用户名: 密码: 验证码:
基于联萘骨架的氮杂环卡宾配体的金属钯和金络合物的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要围绕由联萘胺衍生的氮杂环卡宾配体及其金属钯和金络合物的合成,以及这些金属络合物在均相催化反应中的应用而展开。
     1双齿双氮杂环卡宾的钯络合物的合成及其应用
     从光学纯的联萘胺出发,合成了一系列带有不同阴离子配体和N-取代基的轴手性氮杂环卡宾配体的二价钯络合物I-la,b,I-2a-d, I-3a和I-4a-h,它们的结构均通过NMR、MS和IR等表征,其中络合物Ⅰ-4c的结构还经过X-Ray单晶衍射分析的确认。
     这些氮杂环卡宾的二价钯络合物能够有效地催化二乙基锌诱导极性反转的醛的不对称烯丙基化反应。金属钯中心的阴离子配体X会明显改变反应的速率,而反应的对映选择性则会受到N-CH2R取代基和阴离子X的共同影响。其中,N-CH2R的R为平面的苯基和X为溴离子的钯络合物I-4b是最好效果的催化剂。对于芳香醛和脂肪醛底物,均可取得58-96%的收率,54-66%ee的对映选择性,以及高达syn:anti> 99:1的非对映选择性。
     2氮杂环卡宾和氮给体的混合配体及其金属钯络合物的合成与表征
     从光学纯的联萘胺出发,合成了四个氮杂环卡宾和氮给体混合配体的钯络合物,即氮杂环卡宾-磺酰胺的Ⅱ-7,氮杂环卡宾-水杨醛亚胺的Ⅱ-14,氮杂环卡宾-苯甲醛亚胺的Ⅱ-18,以及氮杂环卡宾-胺基的Ⅱ-19。
     它们的结构均通过NMR、MS和IR等表征,其中络合物Ⅱ-7、Ⅱ-14和Ⅱ-18的结构还经过X-Ray单晶衍射分析的确认。在金属钯周围,络合物Ⅱ-7、Ⅱ-14和Ⅱ-18均表现为三齿螯合的配位方式,而络合物Ⅱ-19则可能是由氮杂环卡宾与胺基两齿螯合在钯中心的结构。
     3双齿双氮杂环卡宾的二价钯络合物在烯烃双氧化反应中的应用
     以PhI(OAc)2作为促进PdⅡ/PdⅣ催化循环的氧化剂,在耐空气和水气的温和条件下,氮杂环卡宾的二价钯络合物能够成功地催化烯烃的双氧化反应,其中,阳离子的钯络合物Ⅰ-2d表现出最高的催化活性。对于1,2-双取代的烯烃底物,它们的双氧化反应能够取得良好的顺式非对映选择性;而对于苯乙烯类衍生物,则会得到其1,2-和1,l-双氧化的混合产物,其中,富电子的衍生物有利于1,1-双氧化产物的生成。
     另外,通过同位素标记实验,我们还对该反应PdⅡ/PdⅣ催化循环的机理做了相应的研究,从而对各种产物的分配比例和非对映选择性做出了合理的解释。
     4单齿氮杂环卡宾配体的金络合物的合成及其应用
     从光学纯的联萘胺出发,合成了一系列单齿氮杂环卡宾配体的金络合物Ⅳ-1,Ⅳ-2a,b和Ⅳ-3-11,它们的结构经过了核磁、质谱和红外等的表征。其中,络合物Ⅳ-1,Ⅳ-2a和Ⅳ-6的结构还得到X-Ray单晶衍射分析的确认,它们的卡宾碳原子和阴离子配体在金的周围均表现为近似直线形的配位方式。
     这些氮杂环卡宾的金络合物能够有效地催化联烯-醇Ⅳ-47的分子内环化反应,在室温下能以优秀的收率得到相应的醚产物,但是反应的手性诱导效果(up to 24% ee)却并不理想。
     这些氮杂环卡宾的金络合物也能高效地催化1,6-烯炔的分子内环化反应,反应均能以很快的速率顺利进行。其中,络合物Ⅳ-6是最好的催化剂,在0°C下,以最高>99%的收率和59%ee的对映选择性得到相应的乙酰氧基环化产物Ⅳ-50a。
     以Ph2SO作为氧化剂,氮杂环卡宾的金络合物还能高效地催化1,6-烯炔的氧化重排反应,这实际上是捕获到了金催化1,6-烯炔重排过程中的五元环并三元环的金卡宾中间体B。其中,络合物Ⅳ-2a是最好的催化剂,在10°C下,以最高达>99%的收率和65%ee的对映选择性得到相应的醛产物Ⅳ-53。
This thesis was mainly focused on the synthesis of N-heterocyclic carbene (NHC) ligands derived from 1,1'-binaphthalenyl-2,2'-diamine (BINAM) and their palladium(Ⅱ) and gold(Ⅰ) complexes, and applications of these complexes in the catalytic transformations.
