用户名: 密码: 验证码:
名义上无水矿物中OH红外吸收系数温度依赖性和结合机理的原位变温红外光谱实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
名义上无水矿物(nominally anhydrous minerals,简为NAMs,如橄榄石、辉石、石榴石、长石等)中以缺陷形式存在的结构水的重要性已经被学界广泛认同,并得到了越来越多的关注。NAMs中的H是活动的,H在高温下的赋存状态、物理化学性质以及在晶体结构中的位置都可能不同于室温,基于NAMs的重要性以及地质上更感兴趣的温度是高温,因此很有必要分析变温下NAMs中的H。由于红外对OH振动的高度敏感性,红外光谱方法被广泛用来测量NAMs中“水”的赋存状态、含量以及在晶体结构中的位置,因而原位变温红外光谱技术是监测不同温度下NAMs中H的一种很好的方法。但是,目前仅有少数工作涉及到矿物和玻璃中“水”的红外吸收温度依赖性的研究,更没有人对天然的NAMs中OH变温红外光谱做系统的研究。本文以单斜辉石、斜方辉石、长石以及金红石等天然名义上无水矿物为例,常温下利用傅立叶变换红外光谱技术检测样品中结构水的存在与否及其赋存形式;对结构水含量相对较高的样品进行电子探针化学成分分析;利用配接在红外显微镜上的冷热台及温控装置进行原位变温红外光谱分析(从室温间隔100℃升高到500℃);对典型样品进行不同角度的偏振分析。以研究OH的红外吸收温度依赖性和结合机理为出发点,详细观察矿物中同一分析区域在不同温度下谱图的变化,循序渐进地做了以下工作:
     (1)运用显微傅立叶变换红外光谱(Micro-FTIR)技术观察了单斜辉石(普通辉石)和斜方辉石(顽火辉石)中结构OH在原位连续加热、降温和阶段加热过程中的变化,从而更清楚地了解了缺陷氢在晶体结构中的位置及其结合机制。温度从室温升到500℃,间隔100℃。结果表明,单斜辉石和斜方辉石的红外谱图随温度变化的趋势相同,即:OH的伸缩振动峰位都是随温度升高而向低波数移动,而且这种变化是可逆的。峰位的移动主要受H所取代的阳离子位置或晶格空隙热膨胀的影响。
     (2)受辉石变温红外光谱的初步实验结果启发,以单斜辉石(包括普通辉石、透辉石和绿辉石)为研究对象,结合变温红外及偏振红外实验,依据晶体化学理论及键长与振动频率的关系,从一个新的角度--热膨胀速率,探讨了单斜辉石中缺陷OH的结合机理。结果表明:单斜辉石中OH的红外吸收峰主要有三组:(1) 3600-3620 cm~(-1);(2) 3500-3540 cm~(-1);(3) 3445-3465 cm~(-1)。第1组峰对应的OH结合方式是Si~(4+)+O~2-+1/2 H_2-Al~(3+)+OH~-;而第3组峰对应的OH结合方式是H填充M2空位。第2组峰对应的OH结合方式复杂,可能和多个位置有关。第2和第3两组OH偶极的振动方向一致,都是M1和M2的共棱O2-O1,而第1组OH偶极的振动方向则是M2的O2-O3棱。
     (3)为了更详细地研究单斜辉石的3组吸收峰(3600-3620 cm~(-1);3500-3540 cm~(-1);3445-3465 cm~(-1))对温度的依赖性,选择普通辉石和透辉石的主要吸收峰来研究第1组峰,选择绿辉石的主要吸收峰来研究第2和3组吸收峰。对这些样品进行原位变温红外光谱实验,分析这三组峰的峰位随温度变化的结果,发现第1组吸收峰的峰位随着温度升高向低波数移动,第2和3组吸收峰也向低波数移动,但是移动幅度相对很小。透辉石的第1组OH峰虽然都在3600-3620 cm~(-1)之间,但是不同样品的起始峰位不同,通过不同透辉石样品变温实验的对比发现:不同的起始峰位随温度变化的幅度不同,起始峰位越高,随温度变化的幅度越大。普通辉石和绿辉石结构OH的总积分吸收面积均随着温度的升高而减小。从500℃降到室温时它们的红外光谱变化可逆,说明实验过程中没有发生OH损失等不可逆过程,所以积分吸收面积的变化反映了OH吸收系数的变化,因此,在利用Beer-Lambert定律计算辉石OH含量时,一定要注意吸收系数的选择。
     (4)将变温红外实验的样品扩展到斜方辉石和长石,分析影响吸收系数变化的因素。结果显示,不仅峰位随温度移动的幅度与起始峰位有关,峰位随温度移动方向也与起始峰位有关。这些矿物中OH的吸收系数均随着温度的升高而减小,但是减小的幅度不同。结合单斜辉石和石榴石的实验结果发现,这些NAMs中的OH吸收系数随温度变化的幅度与峰位有关:OH平均峰位越低的矿物,OH吸收系数受温度影响越大,反之OH平均峰位越高的矿物,OH吸收系数受温度影响越小。
     (5)针对前人工作和本文前面章节所涉及到的工作的局限性,即:没有从晶体化学和晶体结构的角度对不同温度下光谱的变化做出解释,我们选择一种简单矿物――金红石,对其除了进行原位高温红外实验,还增加了原位低温红外和偏振红外实验,以及变温X射线衍射实验,从而深入探讨H在不同温度下的变化。结合这些实验结果,分析得出以下结论:金红石中的两组OH峰对应的H位在晶体结构中的(001)面,常温下,3297 cm~(-1)峰的H在(1/2,0,0)位,3279 cm~(-1)峰对应的H在(1/2,1/2,0)位,并且形成弯曲的氢键。温度变化时,两个峰的吸收面积变化方向相反,说明两种可能性:(1)H会发生位置迁移,以维持晶体结构的稳定性,高温时H主要位于(1/2,1/2,0),低温时H主要位于(1/2,0,0)位;(2)两组峰的吸收系数有着相反的温度依赖性。
