用户名: 密码: 验证码:
黄精皂苷对抑郁模型小鼠的影响及其部分机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过建立急性应激、药物诱导和慢性应激小鼠抑郁模型,观察黄精皂苷(Saponins of Rhizoma Polygonati, SRP)对各种抑郁模型小鼠行为的影响,以及SRP对慢性应激抑郁模型小鼠脑内去甲肾上腺素(norepinephrine, NE)、多巴胺(dopamine, DA)、5-羟色胺(5-hydroxytryptamine, 5-HT)三种单胺类神经递质和血中皮质醇(cortisol, COR)的影响,初步探讨SRP对抑郁模型小鼠的影响及其作用机制。
     方法:1、采用不同的方法建立不同的小鼠抑郁模型:⑴采用小鼠悬尾和小鼠强迫游泳建立急性应激致小鼠行为绝望模型,观察SRP对小鼠悬尾不动时间和强迫游泳不动时间的影响。⑵通过利血平建立药物诱发的抑郁小鼠模型,观察SRP对利血平诱发小鼠体温下降、眼睑下垂和活动抑制的影响。⑶利用孤养和长期不可预见性温和应激(chronic unpredictable mild stress, CUMS)建立慢性应激小鼠抑郁模型,观察小鼠体重的变化,采用敞箱实验测定小鼠探求活动的变化,利用自主活动仪测定小鼠自主活动的变化,通过水迷宫测定小鼠学习记忆能力的变化。
     2、采用高效液相色谱法(high performance liquid chromatography, HPLC)测定慢性应激抑郁模型小鼠脑内单胺类神经递质的变化,用放免法(radioimmunityassay, RIA)测定血中COR的变化。
     结果:1、⑴与正常组小鼠相比较,SRP(100、200、400 mg·kg-1)均可显著减少小鼠悬尾不动时间和小鼠强迫游泳不动时间。⑵与模型组小鼠相比较,SRP(100、200、400 mg·kg-1)均可显著对抗利血平所引起的体温下降、眼睑下垂及活动抑制。⑶与正常组相比,模型组小鼠的体重增长值、敞箱活动及自主活动明显减少;与模型组相比,SRP(100、200、400 mg·kg-1)组小鼠的体重增长值、敞箱活动及自主活动均有增加。在水迷宫定位航行实验中,从第2天开始模型组与正常组相比,小鼠的逃避潜伏期明显延长,与模型组相比,SRP(100、200、400 mg·kg-1)小鼠的逃避潜伏期均明显缩短;撤去平台后,与正常组相比,模型组小鼠在原平台象限的搜索时间明显缩短,与模型组相比,SRP(100、200、400 mg·kg-1)组小鼠在原平台象限的搜索时间明显延长。
     2、经过21天刺激后,与正常组相比,慢性应激模型组小鼠脑内的NE、DA和5-HT的含量均明显降低,血中COR含量明显升高;与模型组相比,SRP(100、200、400 mg·kg-1)组小鼠脑内的NE和5-HT的含量明显升高,DA的含量有升高趋势,但差异无显著性,血中COR含量降低。
     结论:SRP能够改善抑郁模型小鼠的行为学,并且能够提高慢性应激抑郁模型小鼠脑内单胺类神经递质(NE, DA,和5-HT)的含量,降低血中COR的含量,SRP对小鼠脑内神经递质和血中COR的作用可能是SRP对抑郁模型小鼠产生影响的可能机制。
Objective : After establishing the acute stress, drug-induced and chronic stress mouse models of depression,we observed the effects of Saponins of Rhizoma Polygonati(SRP), on behaviors of all the models. And studied on the effects of the SRP on norepinephrine(NE), dopamine (DA), 5-hydroxytryptamine(5-HT), and cortisol(COR) in mouse model of depression with chronic stress. Then discussed the prevention and cue effects of the SRP and the possible mechanisms.
