用户名: 密码: 验证码:
污泥混煤燃烧热解特性及其灰渣熔融性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水污泥的处理已成为困扰各国的环境问题,焚烧法和热解法具有资源化和能源化等优点,被认为是两种有前途的热化学处理方法,在发达国家广泛应用。随着经济的迅速发展,污泥的处理处置越来越受到关注,因此,污水污泥的高效洁净焚烧已成为我国城市污水污泥处理亟需研究的课题。
     本文采用热量计、差热天平、加热炉、扫描电子显微镜(SEM)、能谱分析(EDX)及X衍射分析仪(XRD)等分析仪器对污泥及其混煤的热解、燃烧过程进行研究,探讨污泥及其混煤燃烧热解机理,分析燃烧过程的反应动力学特性,对焚烧后的灰渣进行了形貌与物相结构分析。
     对城市污水污泥干燥特性的研究表明:不同厚度、比表面积大小及外部加热干燥条件均影响到污泥的干燥特性。随着料层的减薄,比表面积的增加,污泥干燥速度变快,干燥时间变短,收缩效果变好,过热干燥效果优于饱和干燥。
     用非等温热重分析法进行了污泥的热解特性实验,分析了污泥在升温过程中的基本失重规律。研究显示:污泥的热解过程可用气固反应动力学方程表示为:dα/dτ=AeRT(1-α)n,并得出了污泥热解表观动力学参数。发现r(α)=(1-α)2、f(α)=(1-α)0.2是最适合描述污泥热解反应峰前峰后的机理方程。
     在空气氛围下对城市污水污泥进行燃烧实验,计算了相关的燃烧特性参数,并对污泥燃烧、热解特性进行了比较,发现:在第一温度段(20-330℃)燃烧曲线与热解曲线基本上相同或接近;第二温度段(330-450℃)热解曲线衰减快于燃烧曲线,而在第三温度区(450℃~550℃),由于污泥中高分子有机物的分解燃烧,燃烧曲线衰减更快。实验中还发现氮气氛围下污泥残重要高于空气氛围,说明氧气的存在能够加快污泥的热解。
     对污泥掺混不同比例煤粉的试样进行热重法试验研究发现:在混合试样的热解燃烧过程中,两组分之间不会相互影响,挥发分的释放过程可以认为是两母本试样挥发分释放的总和;混合试样的燃烧曲线位于污泥和煤粉燃烧曲线之间。在煤中掺入城市污泥后,混合试样和煤相比其着火温度减少,但综合燃烧性能却下降。混烧表现出的着火和燃尽等某些特性要优于污泥或煤单独燃烧时的燃烧特性,因而将污泥掺混煤燃烧是可行的,但在进行污泥的掺混燃烧时应合理组织掺混比例。利用热分析方法提出了燃料燃烧特性综合判别指数S',可以对燃料的燃烧特性及其燃尽性能进行初步预测,并通过Arrhenius定律求出了各混合试样的动力学参数。
     污泥焚烧及其混煤燃烧后产生的固体残留物的熔融特性,对焚烧炉的运行会产生多方面的影响。本文在高温熔融炉上对污泥及其混煤进行焚烧试验研究,通过电子扫描显微镜和能量分散光谱仪对焚烧过程中的试样结构和形貌特征进行描述;发现混合试样随着污泥含量的增加,灰分熔融性4个特征温度依次降低,渣样由较松散的煤渣型向熔融状的泥渣型转化;随着温度的升高,灰渣中逐渐出现晶体结构;Na、K元素的含量减少,这与发生的分解反应有关(蒸发分解)。试样中有毒重金属含量较少或未检出,说明生活污水污泥受污染程度较轻。通过X射线衍射仪分析可知:石英Si02、赤铁矿Fe203、硅化钙CaSi(或碳硅石SiC)是所有试样渣的主体组成部分;随着温度的升高,部分渣样中有莫来石(Al6Si2O13)结晶体生成。
Sewage sludge has become a serious environmental problem besetting each country. Because of its advantage of energy recovery and resources recycle, combustion (incineration) and pyrolysis has become two promising disposal methods, which have received wide application in the developed countries. With rapid development of the economy, the treatment and disposal of sewage sludge have been paid attention to by more and more peoples in China. Therefore, how to ensure efficient and clean combustion (incineration) of sewage sludge becomes an emergent subject which needs further research.
