用户名: 密码: 验证码:
承压式合流制溢流深井淤积及清淤技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
承压式合流制溢流深井是在原有合流管道埋深较大时所采用的一种特殊的溢流井,这种溢流井在降低了造价和施工难度的同时也存在水力条件差和易于淤积的问题。本文采用现场探测、模型实验和数值模拟相结合的方法研究了承压式合流制溢流深井的水力特性和淤积规律,在此基础上设计了自虹吸水力清淤装置,并研究了该装置的水力特性和清淤效果。研究内容分述如下:
     1、应用管道声纳系统进行现场淤积调查,掌握承压式溢流深井的淤积状况和淤积变化情况;同时采用流量计监测流量变化,将其与淤积状况作对比分析。结果显示,溢流深井内普遍存在1-2m的淤积层,与B1型井相连的截流干管内基本没有淤积,而与B2型井相连的截流干管内存在0.1-0.4m的沉积层。
     2、通过模型实验和数值模拟研究承压式溢流井的水力特性和淤积规律,分析溢流井淤积原因,为设计清淤装置提供依据。结果显示,恒定流时溢流井内流场总体上呈现为包含两个螺旋上升涡流的对称结构,涡流中心的切应力和紊动能较小,泥沙实验时该区域的固体颗粒沉积量较大;涡流周边的切应力和紊动能较大,固体颗粒沉积量较小。
     3、根据承压式溢流井的水力条件,设计了自虹吸水力清淤装置。通过模型实验和数值模拟,研究了该装置的水力特性。结果显示,自虹吸水力清淤装置能明显改善溢流井底部的水力条件,其速度场对承压式溢流深井的清淤和防淤均能起到显著作用。自虹吸水力清淤装置运行所产生的井室底面切应力与作用水头差之间呈线性关系,而在相同水头差作用下底面切应力与虹吸管截面积参数(1/S)呈指数关系。
     4、通过泥沙实验研究了自虹吸水力清淤装置的清淤效果。结果表明:首次清淤率在总清淤率中所占比重最大,随着运行次数的增加泥沙面趋于稳定,清淤率急剧下降。首次清淤率和总清淤率均随着虹吸管截面积参数(1/S)值的增大而增大,但其增长速度随着(1/S)值的增大而降低,(1/S)增大到一定值后清淤率的增长不再明显。
     5、在固液两相流的数值模拟中,固体颗粒在边界的沉降现象与当地床面切应力(BSS)有较强的相关性,本文通过将遗传优化算法中的概率选择方法应用到判断颗粒物沉降的边界条件中,提出了“概率沉降”模型。该模型从沉降概率的角度描述固体颗粒与底面的碰撞行为,弥补了临界床面切应力模型不能区分不同区域颗粒沉降难易程度和预测相对沉积量的缺陷。将该模型应用于实验模型和实际溢流井淤积的数值模拟,模拟结果得到实验结果和声纳实测图像的验证。
Pressurized combined sewer overflow(CSO) deep chamber is a special overflow chamber adopted in the interceptor sewer system where the buried depth of existing combined pipe is very large. This CSO chamber is adopted to decrease construction cost and difficulty while there are some problems such as worse hydraulic condition and sedimentation. The hydraulic characteristics and sedimentation regulation of pressurized CSO deep chamber were studied in this paper by combining field inspection, model experiment and numerical simulation. Moreover, based on the aforementioned study, a self-siphon sediment cleansing set was designed and its hydraulic characteristics was studied as well as cleansing effect. Detailed research contents are as following:
     1. In order to obtain the sedimentation conditions of the pressurized CSO deep chamber as well as sedimentation variation, pipe SONAR system was applied for field inspection. Meanwhile, flowmeters were applied to monitor the flow of CSO chamber which was used for the analysis with sedimentation condition. The results show that there are 1-2m thick sedimentation layer generally in the CSO chambers. There is commonly little sedimentation in the main interceptor pipe coterminous with B1-type chambers, while there are 0.1-0.4m thick sedimentation layer in the main interceptor pipe coterminous with B2-type chambers.