     Methods: 1. Established different depression models of mouse in different ways :⑴In this study, we adopt the tail suspention and force swimming of the mouse of two" the behavior despair" to observe effect of the SRP on suspention and force swimming immobility time of the mouse.⑵In this study, we set up the drug-induced depression model by reserpine, and then observed the ptosis, akinesia and hypothermia which induced by reserpine.⑶The depression model of mouse was made by the CUMS and solitary custody. We observed the change of the weight of the mouse, and completed the detection of autonomous activity, open-filed test, and water maze test.
     2. Using the High Performance Liquid Chromatography(HPLC) detected the monoamine neurotransmitters of the CUMS depression model; and deteced the COR with the radioimmunity assay (RIA).
     Results: 1、⑴The SRP(100、200、400 mg·kg-1) significantly diminished the immobility time of the mice in the suspention and force swimming.⑵After administration of the SRP for 7 days, it can notably alleviate the symptoms of the ptosis, akinesia and hypothermia which occurred in the vehicle group.⑶The SRP(100、200、400 mg·kg-1) all increased the weight of the mice; The numbers of crossings and rearings in the open field test and the autonomous activity were increased as well. According to our findings of water maze , the SRP(100、200、400 mg·kg-1) shortened the Escape latent period from the second day obviously, and prolonged the cross the Platform Quadrant times.
     2、The SRP(100、200、400 mg·kg-1) significantly increased the NE and 5-HT in the brian of the CUMS depression model mouse; the contents of the DA had rising trend; and the COR in the serum decreased.
     Conclutions: The SRP can improve the diversify of the behaviors, elevate the contents of the NE, DA and 5-HT in the brian and the COR in the serum which are the possible mechanisms of the prevention and cure effect of the SRP.
引文
1.叶尘宇,王立伟.抑郁症的识别与治疗.中华全科医师杂志, 2007; 6(3): 190-192.
    2.肖爱娇.抑郁症的研究进展.江西中医学院学报, 2007; 19(2): 93-95.
    3. Hansen RA, Gartlehner G, Lohr KN, Gaynes BN, Carey TS. Efficacy and Safety of Second-generation antidepressants in the Treatment of Major Depressive Disorder. Ann Internal Med, 2005; 143(6): 415-426.
    4.杨小莹,陈杰,杨新明,马世平.抗抑郁药物及其研究方法的进展.中国中药杂志, 2007; 32(9): 770-774.
    5.胡敏,王琴,周晓东,蒋林.黄精药理作用研究进展及其临床应用.现代食品与药品杂志, 2005; 15(5): 68-71.
    6.易正辉,方贻儒,王祖承.抑郁症神经生化和神经电生理学研究进展.中国新药与临床杂志, 2005; 24(9): 676-679.
    7. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci, 2008; 31(3): 464-468.
    8.高红莉,刘方永,万学英,齐艳波.黄精及其制剂的临床应用进展.泰山医学院学报, 2004; 24(5): 490-493.
    9. Yamano M, Yuki H, Yasuda S, Miyata K. Corticotropin-releasing hormone receptors mediate consensus interferon-alpha YM643-induced depression-like behavior in mice. J Pharmacol Exp Ther, 2000; 292(1): 181-187.
    10. Lucki I. The forced swimming test as a model for core and component behaviorl effects of antidepressant drugs. Behav Pharmacol, 1997; 8(6-7): 523- 532.
    11.徐静华,蔡爽,于庆海,陶丽.贯叶连翘提取物抗抑郁作用研究.中药药理与临床, 2002; 18(5): 29-30.
    12. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Pchopharmacology(Berl), 1997; 134(4): 319-329.
    13.Kaye J, Morton J, Bowcutt M, Maupin D. Stress, depression and psychoneuroimmunology. J Neurosci Nurs, 2000; 32(2): 93-100.