     In this dissertation, the pyrolysis of sewage sludge was systematically investigated under different atmospheres of nitrogen and oxygen in the thermogravimetry which can obtain the kinetic parameters by means of a mathematical model, different heating rates being used. The characteristics of samples were detected by calorimeter, proximate analyzer, and the SEM and XRD techniques were used to identify the morphology and mineralogy characteristics of the ash residue respectively.
     The surface area and dry temperature of sludge have important influence on dry characteristics. As the surface area of sludge increases, the dry pace becomes fast, dry time shortened, at the same time its shrink influence change well too, the overheated dry demonstrates better influence than the saturation one.
     The thermogravimetric characteristics of sewage sludge were studied under non-isothermal heating in nitrogen media. The thermogracimetric process can be described as a gas-solid reaction equation, da/dτ=AeE/RT(1-α)n.The apparent kinetics parameters of sewage sludge were calculated using Coats-Redfen integral method and they fitted well with experimental values. Mathematical models of sewage sludge were obtained to describe the pyrolytic decomposition kinetics mechanics in different temperature regions.
     The combustion characteristics indexes at difference heating rates were obtained by experiments of sewage sludge which were carried out in oxidative atmosphere. Two or three different behaviors were observed when comparing the combustion curves with the corresponding pyrolysis curves. Sludge have a combustion curve that is close to the corresponding pyrolysis curve in the 20-330℃temperature range and then show a slower decay at 330-450℃, but at 450-550℃temperature range strong decay at probably as a consequence of the combustion of the car formed. The facts, the higher burnout ratio of sludge in oxidative atmosphere, indicated that the oxygen accelerates the decomposition rate in comparison to the pyrolysis.
     An experimental investigation on the combustion characteristics of the blends of Lanba's coal and Changsha's sewage sludge is conducted by TG dynamic runs at 20℃/min in the temperature range 20~1200℃. The investigation reveals that the curve of blend basically locates between the curves of sewage sludge and coal. Although the sludge-coal blends show an intermediate behavior between sludge and coal, the sewage sludge and coal have basically maintained their respective devolatilisation characteristic, and devolatilisation releasing process can be considered as total devolatilisation of two parent samples. In a way, the ignition and burnout behaviors of blends samples are better than the parent samples. This showed that the co-combustion of coal and sludge (their blends) were feasible, if the weight percentage of sludge in the blend can be controlled properly. A comprehensive discrimination index S'is being suggested, which reflects the combustion and burn-out properties. The Arrhenius activation energy corresponding to the co-combustion of the blends was evaluated by non-isothermal kinetic analysis.
     Slagging characteristics of sludge-coal blends is one of the main factors which influence the safety and economy of incineration boiler. The sintered ash of sludge-coal blends, after having been incinerated in a high temperature furnace at different temperatures, have been studied by scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDX) and X-ray diffractometry (XRD). The results showed that the melting temperature of the ash decreases with the increase the content of sludge ash in blended ash. At the same time, appearances of blended ash is gradually close the sludge ash, in which in situ visual observation and SEM morphology indicate that fusion occurs for the residue. X-ray diffractometer analysis shows that the crystalline material will presented with the sintered temperature increasing. Energy dispersive X-ray microanalysis results show that the content of atriums and kaliums reduce with the sintered temperature increasing, due to the vaporizations of alkali metal. The fact, there are few content of heavy metals in sewage sludge, indicated that there is significant difference between industrial sludge and sewage sludge. X-ray diffractometer crystallization phase results show that quartz, hematite and calcium silicide form in the residue of sludge-coal blends, whereas mullite will be presented in few residue at higher temperature.