     2. The hydraulic characteristics and sedimentation regulation of pressurized CSO chamber were studied by model experiment and numerical simulation. And the sedimentation reason was analysed for the design of cleansing set. The results show that the flow field of chamber presents a symmetric structure including two spiral uprising eddies. The shear stress and turbulent energy are small at the central zone of eddy where sediment amount is large while the shear stress and turbulent energy are large at the circumjacent zone where sediment amount is small.
     3. A self-siphon sediment cleansing set was designed according to the hydraulic condition of the CSO chamber, and its hydraulic characteristic was researched by experiment and simulation. The results show that this sediment cleansing set can obviously improve the hydraulic conditon of the CSO chamber which is very beneficial to sediment cleansing and preventing. There is a linear relationship between the bed shear stress(BSS) of chamber bottom and the efficient water head of self-siphon sediment cleansing set, and a exponential relationship between the BSS and the siphon section parameter(1/S) under same efficient water head.
     4. The cleansing effect of self-siphon sediment cleansing set was investigated by sediment test. The results show that the first cleansing rate is the largest proportion in total cleansing rate. With the increase of operating number, the sediment surface tends to be stable and cleansing rate decreases rapidly. The first cleansing rate and total cleansing rate both increase with the increase of siphon section parameter(1/S), but its increase rate decreases with 1/S. When 1/S increases to a certain value, the cleansing rate do not increase obviously.
     5. In the numerical simulation of solid-liquid two-phase flow, there is strong relationship between particle settling phenomenon on boundary and local BSS. By applying the probability selection method of genetic algorithm to the boundary condition, the "probability sedimentation" model of particle was established. This model deals with collision behavior between particle and the bottom surface of chamber at viewpoint of settling probability, which makes up the defect of critical BSS model that the model can't distinguish the settling difficulty degree and predict relative sedimentation amount. The "probability sedimentation" model was applied in the sedimentation simulation of model and actual CSO chamber, and the simulation results were validated by experiment and SONAR images of field measurement.
引文
[1]郭晓,张杰.中国都市排水系统功能的变革[J].中国给水排水,2005,21(10):21-24.
    [2]孙慧修,郝以琼,龙腾锐.排水工程[M].4版.北京:中国建筑工业出版社,1999.
    [3]周玉文,赵洪宾.排水管网理论与计算[M].北京:中国建筑工业出版社,2000.
    [4]严煦世,刘遂庆.给水排水管网系统[M].北京:中国建筑工业出版社.2002.
    [5]李茂英,李海燕.城市排水管道中沉积物及其污染研究进展[J].给水排水,2008,34(增刊):88-92.
    [6]王健,刘嘉,宋鸽.城市排水管道沉积物新型清除方法[J].水科学与工程技术,2009,(6):46-48.
    [7]Fan, C.Y..Sewer sediment and control-a management practices reference guide[M]. National Risk Management Research Laboratory Office of Research and Development, U.S. EPA, 2004.
    [8]Banasiak, R., Verhoeven, R., Sutter, R.D., et al. The erosion behaviour of biologically active sewer sediment deposits:observations from a laboratory study[J].Water Research,2005,39(20):5221-5231.
    [9]Okabe, S., Odagiri, M. T., Satoh, H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems[J].Applied and Environmental Microbiology,2007,73(3):971-980.
    [10]Fan, C. Y., Field, R., Pisano, W. C., Barsanti, J., Joyce, J. J., Sorenson, H. Sewer and tank flushing for sediment, corrosion, and pollution control [J].Journal of Water Resources Planning and Management,2001,127(3):194-201.
    [11]Boon A G.Septicity in sewers:causes,consequences and con-tainment[J].Water Science and Technology,1995,31(7):237-253.