    14.王学琦,路长林,李丽云,丁广良,胡红兵,叶朝辉.大鼠抑郁模型的脑磁共振成像研究.中华精神科杂志, 1999; 32 (2): 12-14.
    15. Chen J, Long Y, Han M, Wang T, Chen Q, Wang R. Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Pharmacol Biochem Behav, 2008; 90(3): 441-446.
    16.鲁燕侠,崔佳,蔺兴遥,逯振宇. RP-HPLC-荧光检测法测定小鼠脑组织中5种神经递质的含量.解放军药学学报, 2003; 19(4): 262-264.
    17. Maier SF. Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biol Psychiatry, 2001; 49(9): 763-773.
    18. Butterweck V, Petereit F, Winterhoff H, Nahrstedt A. Solubilized Hypericin and Pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med, 1998; 64(4): 291-294.
    19.李晓秋,许晶.抑郁动物模型的研究进展.中华精神科杂志, 2002; 35(3): 184-186.
    20. Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat:implication for a model of depression. Neurosci Biobehav Rev ,2001; 5(2): 247-251.
    21.杨士友,黄世福,孙备.解百忧解口服液对抑郁模型大鼠行为及中枢神经递质的影响.中国中医基础医学杂志, 2000; 6(11): 56-59.
    22.谢梅,廖名龙.舒眠胶囊.中国新药杂志,2001; 10(5): 386.
    23. Morris RG, Garrud P, Rawlins JN, O'Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982; 297(5868): 681-683.
    24. Schenk F, Morris RG. Dissociation between components of spatial memory in rats afer recovery from effects of retrohippocampal lesions. Exp Brain Res, 1985; 58(1):11-28.
    25. Kitayama IT, Otani M, Murase S. Degeneration of the locus ceruleus noradrenergic neurons in the stress-induced depression of rats. Ann N Y Acad Sci, 2008; 1148: 95-98.
    26. Van Heeringen K. The neurobiology of suicide and suicidality. Can J Psychiatry, 2003; 48 (5): 292-300.
    27. Invernizzi RW, Garattini S. Role of presynaptic alpha2-adrenoceptors in antidepressant action: recent findings form microdialysis studies. Prog Neuro Psychopharmacol Biol Psychiatry, 2004 ; 28 (5): 819-827.
    28. Nemeroff CB. The neurobiology of depression. Sci Am, 1998; 278(6): 42-49.
    29.李焕德,彭文兴.抑郁症药物治疗新进展.国外医学.精神病学册, 1997 ; 24 (3) :129-133.
    30.蔡悼基.抑郁症基础与临床.北京:科学出版社, 1997 , 29-32.
    31. Kirby LG, Allen AR, Lucki I. Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res, 1995; 682(1-2): 189-196.
    32. Detke MJ, johnson J, Lucki I. Serotonergic mechanisms involved in the effects of fluxetine in the rats forced swimming tests(FST). Soc neurosci Abstr, 1995; 21: 976-980.
    33.李云辉,胡随瑜,向群辉,陈昌华,王勇华.天松I号对绝望大鼠模型行为及脑组织血浆5-羟色胺及多巴胺的影响.湖南中医学院学报, 2002; 9 (22) :13~15.
    34.严进,陈宜张.中枢5-羟色胺能系统与下丘脑-垂体应激激素.生理科学进展, 1995; 26(4): 337.
    35. Jay TM, Rocher C, Hotte M, Naudon L, Gurden H, Spedding M. Placticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: importance for psychiatric diseases. Neurotux Res, 2004; 6(3):233-244.
    36. Montgomery SA. New developments in the treatment of depression. J Clin Psychiatry, 1999; 60(suppl 14): 10-15.
    37. Delgado P , Moreno F. Antidepressants and the brain. Int Clin Psychopharmacol,1999; 14((suppl 1): S9-16.
    38. Choy RK, Thomas JH. Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins. MolCell, 1999; 4(2): 143-152.
    39. Leggio GM, Micale V, Drago F. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST). Eur Neuropsychopharmacology , 2008;18(4): 271–277.