引文
[1]唐汝江,污水污泥与煤混合燃烧和热解的试验研究:[硕士学位论文].武汉:华中科技大学,2005
    [2]Werther J, Ogada T. Sewage sludge combustion. Progress in Energy and Combustion Science,1999(25):55~116
    [3]尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业出版社,2005
    [4]McGhee T J. Water supply and sewerage. New York:McGraw-Hill,1991
    [5]Kasakura T, Imoto Y. Incineration performance of a fluidized bed furnace for sewage sludge dewatered cake. Fluidization. Alberta, Canada,1989:375~379
    [6]Lowe P. The development of a sludge disposal strategy for Hong Kong territories. J IWEM,1993(7):350~353
    [7]何品晶,顾国维,李笃中,等.城市污泥处理与利用.北京:科学出版社,2003
    [8]郑兴灿,张悦.我国城市污水处理与再生利用的技术决策要素探讨.21世纪国际城市污水处理及资源化发展战略研讨会与展览会,北京,2001
    [9]甘义群,城市污泥热解特性及资源化利用新方法试验研究:[博士学位论文],武汉,中国地质大学,2005
    [10]徐强.污泥处理处置技术及装置,北京:化学工业出版社,2003
    [11]刘亮,张翠珍.污泥燃烧热解特性及其焚烧技术,长沙:中南大学出版社,2006
    [12]尹军,谭学军,廖国盘,等.我国城市污水污泥的特性与处置现状.中国给水排水,2003,19(13):21-24
    [13]吴健波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向.中国给水排水,2001,11(17):24-26
    [14]周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报,2000,20(3):269-274
    [15]周立祥,王良梅.污水污泥中重金属的细菌淋滤效果研究.环境科学学报,2001,21(4):504-506
    [16]莫测辉,蔡全英,王伯光,等.我国城市污泥中醚类和卤代烃类有机污染物的初步研究.环境科学学报,2002,22(5):671-676
    [17]莫测辉,蔡全英,王江海,等.城市污泥在矿山废弃地复垦的应用探讨,生态学杂志,2001,20(2):44-47
    [18]莫测辉,蔡全英,吴启堂,等.城市污泥中有机污染物的研究进展.农业环境保护,2001,20(4):273-276
    [19]汪洪生.国外污泥处理技术进展.污染防治技术,1998,11(1):32-33
    [20]咎元峰,王数众,沈林华,等.污泥处理技术的新进展.中国给水排水,2004,2(6):25-28
    [21]李美玉,李爱民.发展我国污泥流化床焚烧技术,劳动安全与健康,2001,8,20-23
    [22]Hall J E. Treatment and use of sewage sludge in EC. In:Bradshaw AD, Southwood R, Warner F, editors. The treatment and handling of wastes. London: Chapman and Hall,1992
    [23]Mathews P J. Sewage sludge disposal in the UK—A new challenge for the next twenty years. J CIWEM,1992; 6:551~559 [24] Goldsmith P. Sanitary solutions. The Chemical Engineer,1994:13~14
    [25]Vesilind P A, Ramsey T B. Effect of drying temperature on the fuel value of waste water sludge. Wastewater Management and Research 1996,14:189~196
    [26]汪恂.略述城市污水厂污泥热化学处理技术,武汉工业大学学报.1999,12(21),1-6
    [27]Suzuki S, Tanaka M, Kaneko T. Glass ceramic from sewage sludge. Journal of Material Science 1997:32(7):1775~1780
    [28]蒋旭光,高水分污泥流化床焚烧的试验、理论及应用研究:[博士学位论文],杭州:浙江大学,1996
    [29]Andres Fullana, Juan, Pyrolysis of sewage sludge:nitrogenated compounds and pretreatment effects, Journal of Analytical and Applied Pyrolysis 2003(68-69): 561~575
    [30]Chen Xiaoge, Jeyaseelan S. Study of Sewage Sludge Pyrolysis Mechanism and Mathematical Modeling, Journal of Environmental Engineering,2001 (6) 585~593
    [31]Yua Yong Ho, Kim Sang Done. Kinetic studies of dehydration, pyrolysis and combustion of paper sludge, Energy,2002(27)457~469