The knowledge of OH incorporated in nominally anhydrous minerals (NAMs) is crucial for understanding the chemical and physical properties of the Earth’s interior. The H in NAMs is mobile and the speciation, physicochemical properties and sites in the crystal structures may vary with temperature. So it is indispensable to analyze H in NAMs at different temperatures. IR is a powerful tool to detect trace amount of OH in NAMs because of its high sensitivity, so, it is widely used to measure water content in NAMs and explore H incorporation mechanism. Thereby, in situ varying temperature FTIR technique is a very good method to detect H in NAMs at different temperatures. Although some researchers have investigated temperature dependence of OH and H2O absorption in some minerals and glasses, the study concerning possible behavior of OH absorption in natural NAMs at varying temperatures is still scarce. In this dissertation, we choose such common minerals as clinopyroxene, orthopyroxene, feldspar and rutile to identify H speciation using Micro-FTIR method at room temperature. Then chemical compositions are analyzed by use of EMPA for minerals with high water content. At last, in situ FTIR experiment is carried out to investigate the variation at varying temperatures (from RT to 500℃at 100℃increments) using heating/cooling stage attached to IR microscope. Moreover, polarized IR measurement is carried out for typical samples. In order to investigate the temperature dependence of IR absorption coefficient and incorporation mechanism of OH in NAMs, the followings are completed step by step:
     (1) The behavior of structural OH in clinopyroxene (cpx) and orthopyroxene (opx) during successive heating, cooling and stepped heating has been investigated by in situ Micro-FTIR measurements under temperatures ranging from 25℃to 500℃at 100℃increment. The results suggest that both Cpx and Opx exhibit a decrease in OH stretching vibration frequency with increasing temperature, and the change is reversible. Shift in absorption band frequency is controlled by thermal expansivity of the OH site or lattice interstice.
     (2) Based on the FTIR experiment results at varying temperatures for diopsides and omphacites, we discussed the incorporation mechanisms of OH defects in clinopyroxene mineral from a new point of view ---- thermal expansion. There are three groups of OH absorption bands in clinopyroxene: (1) 3600-3620 cm~(-1); (2) 3500-3540 cm~(-1); and (3) 3445-3465 cm~(-1). The OH incorporation mode of group 1 band is Si~(4+)+O~2-+1/2 H_2-Al~(3+)+OH~-, while the M2 vacancy is responsible for the OH incorporation mode of group 3 band. The OH incorporation mode of group 2 band is complex and probably relates to several different positions. The OH dipole vibration direction of group 2 band is the same with group 3 bands, along shared edge of M1 and M2 polyhedra O2-O1. And the OH dipole of group 1 band vibrates between O2 and O3 along edge of M2 polyhedron.