     1 Synthesis and application of bidentate bis(NHC)-Pd(Ⅱ) complexes
     A series of axially chiral bis(NHC)-Pd(II) complexes I-la,b, I-2a-d, I-3a and I-4a-h bearing different coordinating counterions and N-substituents have been prepared from 1,1'-binaphthalenyl-2,2'-diamine (BINAM) and fully characterized by NMR, MS and IR spectroscopies et al.. The structure of complex I-4c was also confirmed by its single-crystal X-ray diffraction study.
     These bis(NHC)-Pd(II) complexes as catalysts were effective in Et2Zn-mediated enantioselective umpolung allylation of aldehydes with cyclohexenyl acetate. While the variation of coordinating anion counterions may significantly change the raction rate, the enantioselectivity was both affected by coordinating counterions on palladium center and N-substituents around the N-heterocycle. For both aromatic and aliphatic aldehydes, complex I-4b bearing bromide counterions and N-CH2Ph substituents was the best catalyst to afford the homoallylic alcohol products in moderate to excellent yields (58%-96%), modest enantioselcetivities (54%-66% ee), and good to excellent syn diastereoselectivities (up to> 99:1 dr).
     2 Synthesis and characterization of palladium(Ⅱ) complexes of chelating NHC-N donor hybrid ligands
     A new class of palladium(Ⅱ) complexes of chelating NHC-N donor hybrid ligands such as NHC-sulfonamide (Ⅱ-7), NHC-phenoxyimine (Ⅱ-14), NHC-phenylimine (Ⅱ-18) and NHC-amine (Ⅱ-19) have been successfully synthesized in modest yields from optically pure 1,1'-binaphthyl-2,2'-diamine (BINAM).
     These complexes have been characterized by all NMR, MS and IR spectroscopic data. The structures of II-7,11-14 and 11-18 were also confirmed by single-crystal X-ray diffraction studies to exhibit tridentate chelating motifs around the palladium center, but complexⅡ-19 was proposed to comprise a bidentate chelating NHC-amine hybrid ligand and two bromide counterions.
     3 Bidentate bis(NHC)-palladium(II) complex-catalyzed dioxygenation of alkenes
     Bis(NHC)-palladium(II) complex were successfully used to catalyze the dioxygenation of alkenes under mild conditions tolerant of air and moisture, by using PhI(OAc)2 as the oxidant for its PdⅡ/PdⅣcatalytic cycle. Cationic NHC-Pd2+ diaquo complexⅠ-2d exhibited the highest catalytic activity to give 1,2-dioxygenation products with good syn-diastereoselectivity for 1,2-disubstituted alkenes, but styrene derivatives often afforded both 1,2- and 1,1-dioxygenation products with electron-rich derivatives being more liable to form the 1,1-dioxygenation product.
     By isotopic labeling experiments, we also investigated the possible mechanism involving PdⅡ/PdⅣcatalytic cycle to reasonably reveal the distribution of different products and their diastereoselectivities.
     4 Synthesis and applications of monodentate NHC-Au(I) complexes
     A series of axially chiral NHC-Au(I) complexesⅣ-1,Ⅳ-2a,b and IV-3-11 have been successfully synthesized from 1,1'-binaphthalenyl-2,2'-diamine (BINAM) and fully characterized by NMR, MS and IR spectroscopies et al. The structures of complexesⅣ-1,Ⅳ-2a andⅣ-6 were also confirmed by single-crystal X-ray diffraction studies, exhibiting a nearly linear coordination geometry of NHC and anion counterion ligands around gold center.
     These NHC-Au(I) complexes could effectively catalyze the intramolecular hydroalkoxylation of allenes to afford the ether product. in excellent yields but with unsatisfactory low enantioselectivities (up to 24% ee).
     These NHC-Au(I) complexes as catalysts were successfully applied in the intramolecular cyclization of 1,6-enynes. ComplexⅣ-6 was examined to be the best catalyst giving the acetoxyl productⅣ-50a in up to>99% yield and 59% ee under 0℃condition.
     The oxidative rearrangement of 1,6-enynes could also proceed smoothly with these NHC-Au(Ⅰ) complexes as catalysts by using Ph2SO as the oxidant, which is in fact the interception of cyclopropane gold(I)-carbenoid intermediate B for the gold(I)-catalyzed rearrangement of 1,6-enyne. ComplexⅣ-2a afforded the best results of up to>99% yield and 65% ee for the corresponding aldehyde productⅣ-53 under the condition of 10℃.