    [32]Shen Lilly, Zhang Dong-Ke. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed, Fuel,2003 (4) 465~472
    [33]Inguanzo M, Dominguez A. On the pyrolysis of sewage sludge:the influence of pyrolysis conditions on solid,liquid and gas fractions, Journal of Analytical and Applied Pyrolysis,2002 (63),209~222
    [34]Conesa J A, Marcilla A. Kinetic Study of The Pyrolysis of Sewage Sludge, Waste Management&Research,1997 (15),293~305
    [35]Lu G.Q, Low J C F, Liu A Y, Lua A C. Surface area development of sewage sludge during pyrolysis, Fuel,1995(74),344~348
    [36]Rumphorst M P, Ringel H D. Pyrolysis of sewage sludge and use of pyrolysis coke, Journal of Analytical and Applied Pyrolysis,1994 (28),137~155
    [37]Dominguez A, Menendez J A. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges, Journal of Chromatography A,2003 (1012),193~206
    [38]Kaminsky W, Kummer A B. Fluidized bed pyrolysis of digested sewage sludge. Journal of Analytical and Applied Pyrolysis,1989,16(1),27~35
    [39]Piskorz J, Scott D S, Westerburg I B, Flash Pyrolysis of Sewage Sludge, Process Design&Development,1986,25:265~270
    [40]Bayer E, Kutubuddin M, Low Temperature Convertion of Sludge and Waste to Oil. In:K J ThomeKozmiensky, U. Loll, eds. EF Verlag, Berlin,1987:314~318
    [41]Bridle T R, Energy Recovery from Sludge Using an Environmentally Sound Process, Adelaide International Workshop on Thermal Energy Engineering and the Environment, Keynote Lecture,1998
    [42]Lu G Q,Low J C, Liu C Y, et al. Surface area development of sewage sludge during pyrolysis. Fuel,1995,74(3):344~348
    [43]王红,周浩生,孙学信,等.应用TGA-FTIR研究污泥与煤的热解规律,华中理工大学学报,1999,9:38-40
    [44]何品晶,邵立明,顾国维,等.城市污水厂污泥低温热解动力学模型研究.环境科学学报,2001,21(3):148-151
    [45]汪询,污泥热化学处理的试验研究.武汉理工大学学报,2002,24(6):35-37
    [46]孙兰军,李爱民,张天仪.污水厂污泥在不同氧气浓度下的热分析动力学特性研究.安全与环境学报,2006,6(6):5-8
    [47]温俊明,池涌,刘渊源,等.城市污水污泥的燃烧动力学特性研究.电站系统工程,2004,20(5),5-7
    [48]赵长遂,黄超, 陈晓平,等.造纸污泥热解试验和化学动力学研究.南 京工程学院学报,2003,1(2),2-6
    [49]陈曼,金保升,贾相如.城市污水污泥的热解动力学特性研究.能源研究与利用,2005(3):31-34
    [50]Calvo L F, Otero M, et al. Heating process characteristics and kinetics of sewagesludge in different atmospheres. Thermochimica Acta.2004.409:127-135
    [51]Nadziakiewicz J, Koziol M. Co-combustion of sludge with coal. Appl Energy 2003;75:239-248
    [52]Spliethoff H, Hein K R G. Effect of co-combustion of biomass on emission in pulverized fuel furnaces. Fuel Process Technol,1998;54:189-198
    [53]姜秀民,杨海平,刘辉,等.粉煤颗粒粒度对燃烧特性影响热分析.中国电机工程学报,2002,22(12):142-145
    [54]刘彦,周俊虎,方磊,等.02/C02气氛煤粉燃烧及固硫特性研究.中国电机工程学报,2004,24(8):224-228
    [55]鲍棋铭,高乃奎,马小芹,等.大型发电机主绝缘老化的热分析研究.中国电机工程学报,2003,23(7):99-101