     (3) The behavior of structural OH in clinopyroxene (augite and omphacite) during successive heating has been investigated by in situ Micro-FTIR measurements under temperatures ranging from room temperature to 500℃at 100℃increment. The first group of OH band (3620-3640 cm~(-1)) exhibits a systematic decrease of peak position upon successive heating, while the other two groups (3520-3535 cm~(-1), 3450-3465 cm~(-1)) show only little change. Both augite and omphacite display a decrease of integral absorbance of OH fundamental stretching vibration upon successive heating. The IR spectra of OH band are reversible when the temperature decreases from 500℃to room temperature, suggesting that changes in IR indicate changes in molecular state of OH and no loss of OH happens. The change of integral absorbance of OH bands indicates that OH absorption coefficient is temperature dependent, so it is necessary to apply different absorption coefficients when determining OH content from Beer-Lambert law at different temperatures and sample temperatures should be reported in quantitative IR studies.
     (4) Temperature dependence of IR absorption of OH in nominally anhydrous orthopyroxene and feldspar has been investigated by in situ Micro-FTIR measurements under varying temperatures ranging from 25℃to 500℃at 100℃increment. The results demonstrate that the shift direction of OH peak position is related with initial wavenumber. Integral absorbances of OH in orthopyroxene and feldspar decrease with increasing temperature. Although the trend is similar to that of clinopyroxene, the magnitude of temperature response of OH integral absorbances of these minerals is variable. The magnitude of temperature responses are correlated with wavenumbers: the lower wavenumber bands have stronger temperature dependence of integral absorbances. The changes of IR spectra of OH band are reversible, so the change of integral absorbance with temperature indicates temperature-dependent IR absorption coefficient of OH in nominally anhydrous minerals (NAMs).
     (5) In view of the limitations of previous works and in order to deeply investigate the IR behavior of NAMs at different temperatures, we choose a very simple mineral-rutile, not only carry out in situ high temperature FTIR measurements, but also in situ low temperature FTIR, polarized FTIR and high temperature XRD. The combined results suggest that the H site of rutile is on the (001) plane. At room temperature, the H site of 3297 and 3279 cm~(-1) band is on (1/2, 0, 0) and (1/2, 1/2, 0) respectively. In addition, the H bond of 3279 cm~(-1) band is nonlinear. The change of areas for these bands shows opposite dependency on temperature, indicating two possibilities: (1) H site will transfer at varying temperatures and (1/2, 1/2, 0) site is stable at high temperature, while the other site (1/2, 0, 0) is stable at low temperature; or (2) the IR absorption coefficients of two bands display opposite temperature dependency.
引文
Aines RD, Silver LA, Rossman GR, et al. 1983. Direct observation of water in rhyolitc temperatures up to 850℃[J]. Geological Society of America Abstracts with Program, 15: 512.
    Aines RD and Rossman GR. 1984a. The high temperature behavior of water and carbon dioxide in the channels of cordierite and beryl [J]. American Mineralogist, 69: 319-327.
    Aines RD and Rossman GR. 1984b. Water in minerals? A peak in the infrared [J]. Journal of Geophysical Research, 89: 4059-4072.
    Aines RD, Kirby SH and Rossman GR. 1984. Hydrogen speciation in synthetic quartz [J]. Physics and Chemistry of Minerals, 11: 204-212.
    Aines RD and Rossman GR. 1985. The high temperature behavior of trace hydrous components in silicate minerals [J]. American Mineralogist, 70: 1169-1179.
    Andrut M, Wildner M, Ingrin J, et al. 2007. Mechanisms of OH defect incorporation in naturally occurring, hydrothermally formed diopside and jadeite [J]. Physics and Chemistry of Minerals, 34: 543-549.
    Aronson JR, Bellotti, LH, Eckroad SW, et al. 1970. Infrared spectra and radiative thermal conductivity of minerals at high temperatures [J]. Journal of Geophysical Research, 75: 3443-3456.
