用户名: 密码: 验证码:
浸没式金属膜生物反应器处理城市污水性能及膜污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展、城市化进程的加快和人们环保意识的提高,城市水资源问题日益明显和突出。城市污水作为城市的第二水源,目前已被世界各国广泛回收和再利用。在众多的城市污水处理及回用技术中,膜生物反应器(Membrane Bioreactor, MBR)是将膜分离技术与生物反应器技术相结合的一种新型污水处理工艺,日益受到各国水处理技术研究者的关注。然而,膜污染是当前制约MBR广泛应用的关键问题,膜污染导致系统膜通量下降、膜清洗和更换频率加快,进而增加MBR运行的能耗和成本。
     本研究采用浸没板式不锈钢金属膜生物反应器(Metal Membrane Bioreactor, MMBR)处理城市污水,考察不锈钢金属膜应用于城市污水处理可行性的同时,对MMBR运行中的膜污染问题进行深入研究,探讨膜污染控制和膜清洗的各种方法及效果,为MMBR在城市污水和其他工业废水处理中的实际应用与推广提供理论指导和技术支持。
     系统的运行参数是MBR运行中膜污染的重要影响因素,因此在MMBR处理城市污水的长期实验前,首先开展了运行参数的优化工作。通过选取抽停时间比、曝气量、反洗频率和反洗水量为控制参数,以跨膜压力(Trans-membrane Pressure, TMP)的日均变化值为评价指标,进行L9(34)正交实验,得出了相应的优化参数值和影响强度顺序。
     根据正交实验的优化参数,MMBR在0.4~1m3/(m2·d)的膜通量下进行了270d的连续运行。结果表明:在稳定运行阶段,无论是单一好氧还是缺氧/好氧(Anoxic/Oxic, A/O)模式,系统均具有良好的化学需氧量(Chemical Oxygen Demand, COD)、氨氮、悬浮固体(Suspended Solids, SS)去除能力。金属膜的过滤强化了系统的COD去除能力,较高的混合液悬浮固体(Mixed Liquor Suspended Solids, MLSS)浓度和系统特殊的内循环结构导致的同步硝化反硝化(Simultaneous Nitrification and Denitrification, SND)带来了额外的总氮(Total Nitrogen, TN)去除效果。
     通过对膜污染状况、膜过滤阻力组成和膜清洗的研究,发现好氧模式下优势膜过滤阻力为凝胶滤饼层阻力,A/O模式下的优势阻力则为膜内部阻力。好氧模式下膜污染能通过机械清洗和NaOCl在线反洗有效去除,系统在0.8~1m3/(m2·d)的高膜通量下未进行离线清洗连续运行了115d。而A/O模式下单纯膜清洗已不足以控制膜污染的发展,必须对混合液性状进行调控,减小系统中微小粒子的数量,减缓膜内部污染的发展。
     为对系统混合液性状进行调控,减缓膜污染的发展,进行了投加粉末活性炭(Powdered Activated Carbon, PAC)的MMBR对比研究。通过对两组MMBR系统中污染物去除率、TMP变化趋势、膜过滤阻力组成以及混合液性状的比较,发现投加PAC能提高MMBR系统的抗冲击负荷能力,并能有效改善混合液性状,增加混合液絮体的平均粒径和强度,降低微粒子、胞外聚合物(Extracellular Polymeric Substance, EPS )、胶体颗粒、溶解物质的浓度及混合液粘度值,进而有效减轻膜污染,减缓TMP的增加速度,延长MMBR系统的运行时间。
     考虑到使用NaOCl等化学药剂进行膜清洗带来的环境问题,本研究针对连续运行的MMBR进行了臭氧在线和离线膜清洗实验,考察臭氧水浓度、pH、清洗时间、清洗频率等对膜污染去除效果的影响,并通过寻找优化的臭氧水清洗参数值,建立了一种新型环保有效的膜污染控制和清洗方法。
     为考察本研究所用不锈钢金属膜过滤性能与有机膜的差别,最后还进行了不锈钢膜与聚醚砜(Polyethersulfone, PES)膜的对比实验。结果显示不锈钢膜的膜固有阻力和临界通量都优于PES膜。在处理城市污水的连续运行中,二者对污染物的去除效果差别不大,但不锈钢膜TMP增加速度较慢,抗污染能力较强,还具有强度高、耐腐蚀、抗氧化、可干态保存、应用范围广等诸多优点,具有很好的应用前景和发展潜力。
With the development of social economy, rapid urbanization and increasing environmental awareness, water resource stress becomes more evident and serious in city areas recently. Municipal sewage, called "the second water source", is widely reclaimed and reused to meet the growing city water pressure in all over the world. Membrane bioreactor (MBR), combined with membrane separation technology and biological treatment process, has been much respected among numerous municipal sewage reusing technologies by water treatment researchers. However, membrane fouling has been a main obstacle preventing wide utilization of MBRs because it causes a significant decline of permeate flux, requires more cleanings and replacement of fouled membranes, and consequently, increases the energy consumption and operating cost of the treatment process.