    [56]Ndaji F E, Ellyat W A T, Malik A A, et al. Temperature programmed combustion studies of the co-processing of coal and waste materials. Fuel 1999; 78:3019
    [57]Otero M, Diez C, Calvo L F, et al. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass Bioenergy.2002; 22:319~329
    [58]Font R, Fullana A, Conesa J A, et al. Analysis of the pyrolysis and combustion of different sewage sludge by TG. Journal of Analytical and Applied Pyrolysis,2001,58-59:927~941
    [59]Natascha Wolski, Fine particle formation from co-combustion of sewage sludge and bituminous coal. Fuel Processing Technology.2004(85),673~686
    [60]蒋旭光,池涌,严建华,等.污泥的热解动力学特性研究.环境科学学报,1999,19(2):221-224
    [61]顾利锋,陈晓平,赵长遂,等.城市污泥和煤混燃特性的热重分析法研究.热能动力工程,2003,18(6):561-563
    [62]苏胜,李培生,孙学信,等.污泥基本特性及其与煤混烧的热重研究.热力发电,2004,09:69-74
    [63]张云都,喻剑辉,郭建全,等.煤与城市污泥混燃的热重法研究.煤炭转化,2005,28(5):67-71
    [64]丘纪华,污泥的焚烧特性和化学动力学分析.华中科技大学学报(自然科 学版),2005,33(58):25-26
    [65]陈江,污泥的热解特性实验研究.浙江工业大学学报,2005,33(3):315-318
    [66]张云鹏,利用热重分析不同废水污泥的热解和燃烧.环境科学与技术,2005,28(5):34-36
    [67]Ogada T P M. Combustion and emission characteristics of sewage sludge in a bubbling fluidised bed combustor. [Ph.D. Dissertation], Technical University of Hamburg, Hamburg,1995.
    [68]Chobanoglous G. Wastewater engineering, treatment, disposal and reuse. McGraw-Hill,1987
    [69]Mullen J F. Consider fluid-bed incineration for hazardous waste destruction. Chemical Engineering Progress 1992; 50:50-58
    [70]Vayda S H, Jauhiainen O E, Astrom L. Operating experience of an ecoenergy bubbling fluidised bed combustion boiler burning paper mill sludges in combination with woodwaste and other fuels. Proceedings 12th International Conference on Fluidised Bed Combustion. San Diego, CA:ASME,1993:521-537
    [71]Louhimo T K. Combustion of pulp and paper mill sludges and biomass in BFB. Proceedings 12th International Conference on Fluidised Bed Combustion. San Diego, CA:ASME,1993:249-261.
    [72]Brain Hemphill, Fluid bed technology for sludge destruction. Water/Engineering &Management,1998,12:37-40
    [73]Ann Ches, Nut Hashbach, Putting Sludge to work; Pollution Engineering, 1991,12:62
    [74]Janust A, Kozinski et al, Combustion of Sludge Waste in FBC distribution of metals and particle sizes, Proceedings of 13th International Conference on FBC, ASME,1995:1493
    [75]Anthony E J. et al, The Technical, Environmental, and Economic feasibility of Recovering Energy from Paper mill Residual Fiber, Proceedings 12th International Conference on Fluidised Bed Combustion. San Diego, CA:ASME,1993:239
    [76]Lowe, Paul, et al, Revival of incineration in the UK, Water Science&Technology,1990,23:10-12