引文
[1](a) Herrmann, W. A.; Kocher, C. N-Heterocyclic Carbenes. Angew. Chem. Int. Ed. Engl. 1997,36,2162-2187. (b) de Fremonta, P.; Marionb, N.; Nolan, S. P. Carbenes:Synthesis, properties, and organometallic chemistry. Coord. Chem. Rev.2009,253,862-892.
    [2]Fischer, E.O.; Massbol, A. On the existence of a tungen carbonyl carbene complex. Angew. Chem. Int. Ed. Engl.1964,3(8),580-581.
    [3]Schrock, R. R. An "alkylcarbene" complex of Tantalum by intramolecular α-hydrogen abstraction. J. Am. Chem. Soc.1974,96,6796-6797.
    [4](a) Taylor, T. E.; Hall, M. B. Theoretical comparison between nucleophilic and electrophilic transition metal carbenes using generalized molecular orbital and configuration interaction methods. J. Am. Chem. Soc.1984,106,1576-1584. (b) Lappert, M. F. The coordination chemistry of electron-rich alkenes (enetetramines). J. Organomet. Chem.1988,358,185-213, and references therein, (c) Frenking, G.; Sola, M.; Vyboishchikov, S. F. Chemical bonding in transition metal carbene complexes. J. Organomet. Chem.2005,690,6178-6204.
    [5](a) Vyboishchikov, S. F.; Frenking, G. Structure and bonding of low-valent (Fischer-type) and high-valent (Schrock-type) transition metal carbene complexes. Chem. Eur. J.1998,4, 1428-1438. (b) Canac, Y.; Soleilhavoup, M.; Conejero, S.; Bertrand, G. Stable non-N-heterocyclic carbenes (non-NHC):recent progress. J. Organomet. Chem.2004,689, 3857-3865.
    [6]Ofele, K. 1,3-Dimethyl-4-imidazolin-yliden-(2)-pentacarbonyl chromein, neuer ubergangsmetall-carbene-complex.J.Organomet. Chem.1968,12(1),42-43.
    [7]Wanzlick, H. W.; Schnherr, H. J. Chemistry of nucleophilic carbene ⅩⅣ. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. Engl.1968,7(2),141-142.
    [8](a) Arduengo, A. J., Ⅲ; Harlow, R. L.; Kline, M. A stable crystsline carbene. J. Am. Chem. Soc.1991,113,361-363. (b) Arduengo, A. J.,Ⅲ; Dias, H. V. R.; Calabrese, J. C.; Davidson, F. Homoleptic carbene-silver(Ⅰ) and carbene-copper(Ⅰ) complexes. Organometallics 1993,12,3405-3409.
    [9](a) Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.; Linehan, E.; Oliva, J. M.; Orpen, A. G.; Quayle, M. J. Complexation of stable carbenes with alkali metals. Chem. Commun.1999,241-242. (b) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. Constructing a stable carbene with a novel topology and electronic framework. J. Am. Chem. Soc.2003,125(44),13314-13315. (c) Despagnet-Ayoub, E.; Grubbs, R. H. A stable four-membered N-heterocyclic carbene. J. Am. Chem. Soc.2004,126(33), 10198-10199. (d) Despagnet-Ayoub, E.; Grubbs, R. H. A ruthenium olefin metathesis catalyst with a four-membered N-heterocyclic carbene ligand. Organometallics 2005, 24(3),338-340.
    [10](a) Tolman, C. A. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem. Rev.1977,77(3),313-348. (b) Crabtree, R. H. NHC ligands versus cyclopentadienyls and phosphines as spectator ligands in organometallic catalysis. J. Organomet. Chem.2005,690,5451-5457. (c) Diez-Gonzalez, S.; Nolan S. P. Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands:A quest for understanding. Coord. Chem. Rev.2007,251,874-883. (d) Droge, T.; Glorius, F. The measure of all rings—N-heterocyclic carbenes. Angew. Chem. Int. Ed.2010,49, 6940-6952.
    [11](a) Lee, M. T.; Hu, C. H. Density functional study of N-heterocyclic and diamino carbene complexes:comparison with phosphines. Organometallics 2004,23,976-983, and references therein, (b) Boehme, C.; Frenking, G. N-heterocyclic carbene, silylene, and germylene complexes of MCl(M=Cu, Ag, Au). A theoretical study. Organometallics 1998,17,5801-5809. (c) Termaten, A. T.; Schakel, M.; Ehlers, A. W.; Lutz, M.; Spek, A. L.; Lammertsma, K. N-Heterocyclic carbene functionalized iridium phosphinidene complex [Cp(NHC)Ir=PMes]:comparison of phosphinidene, imido, and carbene complexes. Chem. Eur. J.2003,9,3577-3582.