     In this study a submerged metal membrane bioreactor (MMBR) coupled with stainless steel flat membranes was performed for treating municipal sewage. The feasibility of MMBR in treating municipal sewage was investigated. Membrane fouling behaviors were also investigated to discuss the effect of membrane fouling control and membrane cleaning. This study will provide theoretical foundation and technical support for the wide utilization of MMBR in municipal sewage and industrial waste treatment.
     Operationc parameters affected membrane fouling greatly. Therefore, an orthogonal optimization experiment of operational parameters was carried out before long period running. Four parameters including the ratio of suction time to non-suction time, aeration rate, backwashing frequency and backwashing flux were chosen as the factors. Average daily change rate of trans-membrane pressure (TMP) was used as the evaluate index. Lastly the optimal operational parameters and its influence intensity sequence were obtained by the L9(34) orthogonal experiment.
     According to the optimal operational parameters, continued experiment was carried out for 270 days at the permeate flux of 0.4~1m/(m2·d). The results indicated that MMBR had good removal efficiencies of chemical oxygen demand (COD), ammonium and suspended solids (SS) under both oxic and anoxic/oxic (A/O) mode in stable state. COD removal efficiency was improved by the fine filtration of stainless steel membrane. Simultaneous nitrification and denitrification (SND) due to high mixed liquor suspended solids (MLSS) concentration and special inner circulation structure resulted in additional total nitrogen (TN) removal.
     The study on membrane fouling, composition of filtration resistance and membrane cleaning showed that the predominate filtration resistances under oxic mode and A/O mode were cake layer resistance and internal resistance, respectively. Membrane fouling under oxic mode was alleviated effectively by mechanical cleaning or on-line NaOCl back washing and MMBR ran stably for 115 days at the permeate flux of 0.8~1m3/(m2·d) without off-line cleaning. But membrane fouling could not be controlled only by membrane cleaning under A/O mode. Mixed liquor characteristics must be controlled to reduce the amount of fine particles and slow down the worsening rate of internal fouling.
     Comparative experiments on effect of dosing powdered activated carbon (PAC) to mixed liquor characteristics were performed. The influence of PAC on contamination removal efficiencies, mixed liquor characteristics, filtration resistance and membrane fouling was investigated. The results showed that the anti-shock loading capability was improved by PAC in MMBR. The mixed liquor characteristics was also modified by PAC as increased mean particle size, enhanced intensity of floc, lower concentrations of fine particles, soluble substance and extracellular polymeric substance (EPS), and lower viscosity. Therefore membrane fouling was well controlled, which resulted in slower increasing rate of TMP and long operation life of MMBR.
     Because of the environmental damage due to NaOCl used in membrane cleaning, green and safe membrane cleaning reagents were needed. Ozone was used as a new membrane cleaning reagent to control and remove membrane fouling in the study. On-line back washing and off-line washing with ozone solution under different concentration, pH, washing time and washing frequency were conducted. At last an effective membrane cleaning method with ozone solution was established.
     Finally a comparative study between stainless steel membrane and polyethersulfone (PES) membrane was carried out. The stainless steel membrane showed lower membrane intrinsic resistance and higher critical flux. In the treatment of municipal sewage, stainless steel membrane and PES membrane showed almost the same contaminant removal efficiencies, but the stainless steel membrane indicated higher anti-fouling ability and slower TMP increasing rate. Combined with other advantages such as high intensity, strong corrosion resistance, good antioxidation, convenient preservation at dry state and wide utilization scope, the stainless steel membrane must have a promising future in wastewater treatment.
引文
1. 金兆丰,徐竞成,余志荣等.城市污水回用技术手册[M].北京:化学工业出版社,2004:7-8,27.