    Asimow PD and Langmuir CH. 2003. The important of water to oceanic mantle melting regimes [J]. Nature, 421: 815-820.
    Asimow PD, Stein LC, Mosenfelder JL, et al. 2006. Quantitative polarized infrared analysis of trace OH in populations of randomly oriented mineral grains [J]. American Mineralogist, 91: 278-284.
    Bai Q and Kohlstedt DL. 1993. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine [J]. Physics and Chemistry of Minerals, 19: 460-471.
    Balan E, Refson K, Blanchard M, et al. 2008. Theoretical infrared absorption coefficient of OH groups in minerals [J]. American Mineralogist, 93: 950-953.
    Barrow GM. 1962. Introduction to molecular spectroscopy [M]. Mc-Graw-Hill, New York, 76-80.
    Belashev BZ and Ternovoi AN. 1991. In book of Abstracts of the 2nd All-Union Meeting“The theory of Mineralogy”[in Russian] [C], Syktyvker, 16.
    Belashev BZ. 1999. Temperature influence on the intensity of water bandsυ(OH) in IR spectra of some silicate minerals [J]. Journal of Applied Spectroscopy, 66: 132-135.
    Bell DR, Ihinger PD and Rossman GR. 1995. Quantitative analysis of trace OH in garnet and pyroxenes [J]. American Mineralogist, 80: 463-474.
    Bell DR, Rossman GR and Moore RO. 2004a. Abundance and partitioning of OH in high-pressure magmatic system: megacryst from the Monastery kimberlite [J]. South Africa. J Petrol, 45: 1539-1564.
    Bell DR, Rossman GR, Maldener J, et al. 2004b. Hydroxide in kyanite: a quantitative determination of the absolute amount and calibration of the IR spectrum [J]. American Mineralogist, 89: 998-1003.
    Bell DR, Rossman GR and Moore RO. 2004. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa [J]. J Petrol, 11: 1539-1564.
    Beran A and Putnis A. 1983. A model of the OH positions in olivine, derived from infrared-spectroscopic investigations [J]. Physics and Chemistry of Minerals, 9: 57-60.
    Beran A. 1987. OH groups in nominally anhydrous framework structures: an infrared spectroscopic investigation of danburite and labradorite [J]. Physics and Chemistry of Minerals, 14: 441–445.
    Bromiley GD and Keppler H. 2004. An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes [J]. Contributions to Mineralogy and Petrology, 147: 189-200.
    Bromiley GD, Keppler H, Cameron M, et al. 2004. Hydrogen solubility and speciation in natural, gem-quality chromian diopside [J]. American Mineralogist, 89: 941-949.
    Bromiley GD and Hilairet N. 2005. Hydrogen and minor element incorporation in synthetic rutile [J]. Mineralogical Magazine, 69: 345-358.
    Cameron M and Pipike JJ. 1980. Crystal chemistry of silicate pyroxenes, in C.T. Prewit (Ed.), Pyroxenes [J]. Review in Mineralogy, 7: 5-92.
    Cameron M and Pipike JJ. 1981. Structural and chemical variations in pyroxenes [J]. American Mineralogist, 66: 1-50.
    Cerrato G, Fubini B, Baricco M, et al. 1995. Spectroscopic, structural and microcalorimetric study of stishovite, a non-pathogenic polymorph of SiO2 [J]. Journal of Materials and Chemistry, 5(11): 1395-1941.
    Cho H and Rossman GR. 1993. Single-crystal NMR studies of low-concentration hydrous species in minerals: Grossular garnet [J]. American Mineralogist, 78: 1149-1164.
    Dodd DM and Fraser DB. 1967. Infrared studies of the variation of H-bonded OH in synthetic alpha-quartz [J]. American Mineralogist, 52: 149-160.
    Downs RT, Hazen RM and Finger LW. 1994. The high-pressure crystal chemistry of low albite and the origin of the pressure dependency of Al-Si ordering [J]. American Mineralogist, 79: 1042-1052.
    Fukuda J and Nakashima S. 2008. Water at high temperatures in a microcrystalline silica (chalcedony) by in-situ infrared spectroscopy: physicochemical states and dehydration behavior [J]. Journal of Mineralogical and Petrological Sciences, 103: 112-115.