    [12](a) Hu, X.; Tang, Y.; Gantzel, P.; Meyer, K. Silver complexes of a novel tripodal N-heterocyclic carbene ligand:evidence for significant metal-carbene π-interaction. Organometallics 2003,22,612-614. (b) Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Group 11 metal complexes of N-heterocyclic carbene ligands:nature of the metal-carbene bond. Organometallics 2004,23,755-764. (c) Nemcsok, D.; Wichmann, K.; Frenking, G. The significance of π interactions in Group 11 complexes with N-heterocyclic carbenes. Organometallics 2004,23,3640-3646.
    [13](a) Dalko, P. I.; Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. 2001,40,3726-3748. (b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. N-Heterocyclic carbenes as organocatalysts. Angew. Chem. Int. Ed.2007,46,2988-3000.
    [14]Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. The first asymmetric intramolecular stetter reaction. Preliminary communication. Helv. Chim. Acta.1996,79,1899-1902.
    [15]For selected books and reviews on NHC ligands, see:(a) Nolan, S. P. Ed. N-Heterocyclic Carbenes in Synthesis, Wiley-VCH:Weinheim, Germany,2006. (b) Glorius, F. N-Heterocyclic Carbenes in Transition Metal Catalysis, Springer:Berlin,2007. (c) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Stable carbenes. Chem. Rev.2000, 100,39-91. (d) Herrmann, W. A. N-Heterocyclic carbenes:A new concept in organometallic catalysts. Angew. Chem. Int. Ed.2002,41,1290-1309. (e) Kirmse, W. Stable singlet carbenes-plentiful and versatile. Angew. Chem. Int. Ed.2004,43, 1767-1769. (f) Douthwaite, R. E. Metal-mediated asymmetric alkylation using chiral N-heterocyclic carbenes derived from chiral amines. Coord. Chem. Rev.2007,251, 702-717. (g) Kiihl, O. The chemistry of functionalised N-heterocyclic carbenes. Chem. Soc. Rev.2007,36,592-607. (h) Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Palladium complexes of N-heterocyclic carbenes as catalysts for cross-coupling reactions: A synthetic chemist's perspective. Angew. Chem. Int. Ed.2007,46,2768-2813. (i) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev.2009,109,3612-3676.
    [16]For recent selected reviews on cross-coupling reactions, see:(a) Marion, N.; Nolan, S. P. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res.2008,41,1440-1449. (b) Boeda, F.; Nolan, S. P. N-Heterocyclic carbene-containing complexes in catalysis.Annu. Rep. Prog. Chem., Sect. B 2008,104,184-210.
    [17]For recent selected reviews on metathesis, see:(a) Hoveyda, A. H.; Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature 2007,450,243-251. (b) Shrodi, Y.; Pederson, R. L. Evolution and applications of second-generation ruthenium olefin metathesis catalysts. Aldrichimica Acta 2007,40,45-52. (c) Samojlowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev.2009,109,3708-3742. (d) Vougioukalakis, G C.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev.2010,110,1746-1787.
    [18](a) Perry, M. C.; Burgess, K. Chiral N-heterocyclic carbene-transition metal complexes in asymmetric catalysis. Tetrahedron:Asymmetry 2003,14,951-961. (b) Cesar, V. Bellemin-Laponnaz, S.; Gade, L. H. Chiral N-heterocyclic carbenes as stereodirecting ligands in asymmetric catalysis. Chem. Soc. Rev.2004,33,619-636.
    [19]Herrmann,W. A.; Goossen, L. J.; Kocher, C.; Artus, G. R. J. Chiral heterocylic carbenes in asymmetric homogeneous catalysis. Angew. Chem., Int. Ed. Engl.1996,35,2805-2807.
    [20](a) Enders, D.; Gielen, H.; Beuer, K. Catalytic asymmetric hydrosilylation with (triazolinylidene) rhodium complexes containing an axis of chirality. Tetrahedron: Asymmetry 1997,8,3571-3574. (b) Enders, D.; Gielen, H. Synthesis of chiral triazolinylidene and imidazolinylidene transition metal complexes and first application in asymmetric catalysis. J. Organomet. Chem.2001,617-618,70-80, and references therein.
    [21](a) Lee, S.; Hartwig, J. F. Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide a-arylation. Rate acceleration, use of aryl chloride substrates, and a new carbene ligand for asymmetric transformations. J. Org. Chem.2001,66,3402-3415. (b) Culkin, D. A.; Hartwig, J. F. Palladium-catalyzed a-arylation of carbonyl compounds and nitriles. Acc. Chem. Res.2003,36,234.
    [22]Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Oxazolines as chiral building blocks for imidazolium salts and N-heterocyclic carbene ligands. Chem. Commun.2002, 2704-2705.
    [23]Jia, Y. X., Katayev, D.; Bernardinelli, G.; Seidel, T. M.; Kundig, E. P. New chiral N-heterocyclic carbene ligands in palladium-catalyzed a-arylations of amides: conformational locking through allylic strain as a device for stereocontrol. Chem. Eur. J. 2010,16,6300-6309.