    2. Bouwer H. Integrated water management:emerging issues and challenges[J]. Agric. Water Manage.,2000,45(3):217-228.
    3. Arnell N W. Climate change and global water resources[J]. Global Environ. Change,1999, 9(S1):31-49.
    4. 张春燕.世界水日潘基文为水请命[OL]http://zqb.cyol.com/content/2007-03/23/content_1709041.htm,2007.03.23.
    5. 中华人民共和国国家统计局.环境统计数据(2003年-2007年)[EB/OL]. http://www.stats. gov.cn/tjsj/qtsj/hjtjzl/index.htm,2008.12.12.
    6. 沈福新,耿雷华,曹霞莉等.中国水资源长期需求展望[J].水科学进展,2005,16(4):552-555.
    7. 马秀波,许运宏,周彤.污水再生利用形势与展望[A].污水再生利用技术交流年会论文集[C].北京:2005.
    8. 中华人民共和国环境保护部.2007年中国环境状况公报[EB/OL]. http://www.zhb.gov. cn/plan/zkgb/2007zkgb,2008.12.09.
    9. 赵勇,裴源生,陈一鸣.我国城市缺水研究[J].水科学进展,2006,17(3):389-394.
    10. Bixio D, Thoeye C, De Koning J, et al. Wastewater reuse in Europe[J]. Desalination,2006, 187(1-3):89-101.
    11. Wintgens T, Melin T, Schafer A, et al. The role of membrane processes in municipal wastewater reclamation and reuse[J]. Desalination,2005,178(1-3):1-11.
    12.中华人民共和国住房和城乡建设部.城建统计公报(2001年-2002年)[EB/OL]. http://www. mohurd. gov.cn/hytj/jshytjgb,2008.12.12.
    13.司新亚,孙守焕.污水回用——解决水危机的重要途径[J].煤矿现代化,2007,3:75.
    14.王培风.城市污水再生回用技术途径[J].浙江水利水电专科学校学报,2006,18(3):59-61.
    15.黄霞,曹斌,文湘华等.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报,2008,28(3):416-432.
    16. Brindle K, Stephenson T. The application of membrane biological reactors for the treatment of wastewaters[J]. Biotechnol. Bioeng.,1996,49(6):601-610.
    17. Marrot B, Barrios-Martinez A, Moulin P, et al. Industrial wastewater treatment in a membrane bioreactor:a review[J]. Environ. Prog.,2004,23(1):59-68.
    18. Visvanathan C, Ben Aim R, Parameshwaran K. Membrane separation bioreactors for wastewater treatment[J]. Crit. Rev. Environ. Sci. Technol.,2000,30(1):1-48.
    19.白玲,蓝伟光,严滨等.废水处理中膜生物反应器的研究进展[J].膜科学与技术,2008,28(1):91-96.
    20.朱列平,黄圣散,朱益民等.东丽MBR技术及在北京奥运场馆中水回用中的应用[J].水工业市场,2008,9:37-40.
    21. Yamamoto K, Hiasa M, Mahmood T, et al. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J]. Water Sci. Technol.,1989,21(4-5):43-54.
    22. Brockmann M, Seyfried C F. Sludge activity under the conditions of crossflow microfiltration[J]. Water Sci. Technol.,1997,35(10):173-181.
    23. Judd S J, Till S W. Bacterial rejection in crossflow microfiltration of sewage[J]. Desalination, 2000,127(3):251-260.
    24. Ji L, Zhou J T. Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors[J]. J. Membr. Sci.,2006,276(1-2):168-177.
    25. Ben Aim R M, Semmens M J. Membrane bioreactors for wastewater treatment and reuse:a success story[J]. Water Sci. Technol.,2002,47(1):1-5.
    26. Daigger G T, Rittmann B E, Adham S, et al. Are membrane bioreactors ready for widespread application?[J]. Environ. Sci. Technol.,2005,39(19):399A-406A.
    27. Zhang S T, Qu Y B, Liu Y H, et al. Experimental study of domestic sewage treatment with a metal membrane bioreactor[J]. Desalination,2005,177(1-3):83-93.
    28. Cote P, Buisson H, Pound C, et al. Immersed membrane activated sludge for the reuse of municipal wastewater[J]. Desalination,1997,113(2-3):189-196.
    29.魏源送,樊耀波.蠕虫污泥减量效果及其影响因素分析[J].环境科学,2005,26(1):76-83.