    Fukuda J, Yokoyama T and Kirino Y. 2009. Characterization of the states and diffusivity of intergranular water in a chalcedonic quartz by high-temperature in situ infrared spectroscopy [J]. Mineralogical Magazine, 73(5): 825-835.
    Geiger CA, Langer K, Bell D R, et al. 1991. The hydroxide component in synthetic pyrope [J]. American Mineralogist, 76: 49-59.
    Geiger CA, Stahl A and Rossman GR. 2000. Single-crystal IR- and UV/VIS-spectroscopic measurements on transition-metal-bearing pyrope: The incorporation of hydroxide in garnet [J]. European Journal of Mineralogy, 12: 259-271.
    Graham CM and Elphick SC. 1991. Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion in silicates. In Diffusion, Atomic Ordering, and Mass Transport: Selected Topics in Geochemistry, edited by Ganguly [J]. Advances in Physical Geochemistry, 8: 248-285.
    Hammer VMF and Beran A. 1991. Variations in the OH concentration of rutiles from different geological environments [J]. Mineralogy Petrology, 45: 1-9.
    Hammer VMF, Beran A, Endisch D, et al. 1996. OH concentrations in natural titanites determined by FTIR spectroscopy and nuclear reaction analysis [J]. European Journal of Mineralogy, 8: 281-288.
    Hofmeister AM. 2004. Enhancement of radiative transfer in the upper mantle by OH- in minerals [J]. Physics of the Earth Planetary Interiors, 146: 483-495.
    H?sch A and Langer K. 1996. Single crystal MFTIR-spectra at various temperatures of synthetic end member garnets in the OH-valence vibrational region [J]. Physics and Chemistry of Minerals, 23: 305-306.
    Ingrin J and Skogby H. 2000. Hydrogen in nominally anhydrous upper mantle minerals: concentration levels and implications [J]. European Journal of Mineralogy, 12: 543-570.
    Inoue T. 1994. Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa [J]. Physics of the Earth Planetary Interiors, 85: 237-263.
    Jackson JM, Palko JW, Andrault D, et al. 2003. Thermal expansion of natural orthoenstatite to 1473K [J]. European Journal of Mineralogy, 15: 469-473.
    Johnson O, Ohlsen W and Kingsbury PJr. 1968. Defects in rutile (ⅰⅰⅰ). Optical and electrical properties of impurities and charge carriers [J]. Physical Review, 175: 1102-1108.
    Johnson EA and Rossman GR. 2003. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy [J]. Amrican Mineralogist, 88: 901-911.
    Johnson EA and Rossman GR. 2004. A survey of hydrous species and concentrations in igneous feldspars [J]. Amrican Mineralogist, 89: 586-600.
    Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 347: 272-273.
    Katayama I, Nakashima S and Yurimoto H. 2006. Water content in natural eclogites and implication for water transport into the deep upper mantle [J]. Lithos, 86: 245-259.
    Keppler H, Nicholas S and Bagdassarov. 1993. High-temperature FTIR spectra of H2O in rhyolite melt to 1300℃[J]. American Mineralogist, 78: 1324-1327.
    Keppler H and Rauch M. 2000. Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR: the effect of sample preparation [J]. Physics and Chemistry of Minerals, 27: 371-376.
    Wright K. 2006. Atomistic Models of OH Defects in nominally anhydrous minerals [J]. Reviews in Mineralogy & Geochemistry, 62: 67-83.
    Khomenko V, Langer K, Rager H, et al. 1998. Electronic absorption by Ti3+ ions and electronic delocalization in synthetic blue rutile [J]. Physics and Chemistry of Minerals, 25: 338-346.
    Koch-Müller M, Dera P, Fei Y, et al. 2003. OH- in synthetic and natural coesite [J]. American Mineralogist, 88: 1436-1445.
    Koch-müler M, Matsyuk S and Wirth B. 2004. Hydroxyl in omphacites and omphacitic clinopyroxenes of upper mantle to lower crystal origin beneath the Siberian platform [J]. Americam Mineralogist, 89: 921-931.