    [24]Seo, H.; Kim, B. Y.; Lee, J. H.; Park, H. J.; Son, S. U.; Chung, Y. K. Synthesis of chiral ferrocenyl imidazolium salts and their rhodium(Ⅰ) and iridium(Ⅰ) complexes. Organometallics 2003,22,4783-4791.
    [25](a) Pytkowicz, J.; Roland, S.; Mangeney, P. Enantioselective conjugate addition of diethylzinc using catalytic silver(Ⅰ) diaminocarbenes and Cu(OTf)2. Tetrahedron: Asymmetry 2001,12,2087-2089. (b) Guillen, F.; Winn, C. L.; Alexakis, A. Enantioselective copper-catalyzed conjugate addition using chiral diaminocarbene ligands. Tetrahedron:Asymmetry 2001,12,2083-2086. (c) Pytkowicz, J.; Roland S.; Mangeney, P. J. Organomet. Chem. Synthesis of chiral silver(Ⅰ) diaminocarbene complexes from (R,R)-4,5-di-tert-butylimidazoline.2001,631,157-163. (d) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland S.; Mangeney, P. Asymmetric synthesis with N-heterocyclic carbenes. Application to the copper-catalyzed conjugate addition. Adv. Synth. Catal.2003,345(3),345-348.
    [26]Masamune, S.; Choy, W.; Peterson, J. S.; Sita, L. R. Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew. Chem. Int. Ed. Engl. 1985,24,1-30.
    [27]Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Enantioselective ruthenium-catalyzed ring-closing metathesis. Org. Lett.2001,3,3225-3228.
    [28](a) Bappert, E.; Helmchen, G. Synthesis and application of complexes of a novel chiral diphenylphosphino-functionalized N-heterocyclic carbene. Synlett,2004,1789-1793. (b) Becht, J. M.; Bappert E.; Helmchen, G. Application of rhodium complexes of chiral diphenylphosphino-functionalized N-heterocyclic carbenes as catalysts in enantioselective conjugate additions of arylboronic acids. Adv. Synth. Catal.2005,347,1495-1498.
    [29](a) Noyori, R.; Takaya, H. BINAP:an efficient chiral element for asymmetric catalysis. Acc. Chem. Res.1990,23,345. (b) Noyori, R. Asymmetric catalysis:science and opportunities (Nobel Lecture). Angew. Chem. Int. Ed.2002,41,2008-2022.
    [30]Chen, Y.; Yekta, S.; Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem.Rev.2003,103,3155-3212.
    [31]Clyne, D. S.; Jin, J.; Genest, E.; Gallucci, J. C.; Rajanbabu, T. V. First chelated chiral N-heterocyclic bis-carbene complexes. Org. Lett.2000,2,1125-1128.
    [32](a) Duan, W. L.; Shi, M.; Rong, G. B. Synthesis of novel axially chiral Rh-NHC complexes derived from BINAM and application in the enantioseective hydrosilylation of methyl ketones. Chem. Commun.2003,2916-2917. (b) Xu, Q.; Gu, X.; Liu, S.; Dou, Q.; Shi, M. The use of chiral BINAM NHC-Rh(Ⅲ) complexes in enantioselective hydrosilylation of 3-oxo-3-arylpropionic acid methyl or ethyl esters. J. Org. Chem.2007, 72,2240-2242.
    [33](a) Xu, Q.; Duan, W. L.; Lei, Z. Y.; Zhu, Z. B.; Shi, M. A novel cis-chelated Pd(Ⅱ)-NHC complex for catalyzing Suzuki and Heck-type cross-coupling reactions. Tetrahedron 2005, 61,11225-11229. (b) Chen, T.; Jiang, J. J.; Xu, Q.; Shi, M. Axially chiral NHC-Pd(II) complexes in the oxidative kinetic resolution of secondary alcohols using molecular oxygen as a terminal oxidant. Org. Lett.2007,9,865-868. (c) Zhang, T.; Shi, M. Chiral bidentate bis(N-heterocyclic carbene)-based palladium complexes bearing carboxylate ligands:highly effective catalysts for the enantioselective conjugate addition of arylboronic acids to cyclic enones. Chem. Eur. J.2008,14,3759-3764. (d) Ma, G. N.; Zhang, T.; Shi, M. Catalytic enantioselective arylation of N-tosylarylimines with arylboronic acids using C2-symmetric cationic N-heterocyclic carbene Pd2+ diaquo complexes. Org. Lett.2009,11,875-878.