    30. Gander M, Jefferson B, Judd S. Aerobic MBRs for domestic wastewater treatment:a review with cost considerations[J]. Sep. Purif. Technol.,2000,18(2):119-130.
    31. Kimura K, Hanea Y, Watanabe Y, et al. Irreversible membrane fouling during ultrafiltration of surface water[J]. Water Res.,2004,38(14-15):3431-3441.
    32Stephenson T等著.张树国,李咏梅译.膜生物反应器污水处理技术[M].北京:化学工业出版社,2003:4-6,65-104.
    33.冯文婕,蔡邦肖.膜生物反应器技术与市场的发展[J].海洋技术,2007,26(4):126-130,137.
    34.李志东,李娜,张洪林.膜生物反应器(MBR)处理废水的研究进展[J].净水技术,2007,26(1):18-22.
    35.林红军,陆晓峰,梁国明等.厌氧膜生物反应器的研究和应用进展[J].净水技术,2007,26(6):1-6,61.
    36. Le Clech P, Chen V, Fane T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. J. Membr. Sci.,2006,284(1-2):17-53.
    37.于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水,2006,37(2):1-6.
    38.蔡亮,杨建州,白志辉.全球膜生物反应器污水处理系统工程应用现状与展望[J].水工业市场,2007,12:31-36.
    39. Yang W B, Cicek N, Ilg J. State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America[J]. J. Membr. Sci.,2006,270(1-2):201-211.
    40.陈福泰,范正虹,黄霞.膜生物反应器在全球的市场现状与工程应用[J].中国给水排水,2008,24(8):14-18.
    41.吴金玲,黄霞.膜-生物反应器混合液性质对膜污染影响的研究进展[J].环境污染治理技术与设备,2006,7(2):16-24.
    42. Chang I S, Le Clech P, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewater treatment[J]. J. Environ. Eng.,2002,128(11):1018-1029.
    43. Kang I J, Yoon S H, Lee C H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J]. Water Res.,2002,36(7): 1803-1813.
    44. Yamato N, Kimura K, Miyoshi T, et al. Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials[J]. J. Membr. Sci.,2006,280(1-2): 911-919.
    45. Choi J H, Ng H Y. Effect of membrane type and material on performance of a submerged membrane bioreactor[J]. Chemosphere,2008,71(5):853-859.
    46. He Y L, Xu P, Li C J, et al. High-concentration food wastewater treatment by an anaerobic membrane bioreactor[J]. Water Res.,2005,39(17):4110-4118.
    47. Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes[J]. J. Membr. Sci.,2005,246(2):203-215.
    48. Mueller J, Davis R H. Protein fouling of surface-modified polymeric microfiltration membranes[J]. J. Membr. Sci.,1996,116(1):47-60.
    49. Evans P J, Bird M R, Pihlajamaki A, et al. The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification[J]. J. Membr. Sci.,2008, 313(1-2):250-262.
    50. Fang H H P, Shi X L. Pore fouling of microfiltration membranes by activated sludge[J]. J. Membr. Sci.,2005,264(1-2):161-166.
    51. Shimizu Y, Rokudai M, Tohya S, et al. Filtration characteristics of charged alumina membranes for methanogenic wastes[J]. Journal of chemical engineering of Japan,1989,22(6):635-641.
    52. Elzo D, Huisman I, Middelink E, et al. Charge effects on inorganic membrane performance in a cross-flow microfiltration process[J]. Colloids Surf. A:Physicochem. Eng. Asp.,1998,138(2-3): 145-159.
    53.王瑾,刘铮,何清华等.膜污染过程的电动电位(毛-电位)特性分析[J].化工学报,1999,50(5):687-691.
    54. Chang I S, Choo K H, Lee C H, et al. Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes[J]. J. Membr. Sci.,1994,90(1-2):131-139.
    55. Hwang K J, Liao C Y, Tung K L. Effect of membrane pore size on the particle fouling in membrane filtration[J]. Desalination,2008,234(1-3):16-23.
    56. Meireles M, Aimar P, Sanchez V. Effects of protein fouling on the apparent pore size distribution of sieving membranes[J]. J. Membr. Sci.,1991,56(1):13-28.
    57. Goren U, Aharoni A, Kummel M, et al. Role of membrane pore size in tertiary flocculation/ adsorption/ultrafiltration treatment of municipal wastewater[J]. Sep. Purif. Technol.,2008, 61(2):193-203.