    Koch-Müller M and Rhede D. 2010. IR absorption coefficients for water in nominally anhydrous high-pressure minerals [J]. American Mineralogist, 95: 770-775.
    Koga K, Hauri E, Hirschmann M, et al. 2003. Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals [J]. Geochemistry, Geophysics, Geosystems, 4: 1019-1020.
    Kohn SC. 1996. Solubility of H2O in nominally anhydrous mantle minerals using 1H MAS NMR [J]. Amrican Mineralogist, 81: 1523-1526.
    Kolesov BA and Geiger CA. 2005. The vibrational spectrum of synthetic hydrogrossular (katoite) Ca3Al2(O4H4)3:A low-temperature IR and Raman spectroscopic study [J]. American Mineralogist, 90: 1335-1341.
    Koudriachova MV, Leeuw SW and Harrison NM. 2004. First-principles study of H intercalation in rutile TiO2 [J]. Physical Review B, 70: 165-421.
    Kovács I, Hermann J, O’neill HSC, et al. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra [J]. American Mineralogist, 93: 765-778.
    Kovács I, O’neill HSC, Hermann J, et al. 2010. Site-specific infrared O-H absorption coefficients for water substitution into olivine [J]. American Mineralogist , 95: 292-299.
    Kronenberg AK, Yund RA and Rossman GR. 1996. Stationary and mobile hydrogen defects in potassium feldspar [J]. Geochimica et Cosmochimica Acta, 60: 4075–4094.
    Kurosawa M, Yurimoto H, Matsumoto K, et al. 1992. Hydrogen analysis of mantle olivine by secondary ion mass spectrometry. In: High-Pressure Research in Mineral Phys: Application to Earth and Planetary Sciences [J]. Syono S, Manghnani MH (eds) Terra Pub-Am Geophys Union, pp. 283–287.
    Lemaire C, Kohn SC and Brooker RA. 2004. The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarised infrared spectroscopic study [J]. Contributions to Mineralogy and Petrology, 147: 48-57.
    Libowitzky E and Beran A. 1995. OH defects in forsterite [J]. Physics and Chemistry of Minerals, 22: 387-392.
    Libowetzky E and Beran A. 2006. The structure of hydrous species in nominally anhydrous minerals [J]. Reviews in Mineralogy and Geochemistry, 62: 29-52.
    Libowitzky E and Rossman GR. 1997. An IR absorption calibration for water in minerals [J]. American Mineralogist, 82: 1111-1115.
    Libowetzky E. 1999. Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals [J]. Monatsh Chem, 130: 1047-1059.
    Lu R and Keppler H. 1997. Water solubility in pyrope in 100kbar [J]. Contributions to Mineralogy and Petrology, 129: 35-42.
    Lutz HD. 1988. Bonding and structure of water molecules in solid hydrates correlation of spectroscopic and structural data [J]. Structure and Bonding, 69: 97-125.
    Mackwell SJ, Kohlstedt DL and Paterson MS. 1985. The role of water in the deformationof olivine single crystals [J]. Journal of Geophysical Research, 90B: 11319-11333.
    Maldener J, Rauch F, Gavranic M, et al. 2001. OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy [J]. Mineralogy and Petrology, 71: 21-29.
    Meade C and Jeanloz R. 1991. Deep-focus earthquakes and recycling of water into the Earth’smantle [J]. Science, 252: 68-72.
    Mei S and Kohlstedt DL. 2000. Influence of water on plastic deformation of olivine aggregates, I. Diffusion creep regime [J]. Journal of Geophysical Research, 105: 21457-21469.
    Mosenfelder JL, Deligne NI, Asimow PD, et al. 2006. Hydrogen incorporation in olivine from 2-12 Gpa [J]. American. Mineralogist, 91: 285-294.
    Mrosko M, Koch-müller M, Hartmann K, et al. 2010. Location and quantification of hydrogen in Ca- and Sr- anorthite [J]. European Journal of Mineralogy, 22: 103-112.
    Nakamoto K, Margoshes M and Rundle RE. 1955. Stretching frequency as a function of distances in hydrogen bonds [J]. Journal of the American Chemistry Society, 77: 6480-6486.
    Nasdala L, Beran A, Libowitzky E, et al. 2001. The incorporation of hydroxyl groups and molecular water in natural zircon (ZrSiO4) [J]. American Journal of Science, 301: 831-857.