    [77]Gillian Hand-Smith. Sludge Disposal:the Future of High-tech Sludge incineration. Wastes Management,1999,3:41-42
    [78]Lotito V, Mininni G, DiPinto AC. Sludge Incineration Tests on Circulating Fluizized Bed Furnace. Water Science&Technology,2001,44:409~416
    [79]曾庭华,污泥在流化床中的焚烧特性及其二次污染研究,[博士学位论文],杭州,浙江大学,1997
    [80]李一铆,污泥焚烧炉隔热衬里的施工及投运,化工设计通讯,1992,18(4): 59
    [81]胡光陨,城市污泥的合成染料的应用研究,中国给水排水,1996(2):13-15
    [82]李晓东,岑字虹.65t/d高水分城市废水污泥流化床焚烧炉的研制开发.电站系统工程,2000,16(6):356-359
    [83]曾庭华等,污泥在流化床中的焚烧特性研究,中国工程热物理年会燃烧学术会议论文集,宜昌,1995,Ⅲ:58-63
    [84]蒋旭光,池涌,严建华,等.用于处理造纸污泥的流化床燃烧新技术.动力工程,1994,4:34-38
    [85]Li Xiaodong, Yan Jianhua, Study of a Fluidized bed Combustion Technology Co-firing Municipal Solid Waste and Coal and Its Applications. Proceeding of the 15th International Conference on Fluidized Bed Combustion, Savannah, May 16-19, 1999
    [86]李晓东,岑宇虹.污泥流化床焚烧技术的研究及应用.燃烧科学与技术.2002,8(2):159-162
    [87]李斌,池涌,曾庭华.造纸污泥与废水污泥流化床焚烧时NOx和S02的排放特性研究.工程热物理学报,1998.19(6):776-779
    [88]余兆南,曾庭华.污泥流化床焚烧时NOx的排放规律研究.环境保护,1998.(02):36-38
    [89]曾振平,污水污泥的燃烧与热解特性研究,[硕士学位论文],武汉,华中理工大学,1999
    [90]陈晓平,赵长遂.造纸污泥流化床焚烧试验研究.污染防治技术,1998.(07):23-25
    [91]陈晓平,赵长遂,兰计香.造纸污泥流化床焚烧技术试验研究.燃烧科学与技术,2000,6(1):15-18
    [92]李爱民,曲艳丽,姚伟,等.污泥焚烧底灰中重金属残留特性的实验研究.环境污染治理技术与设备,2002,11(3):20-24
    [93]韩军,下水道污泥焚烧过程中重金属元素的挥发与回收,[博士学位论文],武汉,华中科技大学,2005
    [94]丁奉华,城市污水污泥的焚烧研究,[硕士学位论文],北京,清华大学, 2001
    [95]李明,李伟东,李伟锋,等.污泥对神府煤灰熔点的影响.燃烧化学学报,2009,37(4),416-420
    [96]刘刚,池涌,蒋旭光,等.电镀污泥焚烧后的灰渣分析,动力工程,2006,26(4):576-579,603
    [97]韩军,徐明厚,姚洪,等.高温熔融炉中污泥的焚烧试验.华中科技大学学报,2006,34(6),108-110
    [98]崔素萍,刘红,田巍,等.城市污泥焚烧特性研究,第十届全国水泥和混凝土化学及应用技术会议论文摘要集,2007
    [99]Cheeseman C R, Sollars C J, McEntee S. Properties, Microstructure and leaching of sintered sewage sludge ash, Resources, Conservation and Recycling, 2003,40(1):13~25
    [100]Lin Kae-Long, Chiang Kung-Yuh, Lin Deng-Fong, Effect of heating temperature on the sintering characteristics of sewage sludge ash, Journal of Hazardous Materials,2006,28 (2-3):175~181
    [101]Wang Kuen-Sheng, Chiou Ing-Jia, Chen Ching-Ho, et al. Lightweight properties and pore structure of foamed material made from sewage sludge ash, Construction and Building Materials,2005,19 (8):627~633
    [102]Espinosa D C R, Tenorio J A S. Thermal behavior of chromium electroplating sludge, Waste Management,2001,21(4):405~410
    [103]Huffman G P, Huggins F E, Dunmy G R. Investigation of the high-temperature behavior of coal ash in reducing and oxidizing atmo-spher. Fuel, 1991,70 (3):585~597
    [104]钱觉时,吴传明,王智.粉煤灰的矿物组成(中).粉煤灰综合利用,2001,(2):37-41
    [105]钱觉时,吴传明,王智.粉煤灰的矿物组成(下).粉煤灰综合利用,2001,(4):24-28
    [106]Huggins F E, Kosmack D A, Huffman G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams. Fuel,1991,70(3):577~584