    58. Neuman P, Rohlig R, Kohsrη A., et al. Metallic membranes[J]. Filt. Sep.,1998,35(1):40-42.
    59. Kang S, Hoek E M V, Choi H, et al. Effect of membrane surface properties during the fast evaluation of cell attachment [J]. Sep. Sci. Technol.2006,41(7):1475-1487.
    60. Judd S. Submerged membrane bioreactors:flat plate or hollow fibre?[J]. Filt. Sep.,2002,39(5): 30-31.
    61. Cui Z F, Chang S, Fane A G. The use of gas bubbling to enhance membrane processes[J]. J. Membr. Sci.,2003,221(1-2):1-35.
    62. Wicaksana F, Fane A G, Chen V. Fibre movement induced by bubbling using submerged hollow fibre membranes[J]. J. Membr. Sci.,2006,271(1-2):186-195.
    63. Yeo A P S, Law A W K, Fane A G. Factors affecting the performance of a submerged hollow fiber bundle[J]. J. Membr. Sci.,2006,280(1-2):969-982.
    64. Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. J. Membr. Sci.,1995,100(3):259-272.
    65. Chen V, Fane A G, Madaeni S, et al. Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation[J]. J. Membr. Sci.,1997, 125(1):109-122.
    66. Madaeni S S, Fane A G, Wiley D E. Factors influencing critical flux in membrane filtration of activated sludge[J]. J. Chem. Technol. Biotechnol.,1999,74(6):539-543.
    67. Chen V. Performance of partially permeable microfiltration membranes under low fouling conditions[J]. J. Membr. Sci.,1998,147(2):265-278.
    68. Ognier S, Wisniewski C, Grasmick A. Membrane bioreactor fouling in sub-critical filtration conditions:a local critical flux concept[J]. J. Membr. Sci.,2004,229(1-2):171-177.
    69. Ye Y, Chen V, Fane A G. Modeling long-term subcritical filtration of model EPS solutions[J]. Desalination,2006,191(1-3):318-327.
    70. Hong S P, Bae T H, Tak T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination,2002,143(3):219-228.
    71. Ueda T, Hata K, Kikuoka Y, et al. Effects of aeration on suction pressure in a submerged membrane bioreactor[J]. Water Res.,1997,31(3):489-494.
    72. Gui P, Huang X, Chen Y, et al. Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor[J]. Desalination,2003,151(2): 185-194.
    73. Schoeberl P, Brik M, Bertoni M, et al. Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater[J]. Sep. Purif. Technol.,2005,44(1):61-68.
    74. Thomassen J K, Faraday D B F, Underwood B O, et al. The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer[J]. Sep. Purif. Technol.,2005,41(1):91-100.
    75. Defiance L, Jafrin M Y. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment[J]. J. Membr. Sci.,1999,152(2):203-210.
    76. Thomas H, Judd S, Murrer J. Fouling characteristics of membrane filtration in membrane bioreactors[J]. Membr. Technol.,2000,122:10-13.
    77. Howell J A. Sub-critical flux operation of microfiltration[J]. J. Membr. Sci.,1995,107(1-2): 165-171.
    78. Ahmed Z, Cho J, Lim B R, et al. Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor[J]. J. Membr. Sci.,2007,287(2): 211-218.
    79. Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. J. Membr. Sci.,2003,216(1-2):217-227.
    80. Pollice A, Laera G, Saturno D, et al. Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage[J]. J. Membr. Sci.,2008,317(1-2):65-70.
    81.赵玉华,徐晶,张进等IMBR处理洗浴污水膜污染影响因素[J].沈阳建筑大学学报(自然科学版),2004,20(4):319-321.
    82. Harada H, Momonoi K, Yamazaki S, et al. Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics[J]. Water Sci. Technol., 1994,30(12):307-319.
    83. Fan F S, Zhou H D, Husain H. Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes [J]. Water Res.,2006,40(2):205-212.
    84. Jiang T, Kennedy M D, Guinzbourg B F, et al. Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism[J]. Water Sci. Technol.,2005, 51(6-7):19-25.
    85. Zhang S T, Yang F L, Liu Y H, et al. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45℃[J]. Desalination,2006,194(1-3): 146-155.
    86.王志伟,吴志超,顾国维等.平板膜生物反应器操作运行条件对膜污染特性的影响[J].膜科学与技术,2005,25(5):26-30.