    [34](a) Van Veldhuizen, J. J.; Garber, S. B.; Kinsbury, J. S.; Hoveyda, A. H. A recyclable chiral Ru catalyst for enantioselective olefin metathesis. Efficient catalytic asymmetric ring-opening/cross metathesis in air. J. Am. Chem. Soc.2002,124,4954-4955. (b) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. Chiral Ru-based complexes for asymmetric olefin metathesis:enhancement of catalyst activity through steric and electronic modifications. J. Am. Chem. Soc.2003,125,12502-12508.
    [35]Bolm, C.; Kesselgruber M.; Raabe, G. The first planar-chiral stable carbene and its metal complexes. Organometallics 2002,21,707-710.
    [36](a) Broggini, D.; Togni, A. Synthesis and structure of an enantiomerically pure C2-symmetric ferrocenyl carbene. Helv. Chim. Acta.2002,85,2518-2522. (b) Fadini, L Togni, A. Ni(Ⅱ) complexes containing chiral tridentate phosphines as new catalysts for the hydroamination of activated olefins. Chem. Commun.2003,30-31. (c) Gischig, S.; Togni, A. Synthesis and coordination chemistry of a new chiral tridentate PCP N-heterocyclic carbene ligand based on a ferrocene backbone. Organometallics 2004,23, 2479-2487.
    [37](a) Andrus, M. B.; Song, C. Zhang, J. Palladium-imidazolium carbene catalyzed Mizoroki-Heck coupling with aryl diazonium ions. Org. Lett.2002,4,2079-2082. (b) Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B. Asymmetric addition of aryl boron reagents to enones with rhodium dicyclophane imidazolium carbene catalysis. Angew. Chem. Int. Ed.2003,42,5871-5874.
    [38]Focken, T.; Raabe, G.; Bolm, C. Synthesis of iridium complexes with new planar chiral chelating phosphinyl-imidazolylidene ligands and their application in asymmetric hydrogenation. Tetrahedron:Asymmetry 2004,15,1693-1706.
    [39]Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 2000,33,421-431.
    [40]Perry, M. C.; Cui, X.; Burgess, K. A modular approach to trans-chelating, N-heterocyclic carbene ligand complexes. Tetrahedron:Asymmetry 2002,13,1969-1972.
    [41](a) Bonnet, L. G.; Douthwaite, R. E.; Kariuki, B. M. Synthesis of new chiral N-heterocyclic carbene-imine ligands and their application to an asymmetric alylic alkylation reaction. Organometallics 2003,22,4187-4189. (b) Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R. Synthesis of constrained-geometry chiral di-N-heterocyclic carbene ligands and their silver(Ⅰ) and palladium(Ⅱ) complexes. Organometallics 2003,22, 4384-4386.
    [42]Sato, Y.; Yoshino, T.; Mori, M. Pd-catalyzed allylic substitution using nucleophilic N-heterocyclic carbene as a ligand. Org. Lett.2003,5,31-33.
    [43]Reviews:(a) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. C2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis. Tetrahedron: Asymmetry 1998,9,1-45. (b) Gomez, M.; Muller, G.; Rocamora, M. Coordination chemistry of oxazoline ligands. Coord. Chem. Rev.1999,193-195,769-835.
    [44](a) Grant, T. G.; Meyers, A. I. The chemistry of 2-oxazolines (1985-present). Tetrahedron 1994,50,2297-2360. (b) Peer, M.; de Jong, J. C.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. Preparation of chiral phosphorus, sulfur and selenium containing 2-aryloxazolines. Tetrahedron 1996, 52,7547-7583.
    [45](a) Herrmann, A.; Goossen, L. J.; Spiegler, M. Chiral oxazoline/imidazoline-2-ylidene complexes. Organometallics 1998,17,2162-2168. (b) Reference 4h in:Herrmann, W. A. Angew. Chem. Int. Ed.2002,41,1290-1309.
    [46](a) Powell, M. T.; Hou, D. R.; Perry, M. C.; Cui, X.; Burgess, K. Chiral imidazolylidine ligands for asymmetric hydrogenation of aryl alkenes. J. Am. Chem. Soc.2001,123, 8878-8879. (b) Perry, M. C.; Cui, X.; Powell, M. T.; Hou, D. R.; Reibenspies, H. J.; Burgess, K. Optically active iridium imidazol-2-ylidene-oxazoline complexes: preparation and use in asymmetric hydrogenation of arylalkenes. J. Am. Chem. Soc.2003, 125,113-123.
    [47](a) Hou, D. R.; Burgess, K. JM-PHOS ligands:second-generation phosphine oxazolines for asymmetric catalysis. Org. Lett.1999,1,1745-1747. (b) Hou, D. R.; Reibenspies, J.; Burgess, K. New, optically active phosphine oxazoline (JM-Phos) ligands:syntheses and applications in allylation reactions. J. Org. Chem.2001,66,206-215.