    [12]Robert, B. Hydraulic performance of sewer pipes with deposited sediments[J]. Water Science and Technology,2008,57(11):1743-1748.
    [13]Ashley, R.M. and Crabtree, R. W. Sediment origins, deposition and build-up in combined sewer system[J]. Water science and technology,1992,25(8):1-12.
    [14]Nalluri C.Alvarez E M. The Influence of cohesion on sediment behavior[J]. Water Science and Technology,1992(8):151-164.
    [15]Schellart, A. N. A., Buijs, F. A.,Tait, S. J., Ashley, R. M. Estimation of uncertainty in long term combined sewer sediment behaviour predictions, a UK case study[J]. Water Science and Technology,2008,57(9):1405-1411.
    [16]Cotham, W., Bidleman, T. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan[J]. Environment Science & Technology, 1995,29:2782-2789.
    [17]Sansalone, J. Immobilization of metals and solids transported in urban pavement runoff[C]// North American Water and Environment Congress & Destructive Water. USA:ASCE,1996, 3115-3120.
    [18]Sansalone, J., Buchberger, S.G. Characterization of solid and metal element distributions in urban highway stormwater[J]. Water Science and Technology,1997,36(8):155-160.
    [19]Shaheen, D.G. Contributions of urban roadway usage to water pollution[R]. USA, OH Cincinnati:EPA Municipal Environmental Research Laboratory,1975.
    [20]Montrejaud-Vignoles, M., Roger, S., Herremans, L. Runoff water pollution of motorway
    pavement in mediterranean area[C]//Proceeding 7th International Conference on Urban Storm Drainage. Hannover:1996,247-252.
    [21]Pitt, R., Field, R., Lalor, M. et al. Urban stormwater toxic pollutants:assessment, sources, and treatability[J]. Water Environment Research,1995,67(3):260-275.
    [22]Ellis, J.B., Revitt, D.M. Incidence of heavy metals in street surface sediments:solubility and grain size studies[J]. Water,Air, and Soil Pollution,1982,17(11):87-100.
    [23]Sanudo-Wilhelmy, S.A., Gill,.G. A. Impact of the clean water act on the levels of toxic metals in urban estuaries:the Hudson river estuary revisited[J]. Environment Science Technology, 1999,33(20):3477-3481.
    [24]Mason, R.P., Lawson, N.M., Lawrence, A.L., et al. Mercury in the Chesapeake Bay[J]. Marine Chemistry,1999,65(1):77-96.
    [25]Venkatesan, M.I.,Leon, R.P., Geen, A., et al. Chlorinated hydrocabon pesticides and polychlorinated biphenyls in sediment cores from San Francisco Bay[J]. Marine Chemistry, 1999,64(1):85-97.
    [26]Heaney, J.P., Wright, L., Sample, D. et al. Innovative wet-weather flow collection, control, and treatment systems for newly urbanizing areas in the 21st century[C]//Sustaining Urban Water Resources in the 21st Century. USA:ASCE,1999,380-405.
    [27]Ashley, R.M., Hvitved-Jacobsen, T. Management of sewer sediments[C]//Wet-weather Flow in the Urban Watershed Technology and Management. Fla:CRC Press,2002,187-223.
    [28]Verbanck, M.A. Capturing and releasing settleable solids-the significance of dense undercurrents in combined sewer flow[J]. Water Science and Technology,1995,31(7):85-93.
    [29]Pisano, W.C.,Barsanti, J.,Joyce, J.et al..Sewer and tank sediment flushing:case studies[M].Cincinnati,OH.:Environmental Protection Agency,1998.
    [30]Guo, J.C-Y. Sand recovery for highway drainage design[J]. Journal Irrigation & Drainage Engineering,1999,125(6):380-384.
    [31]May, R.W.P., Ackers, J.C., Butler, D., John, A.. Development of design methodology for self-cleansing sewers [J]. Water Science and Technology,1996,33(9):195-205.