    87. Tam L S, Tang T W, Leung W Y, et al. A pilot study on performance of a membrane bio-reactor in treating fresh water sewage and saline sewage in Hong Kong[J]. Sep. Sci. Technol.,2006, 41(7):1253-1264.
    88.纪磊.MBR中微生物聚合物与膜污染关系研究[D].大连:大连理工大学,2006.
    89. Le Clech P, Jefferson B, Chang I S, et al. Critical flux determination by the flux-step method in a submerged membrane bioreactor[J]. J. Membr. Sci.,2003,227(1-2):81-93.
    90. Le Clech P, Fane A, Leslie G, et al. MBR focus:the operators' perspective[J]. Filt. Sep.,2005, 42(5):20-23.
    91.朱彤,王云德,谢元华等.浸没板式MBR处理生活污水造成膜堵塞的关键因素[J].环境科学研究,2007,20(2):41-45.
    92. Defrance L, Jaffrin M Y, Gupta B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J]. Biores. Technol.,2000,73(2):105-112.
    93. Bouhabila E H, Aim R B, Buisson H. Fouling characterisation in membrane bioreactors[J]. Sep. Purif. Technol.,2001,22-23(1):123-132.
    94. Lee J, Ahn W Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Res.,2001, 35(10):2435-2445.
    95. Katayon S, Megat Mohd Noor M J, Ahmad J, et al. Effects of mixed liquor suspended solid concentrations on membrane bioreactor efficiency for treatment of food industry wastewater[J]. Desalination,2004,167:153-158.
    96. Rosenberger S, Kraume M. Filterability of activated sludge in membrane bioreactors[J]. Desalination,2002,146(1-3):373-379.
    97. Germain E, Stephenson T. Biomass characteristics, aeration and oxygen transfer in membrane bioreactors:their interrelations explained by a review of aerobic biological processes[J]. Rev. Environ. Sci. Bio/Technol.,2005,4(4):223-233.
    98. Kang I J, Lee C H, Kim K J. Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system[J]. Water Res.,2003,37(5):1192-1197.
    99. Liu R, Huang X, Sun Y F, et al. Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor[J]. Process Biochem.,2003,39(2):157-163.
    100. Xing C H, Qian Y, Wen X H, et al. Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment[J]. J. Membr. Sci.,2001,191(1-2):31-42.
    101. Ognier S, Wisniewski C, Grasmick A. Characterisation and modelling of fouling in membrane bioreactors[J]. Desalination,2002,146(1-3):141-147.
    102. Yun M A, Yeon K M, Park J S, et al. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment[J]. Water Res.,2006,40(1): 45-52.
    103. Choi J G, Bae T H, Kim J H, et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system[J]. J. Membr. Sci.,2002,203(1-2):103-113.
    104. Meng F G, Zhang H M, Yang F L, et al. Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors[J]. Sep. Purif. Technol.,2006,51(1): 95-103.
    105. Chang J S, Tasi L J, Vigneswaran S. Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration[J]. Water Sci. Technol.,1996,34(9): 133-140.
    106.钟璟,徐南平,时钧.颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响[J].高校化学工程学报,2000,14(3):230-234.
    107. Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Res.,2002,36(11):2711-2720.
    108. Tardieu E, Grasmick A, Geaugey V, et al. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment[J]. J. Membr. Sci.,1998,147(1):1-12.
    109.罗虹,顾平,杨造燕.膜生物反应器内泥水混合液可过滤性的研究[J].城市环境与城市生态,2000,13(1):51-53.
    110. Huang X, Liu R, QianY. Behaviour of soluble microbial products in a membrane bioreactor [J]. Process Biochem.,2000,36(5):401-406.
    111.桂萍,莫罹,黄霞.一体式膜-生物反应器中膜污染过程的动态分析[J].环境污染治理技术与设备,2004,5(2):22-26.
    112. Bruus J H, Nielsen P H, Keiding K. On the stability of activated sludge flocs with implications to dewatering[J]. Water Res.,1992,26(12):1597-1604.
    113.干勇,孙寓娇,黄霞.膜-生物反应器中微型动物变化与活性污泥状态相关性研究[J].环境科学研究,2004,17(5):48-51.
    114. Meng F G, Zhang H M, Yang F L, et al. Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor[J]. J. Membr. Sci.,2006,272(1-2):161-168.
    115.张宏艳,程国君,于秀华.聚乙烯膜表面改性的研究现状[J].化工时刊,2008,227(8):65-67.
