18-25.
    [18]宫秀梅.塔里木盆地塔地区油气成藏体系研究:[博士学位论文].北京:国石油大学,2006.
    [19]侯归廷,张臣,钱祥麟,张宝兴.华北克拉通元古代基性岩墙群形成机制及构造应力场.地质论评, 1998,44(3):309-314.
    [20]华保钦.构造应力场、地震泵和油气运移.沉积学报, 1995, 13(2): 77~85.
    [21]黄晓波.塔里木盆地塔地区奥陶系构造应力场模拟及构造裂缝预测:[硕士学位论文].北京:国地质大学,2007.
    [22]贾承造.国塔里木盆地构造特征与油气.石油工业出版社,1997.
    [23]姜耀俭,朱庆杰.松辽盆地西部应力场分布与有利油气储集区预测. 1994.青岛海洋大学出版社.
    [24]蒋有录.基于ANSYS的应力场模拟在库车坳陷克拉苏地区的初步应用.天然气工业,2005,25(4):42-45.
    [25]解晨,王保才,尚雅珍等.塔里木盆地塔低隆起构造演化对油气藏的控制.大庆石油地质与开发,2003,22(2):4-6.
    [26]黎平,陈景山,王振宇.塔地区奥陶系碳酸盐岩储层形成控制因素及储层类型研究.天然气勘探与开发,2003,26(1):37-42.
    [27]李明杰,郑孟林,冯朝荣.塔低凸起的结构特征及其演化.西安石油大学学报(自然科学版),2004,19(4):43-47.
    [28]李宇平,李新生,周翼等.塔地区、上奥陶统沉积特征及沉积演化史.新疆石油地质,2000,21(3):204-208.
    [29]李曰俊,吴根耀,孟庆龙等.塔里木盆地央地区的断裂系统:几何学、运动学和动力学背景.地质科学,2008,43(1):82-118.
    [30]刘克奇,金之钧.塔里木盆地塔低凸起奥陶纪油气成藏体系.地球科学-国地质大学学报,2004,29(4):490-495.
    [31]刘胜,杨海军,李新生等.塔地区早奥陶世沉积特征及沉积演化分析.新疆石油地质,2000,21(1):54-59.
    [32]刘侠.华北地区现今地壳运动及形变动力学数值模拟:[博士学位论文].合肥:国科学技术大学,2007.
    [33]刘晓祥,刘池阳,赵重远.盆地后期改造阶段与应力场演化.石油与天然气地质,1999,20(3):199-203.
    [34]刘训,王永.塔里木板块及其周缘地区有关的构造运动解析.地球学报,1995,3:246-260.
    [35]刘银河.新构造运动对塔45-满西1区块石炭系晚期成藏的作用.石油与天然气地质,2004,25(2):180-184.
    [36]陆廷清,苏培东等.负压空吸作用是油气成藏机制之一.石油勘探与开发, 2003, 30(5): 116~118.
    [37]秦启荣,苏培东,邓辉.塔1号断裂带上奥陶统灰岩裂缝类型划分.西南石油学院学报,2002,24(2):1-4.
    [38]沈安江,王招明,杨海军.塔里木盆地塔地区奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力.海相油气地质,2006,11(4):1-12.
    [39]寿建峰,斯春松,张达.库车坳陷下侏罗统岩石古应力场与砂岩储层性质. 2004,地球学报,25(4):447-452.
    [40]舒志国,朱振道,何希鹏.塔隆起奥陶系古岩溶储层发育特征.新疆地质,2008,26(3):274-278.
    [41]宋惠珍,曾海容,孙君秀.储层古应力场的数值模拟.地震地质,1999,21(3):193-203.
    [42]苏生瑞.断裂构造对地应力场的影响及其工程意义.岩石力学与工程学报,2002,21(2):296.
    [43]孙晓庆.古构造应力场有限元数值模拟的应用及展望.断块油气田,2008,15(3):31-34.
    [44]孙雄,洪汉铮,马宗晋.构造应力作用下的流体运动的动力学分析—构造流体动力学.地球学报, 1998, 19(2): 150~157.
    [45]汤良杰.略论塔里木盆地主要构造运动.石油实验地质,1997,19(2):108-114.
    [46]佟彦明.胶莱盆地构造演化研究:[博士学位论文].武汉:国地质大学,2007.
    [47]万天丰.古构造应力场.北京:地质出版社, 1988.