    [32]Butler, D., May, R., John, A.. Self-cleansing sewer design based on sediment transport principles[J]. Journal of Hydraulic Engineering,2003,129(4):276-280.
    [33]Sonnen, M. Abatement of deposition and scour in sewer[R]. USA, OH Cincinnati:EPA Municipal Environmental Research Laboratory,1977.
    [34]Bachoc, A. Location and general characteristics of sediment deposits into man-entry combined sewers[J]. Water Science Technology,1992,25(8):47-55.
    [35]Ashley, R.M., Hvitved-Jacobsen, T., Bertrand-Krajewski, L. Quo Vadis sewer process modelling?[J]. Water Science Technology,1999,39(9):9-22.
    [36]Pisano, W.C., Queiroz, C.S. Procedures for estimating dry weather pollutant deposition in sewerage systems[R]. USA, OH Cincinnati:EPA Municipal Environmental Research Laboratory,1977.
    [37]Pisano, W.C., Queiroz, C.S. Procedures for estimating dry weather sewage inline pollutant deposition-phase Ⅱ[R]. USA, OH Cincinnati:EPA Municipal Environmental Research Laboratory,1984.
    [38]Sartor, J.D., Boyd, G.B. Water pollution aspects of street surface contaminants[R]. USA, OH Cincinnati:EPA Municipal Environmental Research Laboratory,1972.
    [39]Huber, W.C., Dickinson, R.E. Storm water management model user's manual(Version 4)[M]. Georgia Athens, U.S.EPA,1988.
    [40]Verbanck, M.A. Origin, occurrence, and behaviour of sediments in sewer systems[J]. Water Science and Technology,1992,25(8):1-234.
    [41]Hvitved-Jacobsen, T., Nielsen, T., Larsen, P.H., et al. The sewer as a physical, chemical, and biological reactor[J]. Water Science and Technology,1995,31(7):1-330.
    [42]Hvitved-Jacobsen, T., Vollertsen, J., Nielsen, P.H. A process and model concept for microbial wastewater transformations in gravity sewers[J]. Water Science and Technology,1998, 37(1):233-241.
    [43]Ashley, R.M. Solids in sewers[J]. Water Science and Technology,1996,33(9):1-298.
    [44]Ashley, R., Crabtree, B., Fraser, A., et al. European research into sewer sediments and associated pollutants and processes[J]. Journal of Hydraulic Engineering,2003,129(4): 267-275.
    [45]Arthur, S., Ashley, R.M., Nalluri, C.. Near bed solids transport in sewers[J]. Water Science and Technology,1996,39(9):69-76.
    [46]Saget, A., G. Chebbo, J-L. Bertrand-Krajewski. The first-flush sewer systems[J]. Water Science and Technology,1996,33(9):101-108.
    [47]Arthur, S., Ashley, R.M. The influence of near bed solids transport on first foul flush in combined sewers[J]. Water Science and Technology,1998,37(1):131-138.
    [48]Krebs, P., Holzer, P., Huisman, J.L., et al. First-flush of dissovlved compounds[J]. Water Science and Technology,1999,39(9):55-62.
    [49]Ahyerre, M., Chebbo, M., Saad, M. Sources and erosion of organic solids in a combined sewer[J]. Urban Water,2000,2(4),305-315.
    [50]张宏达,杨曦,何强.德国的截流井及相关设计[J].中国给水排水,2005,21(6):104-106.
    [51]Sztruhar, D., Sokac, M., Holiencin, A., et al. Comprehensive assessment of combined sewer overflows in Slovakia[J]. Urban Water,2002,4(3),237-243.
    [52]Harwood, R., Saul, A.J. Combined sewer overflows[J]. Journal Articles by Fluent Software Users,2001, JA141:1-4.