    116.李照静,张玉先,范建伟等.纳米Ti02改性膜生物反应器处理污水的研究[J].中国给水排水,2008,24(3):75-78.
    117. Chang S, Fane A G. The effect of fibre diameter on filtration and flux distribution — relevance to submerged hollow fibre modules[J]. J. Membr. Sci.,2001,184(2):221-231.
    118. Shim J K, Yoo I K, Lee Y M. Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J]. Process Biochem.,2002,38(2):279-285.
    119.李绍峰,王雪芹,王宏杰.PAC对MBR膜阻力影响研究[J].水处理技术,2007,33(6):14-17.
    120.曹占平,张景丽,张宏伟.PAC对膜生物反应器过滤性能的影响[J].工业水处理,2008,28(10):17-20.
    121. Zhao Y, Gu P. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR[J]. Sep. Purif. Technol.,2006,52(1):154-160.
    122.李洋洋,赵玉华,杨健等.沸石对MBR膜过滤阻力的影响及其脱色效果研究[J].中国给水排水,2008,24(4):49-51.
    123. Wu J J, Chen F T, Huang X, et al. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor[J]. Desalination,2006,197(1-3):124-136.
    124. Wu J J, Huang X. Effect of dosing polymeric ferric sulfate on fouling characteristics, mixed liquor properties and performance in a long-term running membrane bioreactor[J]. Sep. Purif. Technol.,2008,63(1):45-52.
    125.王芳,赵玉清,孙红杰等.好氧颗粒污泥用于膜污染的控制[J].环境污染与防治,2006,28(9):703-706.
    126.郑宏林,俞三传,周勇等.中空纤维帘式与平板式膜组件在浸没式MBR中的对比试用研究[J].水处理技术,2009,35(3):73-76.
    127.樊耀波,王菊思,姜兆春等.膜生物反应器中膜的最佳反冲洗周期[J].环境科学学报,1997,17(4):439-444.
    128. Psoch C, Schiewer S. Resistance analysis for enhanced wastewater membrane filtration [J]. J. Membr. Sci.,2006,280(1-2):284-297.
    129. Kim J O, Jung J T, Yeom I T, et al. Effect of fouling reduction by ozone backwashing in a microfiltration system with advanced new membrane material[J]. Desalination,2007,202(1-3): 361-368.
    130. Sui P Z, Wen X H, Huang X. Feasibility of employing ultrasound for on-line membrane fouling control in an anaerobic membrane bioreactor[J]. Desalination,2008,219(1-3):203-213.
    131.王丽丽,宋武昌.膜生物反应器化学清洗技术研究[J].水科学与工程技术,2008,1:68-70.
    132. Lim A L, Bai R B. Membrane fouling and cleaning in microfiltration of activated sludge wastewater [J]. J. Membr. Sci.,2003,216(1-2):279-290.
    133.张寿通.金属膜生物反应器废水处理技术[D].大连:大连理工大学,2006.
    134.邓雁平,叶亚平,钱维兰等.不同物理清洗方式对一体式膜生物反应器过滤特性的影响[J].环境科学研究,2005,18(6):59-63.
    135. Karnik B S, Davies S H R, Chen K C, et al. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes[J]. Water Res.,2005,39(4):728-734.
    136. Kim J O, Shin E B, Bae W, et al. Effect of intermittent back ozonation for membrane fouling reduction in microfiltration using a metal membrane[J]. Desalination,2002,143(3):269-278.
    137. Eaton A D, Clesceri L S, Greenberg A E. Standard methods for the examination of water and wastewater (19th ed)[S]. Washington DC:APHA,1995.
    138. Kanda J. Determination of ammonium in seawater based on the indophenol reaction with O-phenylphenol (OPP)[J]. Water Res.,1995,29(12):2746-2750.
    139.日本下水道协会.下水试验方法[S].东京:日本下水道协会,1984:152-155.
    140.王志伟,吴志超,顾国维等.一体式厌氧膜生物反应器膜材质选择的试验研究[J].膜科学与技术,2006,26(2):18-21,31.
    141. Society of Fermentation and Bioengineering. Experimental Guidelines for biotechnology[M]. Osaka:Society of Fermentation and Bioengineering,1992:98-99.
    142. Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for detennination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    143. Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the folin phenol reagent[J]. J. Biol. Chem.,1951,193:265-275.