    Okumura S and Nakashima S. 2004. Water diffusivity in rhyolitic glasses as determined by in situ IR spectroscopy [J]. Physics and Chemistry of Minerals, 31: 183-189.
    Okumura S and Nakashima S. 2005. Molar absorptivities of OH and H2O in rhyolitic glass at room temperature and at 400-600℃[J]. American Mineralogist, 90: 441-447.
    Paterson MS. 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials [J]. Bull Mineral, 105: 20-29.
    Peslier AH, Luhr JF and Post J. 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge [J]. Earth and Planetary Science Letters, 201: 69-86.
    Prasad PSR, Prasad KS and Murthy SR. 2005. Dehydration of natural stilbite: An in situ FTIR study [J]. American Mineralogist, 90: 1636-1640.
    Rauch M and Keppler H. 2002. Water solubility in orthopyroxene [J]. Contributions to Mineralogy and Petrology, 143: 525-536.
    Rossman GR and Smyth JR. 1990. Hydroxyl contentss of accessory minerals in mantle eclogites and related rocks [J]. American Mineralogist, 75: 775-780.
    Rossman GR. 1996. Studies of OH in nominally anhydrous minerals [J]. Physics and Chemistry of Minerals, 23: 299-304.
    Rossman GR. 1988. Vibrational Spectroscopy of Hydrous Components [J]. Review in Mineralogy, 18:193-206.
    Rossman GR. 2006. Analytical methods for measuring water in nominally anhydrous minerals [J]. Reviews in Mineralogy & Geochemistry, 62: 1-28
    Salje EKH, Zhang M and Groat LA. 2000. Dehydration and recrystallization of metamict titanite under thermal anneal: an IR spectroscopic study [J]. Phase Transitions, 71: 173-187.
    Sambridge M, Gerald JF, Kovács I, et al. 2008. Quantitative absorbance spectroscopy withunpolarized light: Part I. Physical and mathematical development [J]. American Mineralogist, 93: 751-764.
    Shankland TJ, Nitsan V and Duba AG. 1979. Optical absorption and radiative heat transport in olivine at high temperature. Journal of Geophysical Research [J], 84: 1603-1610.
    Skogby, H. and Rossman, G.R. 1989. OH in pyroxene: an experimental study of incorporation mechanisms and stability [M]. American Mineralogist, 74: 1059-1069.
    Skogby H, Bell DR and Rossman GR. 1990. Hydroxide in pyroxene: variations in the natural environment [J]. American Mineralogist, 75: 767-774.
    Skogby H. 1994. OH incorporation in synthetic clinopyroxene [J]. American Mineralogist, 79: 240-249.
    Skogby H. 2006. Water in natural mantle minerals I: Pyroxenes [J]. Reviews in Mineralogy & Geochemistry, 62: 155-167.
    Smyth JR, Bell DR and Rossman GR. 1991. Incorporation of hydroxyl in upper-mantle clinopyroxenes [J]. Nature, 351: 732-735.
    Smyth JR and Jacobsen SD. 2006. Nominally anhydrous minerals and Earth’s deep water cycle [M]. In: Jacobsen S D and S. van der Lee (Eds), AGU Monograph, 168: 1-11.
    Soffer BH. 1961. Studies of the optical and infrared absorption spectra of rutile single crystals [J]. Journal of Chemical Physics, 35: 940-945.
    Solomon GC. and Rossman GR. 1979. The role of water in structural states of K-feldspar as studied by infrared spectroscopy [C]. Abstracts with programs, Geological Society of America, 11: 521.
    Stalder R. 2004. Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene [J]. Eur J Mineral 16: 703-711.
    Stein J and Shankland TJ. 1981. Radiative thermal conductivity in obsidian and estimates of heat transfer in magma bodies [J]. Journal of Geophysical Research, 86: 3684-3688.
    Su W, Zhang M, Redfern SAT and Bromiley GD. 2008. Dehydroxylation of omphacite of eclogite from the Dabie-Sulu [J]. Lithos, 105: 181-190.
    Sugiyama K and Takéuchi Y. 1991. The crystal structure of rutile as a function of temperature up to 1600℃[J]. Zeitschrift für Kristallographie, 194: 305-313.