    [48](a) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Direct coupling of oxazolines and N-heterocyclic carbenes:a modular approach to a new class of C-N donor ligands for homogeneous catalysis. Organometallics 2002,21,5204-5208. (b) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Cationic and neutral rhodium(Ⅰ) oxazolinylcarbene complexes. Eur. J. Inorg. Chem.2004,3436-3444. (c) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. A modular assembly of chiral oxazolinylcarbene-rhodium complexes: efficient phosphane-free catalysts for the asymmetric hydrosilylation of dialkyl ketones. Angew. Chem. Int. Ed.2004,43,1014-1017.
    [49]Bolm, C.; Focken, T.; Raabe, G. Synthesis of iridium complexes with novel planar chiral chelating imidazolylidene ligands. Tetrahedron:Asymmetry 2003,14,1733-1746.
    [50](a) Trost, B. M.; Van Vranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev.1996,96,395-422. (b) Trost, B. M.; Lee C. in Catalytic Asymmetric Synthesis (Ed.:I. Ojima), Wiley-VCH,2000, pp.593-649. (c) Graening, T.; Schmalz, H. G. Pd-catalyzed enantioselective allylic substitution:new strategic options for the total synthesis of natural products. Angew. Chem. Int. Ed.2003,42,2580-2584. (d) Trost, B. M.; Crawley, M. L. Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. Chem. Rev.2003,103,2921-2944.
    [51]Yorimitsu, H.; Oshima, K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. Angew. Chem. Int. Ed.2005,44,4435-4439.
    [52](a) Yasui, K.; Goto, Y.; Yajima, T.; Taniseki, Y.; Fugami, K.; Tanaka, A.; Tamaru, Y. Use of π-allylpalladium as a nucleophile via an alkyl-allyl exchange reaction with alkylzinc. Tetrahedron Lett.1993,34,7619-7622. (b) Tamaru, Y. Novel catalytic reactions involving π-allylpalladium and-nickel as the key intermediates:umpolung and β-decarbopalladation of π-allylpalladium and nickel-catalyzed homoallylation of carbonyl compounds with 1,3-dienes. J. Organomet. Chem.1999,576,215-231. (c) Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y. Et3B-Pd-promoted allylation of benzaldehyde with allylic alcohols. Tetrahedron Lett.2000,41,3627-3629. (d) Tamaru, Y. in Handbook of Organopalladium Chemistry for Organic Synthesis (Ed.:E. Negishi), Wiley-Interscience,2002, pp.1917-1943. (e) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Pd-Catalyzed nucleophilic alkylation of aliphatic aldehydes with allyl alcohols:allyl,2-tetrahydrofuryl, and 2-tetrahydropyranyl ethers as useful C3, C4, and C5 sources. Angew. Chem. Int. Ed.2003,42,3392-3395.
    [53]Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Enantioselective catalytic allylation of carbonyl groups by umpolung of π-allyl palladium complexes. Angew. Chem. Int. Ed.2004,43,846-849.
    [54]Zhu, S. F.; Yang, Y.; Wang, L. X.; Liu, B.; Zhou, Q. L. Synthesis and application of chiral spiro phospholane ligand in Pd-catalyzed asymmetric allylation of aldehydes with allylic alcohols. Org. Lett.2005,7,2333-2335.
    [55]Howell, G. P.; Minnaard, A. J.; Feringa, B. L. Asymmetric allylation of aryl aldehydes: studies on the scope and mechanism of the palladium catalysed diethylzinc mediated umpolung using phosphoramidite ligands. Org. Biomol. Chem.2006,4,1278-1283.
    [56]Zhang, T. Z.; Dai, L. X.; Hou, X. L. Synthesis of planar chiral [2.2]paracyclophane monophosphine ligands and their application in the umpolung allylation of aldehydes. Tetrahedron:Asymmetry 2007,18,251-259.
    [57]Zhang, T.; Shi, M.; Zhao, M. X. Bis(NHC)-Pd(Ⅱ) complexes as highly efficient catalysts for allylation of aldehydes with allyltributyltin. Tetrahedron 2008,64,2412-2418.
    [58](a) Frenking, G.; Sola, M.; Vyboishchikov, S. F. Chemical bonding in transition metal carbene complexes. J. Organomet. Chem.2005,690,6178-6204. (b) Radius, U.; Bickelhaupt, F. M. Bonding capabilities of imidazol-2-ylidene ligands in group-10 transition-metal chemistry. Coord. Chem. Rev.2009,253,678-686. (c) Jacobsen, H.; Correa, A.; Poater, A.; Costabile, C.; Cavallo, L. Understanding the M-(NHC) (NHC= N-heterocyclic carbene) bond. Coord. Chem. Rev.2009,253,687-703.