    144.桂萍,黄霞,陈颍等.膜-生物反应器运行条件对膜过滤特性的影响[J].环境科学,1999,20(3):38-41.
    145.肖恩荣,梁威,贺锋等.膜生物反应器稳定运行的操作条件优化研究[J].中国给水排水,2007,23(5):26-29,34.
    146. Xu N, Xing W H, Xu N P, et al. Study on ceramic membrane bioreactor with turbulence promoter[J]. Sep. Purif. Technol.,2003,32(1-3):403-410.
    147. Chen G H, An K J, Saby S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process)[J]. Water Res.,2003,37(16):3855-3866.
    148. Saby S, Djafer M, Chen G H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J]. Water Res.,2003,37(1):11-20.
    149. Zhao H W, Mavinic D S, Oldham W K, et al. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J]. Water Res.,1999,33(4):961-970.
    150.《城市污水再生利用系列标准实施指南》编写组.城市污水再生利用系列标准实施指南[M].北京:中国标准出版社,2008.
    151.董良飞,张志杰,关卫省.膜生物法处理工业废水[J].长安大学学报(自然科学版),2005,25(2):102-105.
    152. Savant D V, Abdul-Rahman R, Ranade D R. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater [J]. Biores. Technol.,2006,97(9): 1092-1104.
    153. Lee S, Lee K, Wan W M, et al. Comparison of membrane permeability and a fouling mechanism by pre-ozonation followed by membrane filtration and residual ozone in membrane cells[J]. Desalination,2005,178(1-3):287-294.
    154. Lee S, Jang N, Watanabe Y. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration (MF) membrane system[J]. Water Sci. Technol.,2004,50(12): 287-292.
    155. Kim R H, Lee S, Kim J O. Application of a metal membrane for rainwater utilization:filtration characteristics and membrane fouling[J]. Desalination,2005,177(1-3):121-132.
    156. Huang X, Wu J L. Improvement of membrane filterability of the mixed liquor in a membrane bioreactor by ozonation[J]. J. Membr. Sci.,2008,318(1-2):210-216.
    157.张兆顺,崔桂香.流体力学(第2版)[M].北京:清华大学出版社,2006:12.
    158.Beltraan F J著.周云瑞译.水与废水的臭氧反应动力学[M].北京:中国建筑工业出版社,2007:99.
    159. Oh B S, Jang H Y, Hwang T M, et al. Role of ozone for reducing fouling due to Pharmaceuticals in MF (microfiltration) process[J]. J. Membr. Sci.,2007,289(1-2):178-186.
    160.朱洪涛,文湘华,黄霞.臭氧对膜法水处理中膜污染的影响[J].环境科学,2009,30(1):302-312.
    161.张玉蕴.活性炭在污水处理中的应用[J].山西建筑,2003,29(2):112-113.
    162.李军,江定国,刘红等.复合式膜生物反应器处理生活污水[J].中国环境科学,2006,26(3):271-274.
    163.张凤君,王顺义,刘田等.投加粉末活性炭对MBR运行性能的影响[J].吉林大学学报(地球科学版),2007,37(2):350-354.
    164. Kim J S, Lee C H, Chun H D. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge[J]. Water Res.,1998,32(11):3443-3451.
    165.朱永双.投加PAC控制MBR膜污染的试验研究[D].西安:西安建筑科技大学,2009.
    166.赵英.膜生物反应器中膜污染控制方法的研究[D].天津:天津大学,2005.
    167.傅金祥,苏锦明,徐巍等.PAC对IMBR的净水效果和膜污染的影响研究[J].沈阳建筑工程学院院报(自然科学版),2004,20(2):143-146.
    168.李忠宏,仇农学,杨公明等.分离用金属膜制备工艺与技术进展[J].农业工程学报,2005, 21(1):177-181.
    169.李伟英,汤浅晶,李富生等.金属过滤膜去除微粒子的研究[J].中国给水排水,2004,20(10):1-5.
    170. Leiknes T,(?)degaard H, Myklebust H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation-microfiltration using metal membranes[J]. J. Membr. Sci.,2004, 242(1-2):47-55.
    171.胡海修,胡蓉,胡连超等.金属膜陶瓷膜净水技术试验研究[J].后勤工程学院学报,2006,22(3):57-60,64.
    172.孙健华,潘懿,黄圣散.平板膜生物反应器临界通量测定方法研究[J].安全与环境学报,2007,7(4):39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700