    Suzuki S and Nakashima S. 1999. In-situ IR measurements of OH species in quartz at high temperatures [J]. Physics and Chemistry Minerals, 26: 217-225.
    Swope RJ and Smyth JR. 1995. H in rutile-type compounds: I. Single-crystal neutron and X-ray diffraction study of H in rutile [J]. American Mineralogist, 80: 448-453.
    Tokawai K and Nakashima S. 2009. Dehydration kinetics of muscovite by in situ infraredmicrospectroscopy [J]. Physics and Chemistry of Minerals, 37: 907-917.
    Tribaudino M, Angel RJ, Cámara F, et al. 2010. Thermal expansion of plagioclase feldspars [J]. Contributions to Mineralogy and Petrology, 160: 899-908.
    Vlassopoulos D, Rossman GR, and Haggerty SE. 1993. Coupled substitution of H and minor elements in rutile and implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle [J]. American Mineralogist, 78: 1181-1191.
    Wang Z, Hiraga T and Kohlstedt DL. 2004. Effect of H+ on Fe-Mg interdiffusion in olivine, (Fe,Mg)2SiO4 [J]. Applied Physics Letters, 85: 209-211.
    Watenphul A and Wunder B. 2009. Temperature-dependence of the OH stretching frequencies of topaz-OH. Physics and Chemistry of Minerals [J], 37: 65-72.
    Watenphul A, Libowitzky E, Wunder B, et al. 2010. The OH site in topaz: an IR spectroscopic investigation [J]. Physics and Chemistry of Minerals, 37: 653-664.
    Wedding B. 1975. Measurment of high temperature absorption coefficients of glasses [J]. Journal of the American Ceramic Society, 58: 102-105.
    Williams Q and Hemley R. 2001. Hydrogen in the deep Earth [J]. Annual Review of Earth and Planetary Science, 29: 365-418.
    Withers AC and Behrens H. 1999. Temperature-induced changes in NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100K [J]. Physics and Chemistry Minerals, 27: 119-132.
    Xia QK, Dallai L and Deloule E. 2004. Oxygen and hydrogen isotope heterogeneity of clinopyroxene megacrysts from Nushan Volcano, SE China [J]. Chemical Geology, 209: 137-151.
    Yamagishi H, Nakashima S and Ito Y. 1997. High temperature infrared spectra of hydrous microcrystalline quartz [J]. Physics and Chemistry Minerals, 24: 66-74.
    Zhang M, Salje EKH, Malcherek T, et al. 2000. Dehydration of metamict titanite: an infrared spectroscopy study [J]. Canadian Mineralogist, 38: 119-130.
    Zhang M, Groat LA, Salje EKH, et al. 2001. Hydrous species in crystalline and metamict titanites [J]. American Mineralogist, 86: 904-909.
    Zhang M, Hui Q, Lou XJ, et al. 2006. Dehydroxylation, proton migration, and structural changes in heated talc: An infrared spectroscopic study [J]. American Mineralogist, 91: 816-825.
    Zhang M, Salje EKH, Carpenter MA, et al. 2007. Temperature dependence of IR absorption of hydrous/hydroxyl species in minerals and synthetic materials [J]. American Mineralogist, 92: 1502-1517.
    郝艳涛,夏群科,杨晓志等. 2006.安徽女山新生代玄武岩中橄榄石包体矿物的含水性研究[J].岩石学报,22(6):1713-1722.
    盛英明,夏群科,郝艳涛等. 2005.大别山双河超高压榴辉岩中的水:微区红外光谱分析[J].地球科学-中国地质大学学报,30(6):673-684.
    夏群科,陈道公,郭立鹤等. 1998.汉诺坝幔源单斜辉石巨晶中的结构水:红外光谱观察[J].矿物学报,19(2): 161-165.
    夏群科,潘尤杰,陈道公等. 2000.碱性玄武岩中长石巨晶的结构水:红外光谱和核磁共振谱研究[J].岩石学报,16 (4):485-491.
    夏群科,2005.大陆深俯冲过程中的水:“名义上无水矿物”的信息[J].矿物岩石地球化学通报,24 (1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700