    [53]Harwood, R., Saul, A.J. Modelling the Performance of Combinged-Sewer Overflow
    Chambers[J]. Journal of CIWEM,2001,300-304.
    [54]Saul, A.J. CSO:State of the art review[C]//Global Solutions for Urban Drainage:9th International Conference on Urban Drainage, U.S.ASCE,2002,1-21.
    [55]Saul, A.J., Svejkovsky, K. Computational modelling of a Vortex CSO Sturcture[J]. Water Science Technology,1994,30(1):97-106.
    [56]Stovin, V. R., Saul, A.J. Computational fluid dynamics and the design of sewage storage
    chambers[J]. Journal of CIWEM,2000, (14):103-110.
    [57]Pollert, J. Free surface modelling in sewer system[C]//the 5th Fluent User Conference,1999, Prague, Czech Republic,61-69.
    [58]Pollert, J., Stransky, D. Combination of computational techniques-Evaluation of CSO efficiency for suspended solids separation[J]. Water Science and Technology,2003,47(4): 157-166.
    [59]Hrabak, D., Pryl, K., Richardson, J., et al.3-Dimensional modelling-A new tool for the
    evaluation of CSO hydraulic performance[C]//the 8th ICUSD, Sydney, Australia,1999, 928-933.
    [60]Harwood, R. CSO Modelling strategies using computational fluid dynamics[C]//Global
    Solutions for Urban Drainage:9th International Conference on Urban Drainage, U.S.ASCE, 2002,1-9.
    [61]Dufresne, M., Vazquez, J., Terfous, A. et al. Three-dimensional flow measurements and CFD modelling in a storm-water tank[C]//NOVATECH,2007,1147-1154.
    [62]中国工程建设标准化协会.合流制系统污水截流井设计规程(CECS91:97) [S].北京:北京建筑工程学院,1997.
    [63]马君兰,董树信.合流管道中雨水溢流井污水截流性能研究[J].北京建筑工程学院学报,1990,2:72—80.
    [64]董树信.合流管的污水截流井(雨水溢流井)性能研究与应用[J].市政技术,1998,4:33—36.
    [65]陆斌,韦鹤平.污水泵站泵前污水截流井水力模型试验研究[J].中国市政工程,2002,2:45-48.
    [66]李玉华,史炎,郭健男.截流式合流制排水系统溢流井的改进[J].中国给水排水,2004,20(3):80-81.
    [67]张宏达,杨曦,何强.德国的截流井及相关设计[J].中国给水排水,2005,21(6):104—106.
    [68]张宇,姚琦,陈琳.截流井形式选择[C]//全国排水委员会年会论文集,2006.
    [69]李胜海,许晓毅.污水截流井设计计算方法探讨[J].中国给水排水,2006,22(24):41-44.
    [70]雷景峰.应用Fluent软件进行堰式溢流井的三维模拟计算[D].上海:同济大学,2005.
    [71]李田,郑瑞东,朱军.排水管道检测技术的发展现状[J].中国给水排水,2006,22(12):11-13.
    [72]Chebbo, G., Laplace, D., Bachoc, A., et al. Technical solutions envisaged in managing solids in combined sewer net works[J]. Water Science & Technology,1996,33(9):237-244.
    [73]Pisano, W.C., Novae, G., Grande, N. Automated sewer flushing large diameter sewers[C]// Collection Systems Rehabilitation and O&M:Solving Today's Problems and Meeting Tomorrow's Needs, Kansas:Water Environment Federation,1997:9-20.
    [74]U.S. Environmental Protection Agency. System and method for vacuum flushing sewer solids: US,6655402[P].2003-12-02.
    [75]孙勇,杨向东,孙建宁,等.排水管道清淤方法及开发新设备的构想[J].给水排水,1996,22(8):52-53.
    [76]朱燕,李田.巴黎百年下水道的清洗养护及其启示[J].中国给水排水,2005,21(9): 22-24.