    [107]T.F.Wall, Mineral matter in coal and thermal performance of large boilers. Prog.Energy combust.Sci.,2002,5 (1):1-29
    [108]李帆,邱建荣,郑瑛,等.煤燃烧过程矿物质行为研究.工程热物理学报,1999,20(2):258-260
    [109]Steenari B M, Lindqvist O, Langer V. Ash sintering and deposit formation in PFBC. Fuel,1998,77 (2):407~417
    [110]Gon C, Helle S, Garcia X, et al. Coal blend combustion:fusibility ranking from mineral matter composition. Fuel,2003,82:2087~2095
    [111]姚多喜,支霞臣,郑宝山.煤中矿物质在燃烧过程中的演化特征.中国煤田地质,2003,15(2):10-11
    [112]Shuntaro Koyama, Tadaoki Morimoto, Akio Ueda, et al. A microscopic study of ash deposits in a two-stage entrained-bed coal gasifier. Fuel,1996,75 (4): 459~465
    [113]陆继东,华玉龙,孙路石,等.污水污泥的燃烧特性,燃烧科学与技术,2001,7(3):271-274
    [114]奉华,张衍国,邱天,等.城市污水污泥的热解特性,清华大学学报(自然科学版),2001,41(10):90-92
    [115]Koufopanos C A, Maschio G, Lucchesi A. Kinetics modeling of the pyrolysis of biomass components. Journal of Chemical Engineering,1989,67(1):75~84
    [116]Urban D J, Antal J. Study of the kinetics modeling of the pyrolysis of biomass components. Fuel,1982,61(5):799~806
    [117]张辰,张善发,王国华,污泥处理处置研究进展,北京:化学工业出版社,2005,5-8
    [118]尹世安,动力燃料分析.北京,水利电力出版社,1984:20-50
    [119]肖锦.城市污水处理及回用技术.北京:化学工业出版社环境科学与工程出版中心,2002,(5):357-402
    [120]金维强,锅炉实验,北京:水利电力出版社,1990,6-14
    [121]王伟,袁光钮.我国的固体废物处理技术现状与发展.环境科学,1997,18(2):87-90
    [122]安丽,陈祖齐,潘智生,等.污泥处置方法的研究.环境工程,2000,180(1):40-43.
    [123]陈镜泓,李传儒.热分析及其应用.北京:科学出版社出版.1985
    [124]傅献彩,沈文霞,姚天扬,等.物理化学.第4版.北京:高等教育出版社,1990
    [125]Galwey A K, Brown B E. Thermal decomposition of ionic solid. Elservier: Amsterdam,1999
    [126]Coats A W, Redefern J P, Kinetic parmeters from thermo gravimetric data. Nature,1964.201:68~69.
    [127]胡荣祖,高胜利,赵凤起,等.热分析动力学,北京,科学出版社,2008.01, 117-118
    [128]陈海翔,生物质热解的物理化学模型与分析方法研究:[博士学位论文].合肥:中国科学技术大学,2006.
    [129]Cmapbell H W. Conversion of sludge to oil:A novel approach to Sludge management. Water Science&Technology,1989,21:1467~1475
    [130]Hudson J A. Current technologies for sludge treatment and disposal. Water Environ. Manage.1996,10(12):20~21
    [131]魏先勋,翟云波,城市污水处理厂污泥资源化利用技术进展,环境污染治理技术与设备,2003(10):10-13
    [132]彭晓峰,陈剑波,陶涛,等.污泥特性及相关热物理研究方向.中国科学基金,2002,(5):284-285
    [133]孙学信,燃煤锅炉燃烧实验技术与方法.北京,中国电力出版社,2002.1,78-82
    [134]刘亮,李录平,柏湘杨,等.混煤热解特性及燃烧过程的实验研究.动力工程,2006,26(1):130-134
    [135]胡建红,工业污泥热解和燃烧及动力学特性实验研究,[硕士学位论文],重庆,重庆大学,2006
    [136]李水清.固体废物热解制取洁净燃料和化学原料的基础研究,[博士学位论文].杭州:浙江大学,2002
    [137]Folgueras. M.B, et al. Thermo gravimetric analysis of the co-combustion of coal and sewage sludge. Fuel,2003.82:2051~2055
    [138]陈勇,马晓茜,李海滨,等.固体废弃物能源利用.广州华南理工大学出版社.2002
    [139]李鑫.废轮胎流化床热解特性研究:[博士学位论文].杭州:浙江大学,2002
    [140]李润东.城市垃圾焚烧飞灰熔融过程的机理研究:[博士学位论文].杭州:浙江大学,2002