    40. Filip VD, Stephan J. Mechanisms of depression: role of the HPA axis. Drug Discovery Today: Disease Mechanisms. 2004; 4: 413-419.
    41. Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry, 1998 ; 44(3) :151~162.
    42.曲淼,唐启盛.抑郁症与中医“郁证”的关系探讨.北京中医药大学学报, 2004; 27(1): 11-13.
    43.陈日宙.忧郁症从脾肾论治.光明中医杂志, 1995; (6): 7-8
    44.刘思龙.补养佳品:黄精药膳.食品与健康, 2004; 12(2): 22.
    45.张洁,马百平,杨云,孙国珍.黄精属植物甾体皂苷类成分及药理活性研究进展.中国药学杂志, 2006; 41(5): 330-332.
    46.王爱平,杨双勇.路优泰治疗抑郁症的疗效观察.医学信息, 2006; 19(5): 897-898.
    47. Brattstrom A. Long-term effects of St.John’swort (Hypericum perforatum) treatment: A 1-year safety study in mild to moderate depression. Phytomedicine, 2009; 16(4): 277-283.
    48.孙秋红.抗抑郁良药-路优泰.河南实用神经疾病杂志, 2002; 5(2): 67.
    1. Hensler JG. Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci, 2003; 72(15): 1665 - 1682 .
    2. Walther DJ, Peter JU, Bashammakh S, H?rtnagl H, Voits M, Fink H, Bader M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 2003; 299(5603): 76 .
    3. Jacobs BL. Adult brain neurogenesis and depression. Brain Behav and Immun, 2002, 16(5): 602-609.
    4. Keller MB. Paroxetine Treatment of Major Depressive Disorder. Psychopharmacol Bull, 2003; 37(1): 42-52.
    5. Julie GH. Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci, 2003; 72(15): 1665–1682.
    6. Drevets WC, Frank E, Price JC, Kupfer DJ, Greer PJ, Mathis C. Serotonin type-1A receptor imaging in depression. Nucl Med Bio, 2000; 27(5): 499-507.
    7. Middlemiss DN, Price GW, Watson JM. Serotonergic targets in depression. Curr Opin Pharmacol, 2002; 2(1) :18 -22.
    8. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neurophaimacology, 1999; 38(8): 1083-1152.
    9. Pauwels PJ. 5-HT 1B/D receptor antagonists. Gen Pharmacol, 1997;29(3): 293-303.
    10. Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB.. Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol, 2000; 14(2): 177-185.
    11. Pullarkat SR, Mysels DJ, Tan M, Cowen DS. Coupling of serotonin 5-HT1B receptors to activation of mitogen-activated protein kinase ( ERK-2 ) and p70 S6 kinase signaling systems. J Neurochem, 1998; 71(3): 1059-1067.
    12. Marcos B, Aisa B, Ramírez MJ. Functional interaction between 5-HT(6) receptors and hypothalamic-pituitary-adrenal axis: Cognitive implications. Neuropharmacol, 2008; 54(4): 708-714.
    13. Invernizzi RW, Garattini S. Role of presynaptic alpha2-adrenoceptors in Antidepressant action: recent findings form microdialysis studies. Prog Neuro Psychopharmacol Biol Psychiatry, 2004 ; 28 (5): 819-827.
    14. Taussi R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem, 1995; 270(1): 1-4.
    15. Leonard BE. Noradrenaline in basic models of depression. Eur Neuropsychopharmaco1, 1997; 7(Supp1): Sll—6.
    16. Invernizzi RW, Garattini S. Role of presynaptic alpha2-adernoceptors in antidepressant action:recent findings from microdialysis studies. Porg Neuor Psychopharmacol Biol Psychiatry, 2004; 28 (5): 819-827.
    17.代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展.中国临床康复, 2003; 7 (30) :4126-4127.