    [77]Ashley, R.M., Fraser, A., Burrows, R., et al. The management of sediment in combined sewers[J]. Urban Water,2000,2(4):263-275.
    [78]庞德刚.浅议柳州市排水规划[J].广西大学学报(自然科学版),2002,27:32-35.
    [79]Gomez, F.,Althoefer, K.,Seneviratne, L.D. An ultrasonic profiling method for sewer inspection [A]. Proceedings-2004 IEEE International Conference on Robotics and Automation[C]. New Orleans:IEEE Robotics and Automation Society,2004.
    [80]O.Duran, K., Althoefer, L. Seneviratne.State of the art in sensor technologies for sewer inspection[J]. IEEE Sensors Journal,2002,2(2):63.
    [81]彭艺艺,陈勇民,周永潮.基于声纳技术的溢流深井淤积研究[J].中国给水排水,2011,27(5):6-8.
    [82]赵巨尧,周律,安关峰.广州市排水管道检测结果分析及修复技术选择[J].非开挖技术,2011,(2):106-110.
    [83]Ristenpart, E., Ashley, R. M.Organic near-bed fluid and particulate transport in combined sewers[J].Water science and technology,1995,31(7):61-68.
    [84]Ahyerre, M., Chebbo, G., Saad, M.Nature and dynamics of water sediment interface in combined sewers[J].Journal of Environmental Engineering,2001,127(3):233-239.
    [85]陈勇民,张仪萍,周永潮,张土乔.合流制排水系统截流工程淤积分析与探测[J].湖南大学学报自然科学版,2011(录用).
    [86]刘成,何耘,韦鹤平.城市排水管道泥沙问题浅析[J].给水排水,1999,25(12):7-13.
    [87]吴嘉.流速测量方法综述及仪器的最新进展[J].计测技术,2005,25(6):1-4.
    [88]冯旺聪,郑士琴.粒子图像测速(PIV)技术的发展[J].仪器仪表用户,2003,10(6):1-3.
    [89]Tokuhiro, A., Maekawa, M., Lizuka, K., et al. Turbulent flow past a bubble and an ellipaoid using shadow-image and PIV techniques[J]. International Journal of Multiphase Flow,1998, 24(8):1383-1406.
    [90]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002,23(1):42-45.
    [91]许联锋,陈刚,李建中,等.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-540.
    [92]Wu, Y.S., Qin, C.R., Hu, M. Experimental study on bed-load sediment stransport in irregular wave-current coexistent field[J]. Journal of Hydrodynamics, Ser.B,2000, (2):42-53.
    [93]Liu Y.Z., Koyama, H.S., Chen, H.P. Experimental investigation on vortex breakdown in spin-up and spin-down processed via PIV[J]. Journal of Hydrodynamics, Ser.B,2003, (2): 58-63.
    [94]Zhang, J., Xu, J., Hong, F.W., et al. PIV technique and its application in ship hydrodynamics[J]. Journal of Hydrodynamics, Ser.B,2002, (1):69-74.
    [95]Ta, C.T. Computational fluid dynamic model of storm tank[C]//Urban Storm Drainage, Sydney, Australia,1999,1279-1286.
    [96]Wu, W., Rodi, W., Wenka, T.3D numerical modeling of flow and seiment transport in open channels[J]. Journal Hydraulic Engineering,2000,126(1):4-15.
    [97]Jayanti, S., Narayanan, S. Computational study of particle-eddy interaction in sedimentation tanks[J]. Journal of Environment Engineering,2004,130(1):37-49.
    [98]Versteeg, H.K., Malalasekera, W. An introduction to computational fluid dynamics, the finite volume method[M]. England:Prentice Hall,2005.
    [99]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [100]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [101]王瑞金,张凯,王刚Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [102]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [103]张鸣远,景思睿,李国君.高等工程流体力学[M].西安:西安交通大学出版社,2006.