    [141]Vlaev L T, Markovska I G, Lyubchev LA. Non-isothermal kineties of Pyrolysis of rice husk. Thermochimiea Acta,2003,406(1-2):1-7
    [142]Rodriguez R, Gauthier D, Udaquiola S. et al. Kinetic study and characterization of sewage aludge for its incineration. J. Environ. Eng. Sci.2008, 7:247~257
    [143]陆继东,华玉龙,孙路石,等.污水污泥的燃烧特性.燃烧科学与技术,2001,7(3):271-274
    [144]聂其红,孙绍增,李争起,等.褐煤混煤燃烧特性的热重分析法研究.燃烧科学与技术,2001,7(1):72-76
    [145]喻秋梅,庞亚军.煤燃烧试验中着火点确定方法的探讨.华北电力技术,2001(7):9-10
    [146]张晓杰,聂其红,李振中,等.混煤着火过程试验研究.电站系统工程,1999,5(6):41-44
    [147]姚强,岑可法等.多煤种混煤特性的试验研究.动力工程,1997,17(2):16-20
    [148]鄢晓忠,陈冬林,刘亮,等.煤粉细度对燃烧特性影响的实验研究.动力工程,2007,27(5):682-686
    [149]Garcia A N, Marcilla A, Font R. Thermo-gravimetric kinetic study of the pyrolysis of municipal solid waste, Thermochimica Acta,1995,254(1):277~304
    [150]Kilzer F J, Broido A. Speculations on the nature of cellulose pyrolysis, Pyrodynamics,1965,2(1):151~163
    [151]冉景煜,胡建红,王裕明,等.含金属元素化合物和压力对工业污泥燃烧特性的影响.环境科学学报.2008.28(1):108-113
    [152]Conesa J A, Font R, Fullana A, et al. Kinetic model for the combustion of tyre wastes. Fuel,1998 (77):1469~1475
    [153]Caballero J A, Font R, Esperanza M M. Kinetics of the thermal decomposition of tannery waste, Journal of Analytical and Applied Pyrolysis.1998 (47) 129~148
    [154]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.1
    [155]Varey J E, Hindmarsh C J, Thomas K M. The detection of reactive intermediates in the combustion and pyrolysis of coals, chars and macerals. Fuel 1996; 75:165
    [156]刘振海.化学分析手册一热分析.第二版.北京:化学工业出版社,2000.47-54
    [157]Folgueras M B, Diaz R M, Xiberta J. Pyrolysis of blends of different types of sewage sludge with one bituminous coal. Energy,2005 (30) 1079~1091
    [158]李永华,陈鸿伟,刘吉臻,等.800MW锅炉混煤燃烧数值模拟.中国电机工程学报,2002,22(6):101-104
    [159]俞海淼.煤及煤浆炉内沾污结渣动态过程及烧结试验研究.[博士学位论文].杭州:浙江大学,2005
    [160]俞海淼,曹欣玉,周俊虎,等.高碱灰渣烧结熔融过程中的物相变化,煤炭学报,32(12),1316-1319
    [161]Ilica M, Cheesem and C, Sollarsb C, et,al. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel 2003,82:331~336
    [162]俞海淼,曹欣玉,周俊虎,等.再燃、喷钙对燃烧神华煤炉内沾污结渣特性的影响.浙江大学学报(工学版),2006,40(7):1187-1191
    [163]Constance L. Senior, Joseph J. Helble, Adel F. Sarofim. Emissions of mercury, trace elements, and fine particles from stationary combusition sources. Fuel processing Technology,2000(8):65-66 263~288
    [164]Espinosa D C, Tenorio J A. Thermal behavior of chromium electroplating sludge. Waste Management,2001(21):405~410
    [165]Gonich, Helle S, Garcia X, et al. Coal blended combustion:Fusibility ranking from mioneral matter composition. Fuel,2003,82(15-17):2087~2095.
    [166]杨建国,刘志,赵虹,等.配煤煤灰内矿物质转变过程与熔融特性规律.中国电机工程学报,2008,14:61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700