    18.王艳芬,邱家荣.抑郁症神经生化机制研究进展.广州医药, 2008; 39(6): 9-11.
    19. Ainsworth K, Smith SE, Zetterstr?m TS, Pei Q, Franklin M, Sharp T. Effect of antidepressant drugs on dopamine D1 and D2 receptor expression and dopamine release in the nucleus accumbens of the rat. Psychopharmacology, 1998; 140(4): 470-477.
    20. Gian ML, Vincenzo M, Filippo D. Increased sensitivity to antidepressants of D3dopamine receptor-deficient mice in the forced swim test(FST). Eur Neuropsychopharmacol, 2008; 18(4): 271-277.
    21. Ossowska G, Nowa G, Kata R, Klenk-Majewska B, Danilczuk Z, Zebrowska-Lupina I. Brain monoamine receptors in a chronic unpredictable stress model in rats. J Neural Transm, 2001; 108(3): 311-319.
    22.周旋,王雪玲.谷氨酸能和γ-氨基酸能系统与情感障碍.中国神经科学杂志, 2003; 19(2): 130-133.
    23. Berk M, Plein H, Ferreira D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol, 2001; 24 (3): 129-132.
    24. Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji HK. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system . Ann NY Acad Sci, 2003; 1003: 273-291.
    25. Harkin A, Nally R, Kelly JP, Leonard BE. Effect of reboxetine treatments alone and in combination on the binding properties of cortical NMDA andβ1-adrenergic receptors in an animal model of depression. J Neural Transm, 2000; 107(10): 1213-1227.
    26. Andrew A, Eric S N, David B, Jeffrey M W. A role for AMPA receptors in mood disorders. biochem pharmacol, 2006; 71(9): 1273– 1288.
    27. Pilc A, Chaki S, Nowak G, Witkin JM. Mood disorders: Regulation by metabotropic glutamate receptors. biochem pharmacol, 2008; 75(5): 997-1006.
    28. SaloméN, Stemmelin J, Cohen C, Griebel G. Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol, Biochem Behav ,2006; 83 (4): 533–539.
    29. Blier P, Gobbi G, Haddjeri N, Santarelli L, Mathew G, Hen R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems:relevance to the antidepressant/anxiolytic response. J Psychiatry Neurosci, 2004; 29(3): 208-218.
    30. Chenu F, Guiard BP, Bourin M, Gardier AM. Antidepressant-like activity of selective serotonin reuptake inhibitors combined with a NK1 receptor antagonist in the mouse forced swimming test. Behav Brain Res, 2006; 172 (2): 256–263.
    31. Dableh LJ, Yashpal K, Rochford J, Henry JL. Antidepressant-like effects of neurokinin receptor antagonists in the forced swimtest in the rat. Eur J Pharmacol, 2005; 507 (123): 99-105.
    32. Florian H , Marcus I. Central CRH system in depression and anxiety—Evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol, 2008; 583(2-3):350-357.
    33. Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res, 2000; 34 (3) :171-181.
    34. Heike E., Astrid WZ, Thomas N. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res, 2003; 37(6): 525–533.
    35. Bale TL , Vale WW. Increased depression-ike behaviors in corticotrophin-releasing factor receptor-2-deficient mice : sexually dichotomous responses. J Neurosci. 2003; 23 (12): 5295-5301.
    36. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, Salyakina D, Lamberts SW, Holsboer F. Polymorphisms of the Glucocorticoid receptor Gene and major Depression. Biol Psychiatry, 2006; 59(8): 681–688.
    37.颜冬梅,屠凌岚,李文钧.糖皮质激素受体:抑郁症治疗的新靶点.中国现代应用药学杂志, 2006; 23(7): 620-622.
    38. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, H?rtnagl H, Flor H, Henn FA, Schütz G, Gass P. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci, 2005; 25 (26): 6243-6250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700