    [104]FLUENT.Fluent user's guide(Version 6.3)[M].Lebanon,NH,USA:Fluent Inc,2006.
    [105]陈为博,杨敏.用VOF方法数值模拟溢流堰流场[J].水利水运工程学报,2004,(4):42-45.
    [106]Oms, C., Gromaire-Mertz, M.C., Desutter, R., et al. Measurement of local bed shear stress in combined sewers[C]//Urban Drainage Modeling, Orlando, Florida.2001,507-517.
    [107]Barnes, M.P., Donoghue, T.O., Alsina, J.M., et al. Direct bed shear stress measurements in bore-driven swash[J]. Coastal Engineering,2009,56(8):853-867.
    [108]Sorourian, S. Modelling of wave and current induced concentration of cohesive sediments[D]. Ottawa, Canada:University of Ottawa,2007.
    [109]张幸农.常用模型沙及其特性综述[J].水利水运科学研究,1994,(1):45-51.
    [110]陈俊杰.常用模型沙基本特性研究[M].郑州:黄河水利出版社,2009.
    [111]Nortek AS. Vectrino“小威龙”使用手册[EB/OL]. www.nortek.com.cn.
    [112]Ashley, R., Bertrand-Krajewski, J.L., Hvitved-Jacobsen, T. Sewer solids-20 years of investigation[J]. Water Science and Technology,2005,52(3):73-84.
    [113]赵毅山,韦鹤平.南线A污水泵站浑水模型试验研究[J].力学季刊,2008,29(4):583-589.
    [114]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1991.
    [115]张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1998.
    [116]何耘,马春生,韦鹤平.污水泵站前池浑水模型试验研究[J].安徽建筑工业学院学报,1997,5(2):52.
    [117]中国水利学会泥沙专业委员会.泥沙手册[M].北京:中国环境科学出版社,1989.
    [118]邓培德.城市排水沟道中泥沙运动流速分析[J].2000,26(6):19-22.
    [119]白世录,于荣海.河工模型相似设计及特殊处理技术[J].泥沙研究,1999,2(1):39-43.
    [120]左光栋.山区河流引水式电站水库泥沙淤积及电站引水防沙问题研究[D].重庆:重庆交通大学,2009.
    [121]Stovin, V.R., Saul, A.J. Sedimentation in storage tank structures[J]. Water Science and Technology,1994,29(1):363-372.
    [122]Wilcock, P.R. Methods for estimating the critical shear stress of individual fractions in mixed-size sediment[J]. Water Resources Research,1988,24(7):1127-1135.
    [123]Martin, J.R., Steinberg, L.J., Michaelides, E.E. Determination of bed shear stress by digital particle image velocitmetry in turbulent open channel flow[C]//Water Resources,2000.
    [124]George, A.O.3-D simulation of flow and sediment transport during a controlled flood in a short river reach[D]. Quebec:Concordia University,2005.
    [125]Pope, N.D., Widdows, J., Brinsley, M.D. Estimation of bed shear stress using the turbulent kinetic energy approach- A comparison of annular flume and field data[J]. Continental Shelf Research,2006, (26):959-970.
    [126]Stovin, V.R., Saul, A.J. Efficiency prediction for storage chambers using computational fluid dynamics[J]. Water Science and Technology,1996,33(9):163-170.
    [127]Faram, M.G., Harwood, R. A method for the numerical assessment of sediment interceptors[J]. Water Science and Technology,2003,47(4):167-174.
    [128]Stovin, V.R., Saul, A.J. Acomputational fluid dynamics(CFD) particle tracking approach to efficiency prediction[J]. Water Science and Technology,1998,37(1):285-293.
    [129]Stovin, V.R. The prediction of sediment deposition in storage chambers based on laboratory observations and numerical simulation[D]. Sheffield:University of Sheffield,1996.