    [48]王步清,王清华,韩利军等.塔里木盆地东南部车尔臣断裂的分段特征及动力学机制.石油与天然气地质,2007,28(6):755-781.
    [49]王国司.塔里木盆地塔地区奥陶系地层沉积特征.贵州地质,2002,19(3):179-183.
    [50]王红才,王薇,王连捷.油田三维构造应力场数值模拟与油气运移.地球学报,2002,23(2):175—178.
    [51]王鸿祯,刘本培,李思田.国及邻区大地构造划分和构造发展阶段.国及邻区构造古地理和生物古地理,武汉:国地质大学出版社,1990.
    [52]王喜双,李晋超,王绍民.塔里木盆地构造应力场与油气聚集.石油学报,1997,18(1):23—28.
    [53]王喜双,宋惠珍,刘洁.塔里木盆地构造应力场的数值模拟及其对油气聚集的意义.地震地质,1999,21(3):268—273.
    [54]邬长武,熊琦华,蒋春雷.塔16-24井区奥陶系碳酸岩储层裂缝演化及其分布规律.地球学报,2003,24:134-138.
    [55]邬光辉1,刘胜,汪海等.塔地区奥陶系碳酸盐岩裂缝特征与评价.勘探家,1999,4(4):48-54.
    [56]邬光辉2,李建军,卢玉红.塔1号断裂带奥陶系灰岩裂缝特征探讨.石油学报,1999,20(4):19-23.
    [57]吴冲龙,毛小平,田宜平等.三维数字盆地构造-地层格架模拟技术.地质科技情报,2006,25(4):1-8.
    [58]武红岭,王小凤等.油田构造应力场驱动油气运移的理论和方法研究.石油学报,1999, 20(5):7~12.
    [59]武红岭.张性结构面的力学性质与主应力关系解析.地质论评,1999,45(5):449~455.
    [60]许顺山,陈柏林.应用岩石磁性组构研究动力变形作用.地球学报, 1998, 19(1): 19~24.
    [61]闫晓芳,陈景阳.塔地区奥陶系裂缝型碳酸盐岩储集层描述.新疆石油天然气,2005,1(3):21-27.
    [62]杨海军,刘胜,李宇平.塔地区-上奥陶统碳酸盐岩储集层特征分析.海相油气地质,2000,2000,5(1-2):73-83.
    [63]曾海荣,宋惠珍,贾承造.塔地区新生代构造应力场模拟及油气运聚.石油勘探与开发,1996,23(1):17—20.
    [64]曾联波,单业华,田崇鲁.构造应力与油气运移聚集的关系.油气成藏机理及油气资源评价国际研讨会论文集.北京:石油工业出版社,1997. 130~134.
    [65]曾联波,谭成轩,张明利.塔里木盆地库车坳陷新生代构造应力场及其油气运聚效应.国科学D辑(地球科学),2004,34(增刊Ⅰ):98-106.
    [66]曾联波.塔里木盆地库车山前构造带地应力分布特征.石油勘探与开发,2005,32(3):59-60.
    [67]张光亚.塔里木古生代克拉通盆地形成演化与油气.地质出版社,2000.
    [68]张明利,谭成轩,汤良杰.塔里木盆地库车坳陷新生代构造应力场分析. 2004,地球学报,25(6):615-619.
    [69]张水昌,梁狄刚,张宝民等.塔里木盆地海相油气的生成(卷七).石油工业出版社,2004,200-230.
    [70]张晓东.海拉尔盆地乌尔逊断陷构造应力场特征和油气聚集关系.大庆石油地质与开发,1993,12(4):1-4.
    [71]张永军,张开均.根据航磁数据探讨阿尔金断裂带的结构及构造演化.物探与化探,2007,31(6):489-494.
    [72]赵宗举,贾承造,周新源.塔里木盆地塔地区奥陶系油气成藏主控因素及勘探选区.国石油勘探,2006(4):6-15.
    [73]赵宗举,王招明,吴兴宁.塔里木盆地塔地区奥陶系储层成因类型及分布预测.石油实验地质,2007,29(1):40-45.
    [74]周新桂,袁嘉音,张林炎.冀东老爷庙油田断裂构造应力场数值模拟及其应用.国西部油气地质,2006,2(2):175—180.
    [75]朱夏,陈焕霞,孙肇才等.新生代构造与含油气盆地.地质学报,1983,57(3):235-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700