    [130]Adamsson, A., Stovin, V.R., Bergdahl, L. Bed shear stress boundary condition for stroage tank sedimentation[J]. Journal of Environmental Engineering,2003,129(7):651-658.
    [131]Verbanck, M.A. Computing near-bed solids transport in sewers and similar sediment-carrying open-channel flows[J]. Urban Water.2000, (2):277-284.
    [132]Sarmiento, O.A., Falcon, M.A. Critical bed shear stress for unisize sediment[J]. Journal of Hydraulic Engineering.2006,132(2):172-179.
    [133]Dufresne, M., Vazquez, J., Terfous, A., et al. CFD modelling of solid separation in three combined sewer overflow chambers[J]. Journal of Environmental Engineering.2009,135(9): 776-787.
    [134]Longmire, P. Computational fluid dynamics(CFD) simulations of aerosol in a U-shaped steam generator tube[D]. College Station:Texas A&M University,2007.
    [135]Barker, B.J. Simulation of coal ash deposition on modern turbine nozzle guide vanes[D]. Columbus:The Ohio State University,2010.
    [136]Narasimha, M., Sripriya, R., Banerjee, P.K. CFD modelling of hydrocyclone-prediction of cut size[J]. International Journal of Mineral Processing,2005,75(1):53-68.
    [137]Wu, C.L., Berrouk, A.S., Nandakumar, K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh[J]. Chemical Engineering Journal,2009,152(2): 514-529.
    [138]Dufresne, M., Vazquez, J., Terfous, A. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank[J]. Computers & Fluids.2009, (38):1042-1049.
    [139]Stovin, V.R. The development of a simulation strategy for the prediciton of sediment deposition in storage chambers[R]. Final Report to the EPSRC(GR/L79205), Swindon, UK, 2000.
    [140]Bunte, K., Abt, S.R., Swingle, K.W. et al. Bankfull mobile particle size and its prediction
    from a Shields-type approach[C]//2nd Joint Federal Interagency Conference, Las Vegas, NV, 2010.
    [141]Franklin, E.M., Charru, F. Morphology and displacement of dunes in a closed-conduit flow[J]. Powder Technology,2009,190(1):247-251.
    [142]Buffington, J.M. The legend of A.F. Shields[J]. Journal of Hydraulic Engineering,1999, 125(4):376-387.
    [143]Brownlie, W.R. Prediction of flow depth and sediment discharge in open channels[R]. Pasadena, California:W.M.Keck Laboratory of Hydraulics and Water Resources,California Institute of Technology,1981.
    [144]Marcelo, Garcia, H., Laursen, E.M., Michel, C., et al. The legend of A.F.Shields[J]. Journal of Hydraulic Engineering,2000,126(9):718-723.
    [145]Jadaan, O.A., Rajamani, L., Rao, C.R. Improved selection operator for GA[J]. Journal of Theoretical and Applied Information Technology,2008,4(4):269-277.
    [146]Sivanandam, S.N., Deepa, S.N. Introduction to genetic algorithms[M]. Dordrecht:Springer, 2007.
    [147]李逍波,林争辉.遗传算法选择操作的递归实现[J].上海交通大学学报,1998,32(4):89-91.
    [148]夏桂梅,曾建潮.一种基于轮盘赌选择遗传算法的随机微粒群算法[J].计算机工程与科学,2007,29(6):51-54.
    [149]李晨,宁红云.改进的遗传算法选择算子[J].天津理工大学学报[J].2008,24(6):1-4.
    [150]张琛,詹志辉.遗传算法选择策略比较[J].计算机工程与设计,2009,30(23):5471-5478.
    [151]魏全新,刘贤锋,黄锵,等.遗传算法选择方法的比较分析[J].通讯和计算机,2008,5(8):61-65.
    [152]陈勇民,张土乔,张仪萍,周永潮.概率沉降模型在淤积模拟中的应用[J].浙江大学学报工学版,2011(录用).
    [153]于勇.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700