    [59]However, there are also several examples involving a cleavage of NHC-metal bond:(a) Douthwaite, R. E.; Haussinger, D.; Green, M. L. H.; Silcock, P. J.; Gomes, P. T.; Martins, A. M.; Danopoulos, A. A. Cationic Nickel(Ⅱ) complexes of chelating N-heterocyclic carbenes. Organometallics 1999,18,4584-4590. (b) McGuinness, D. S.; Saendig, N.; Yates, B. F.; Cavell, K. J. Kinetic and density functional studies on alkyl-carbene elimination from PdⅡ heterocylic carbene complexes:A new type of reductive elimination with clear implications for catalysis. J. Am. Chem. Soc.2001,123,4029-4040. (c) Lewis, A. K. D.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C.; Hitchcock, P. B.; Leonard, J. Synthetic, structural, and mechanistic studies on the oxidative addition of aromatic chlorides to a palladium (N-heterocyclic carbene) complex:relevance to catalytic amination. J. Am. Chem. Soc.2003,125,10066-10073. (d) Crudden, C. M.; Allen, D. P. Stability and reactivity of N-heterocyclic carbene complexes. Coord. Chem. Rev.2004,248,2247-2273.
    [60]For selected reports on palladium complexes of NHC-N donor hybrid ligands, see:(a) Fr(?)seth, M.; Dhindsa, A.; R(?)ise, H.; Tilset, M. Synthesis and characterization of palladium(Ⅱ) complexes with a novel chelating iminocarbene ligand. Dalton Trans.2003, 4516-4524. (b) Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R.; Houghton, J.; Kariuki, B. M.; Simonovic, S. Synthesis, structure and reactivity of palladium(II) complexes of chiral N-heterocyclic carbene-imine and-amine hybrid ligands. Dalton Trans.2004,3528-3535. (c) Houghton, J.; Dyson, G.; Douthwaite, R. E.; Whitwood, A. C.; Kariuki, B. M. Structural variation, dynamics, and catalytic application of palladium(II) complexes of di-N-heterocyclic carbene-amine ligands. Dalton Trans.2007,3065-3073. (d) Dyson, G.; Frison, J. C.; Simonovic, S.; Whitwood, A. C.; Douthwaite, R. E. Synthesis and structural variation of iron, rhodium, palladium, and silver complexes of a chiral N-heterocyclic carbene-phenoxyimine hybrid ligand. Organometallics 2008,27,281-288. And reference 41a.
    [61]Zhang, T.; Wang, W. F.; Gu, X. X.; Shi, M. N-heterocyclic carbene sulfonamide palladium complexes and their catalytic activities in Suzuki-Miyaura coupling reaction. Organometallics 2008,27,753-757.
    [62]For selected reviews on Schiff base ligands, see:(a) Che, C. M.; Huang, J. S. Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations. Coord. Chem. Rev.2003,242,97-113. (b) Cozzi, P. G. Metal-Salen Schiff base complexes in catalysis:practical aspects. Chem. Soc. Rev.2004, 33,410-421. (c) Katsuki, T. Unique asymmetric catalysis of cis-P metal complexes of salen and its related Schiff-base ligands. Chem. Soc. Rev.2004,33,437-444. (d) Baleizao, C.; Garcia, H. Chiral Salen complexes:an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem. Rev.2006,106,3987-4043. (e) Gupta, K. C.; Sutar, A. K. Catalytic activities of Schiff base transition metal complexes. Coord Chem. Rev.2008,252,1420-1450.
    [63]For selected reviews on oxazoline ligands, see:(a) Rechavi, D.; Lemaire, M. Enantioselective catalysis using heterogeneous bis(oxazoline) ligands:which factors influence the enantioselectivity? Chem. Rev.2002,102,3467-3494; (b) Desimoni, G.; Faita, G.; J(?)rgensen, K.A. C2-Symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev.2006,106,3561-3651. (c) Gade, L. H.; Bellemin-Laponnaz, S. Mixed oxazoline-carbenes as stereodirecting ligands for asymmetric catalysis. Coord. Chem. Rev.2007,251,718-725. (d) Hargaden, G. C.; Guiry, P. J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev.2009,109,2505-2550. And references 43.
    [64]For selected reviews on pyridyl pincer-type ligands incorporating NHCs, see:(a) Peris, E.; Crabtree, R. H. Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes. Coord. Chem. Rev.2004,248,2239-2246. (b) Pugh, D.; Danopoulos, A. A. Metal complexes with'pincer'-type ligands incorporating N-heterocyclic carbene functionalities. Coord. Chem. Rev.2007,251,610-641.
    [65]Zhang, T.; Liu, S. J.; Shi, M.; Zhao, M. X. N-heterocyclic carbene-acetylamide palladium complexes and their catalytic activities in Heck-Mizoroki reactions. Synthesis 2008, 2819-2824.
    [66](a) Dudek, G.O. Nuclear magnetic resonance studies of keto-enol equilibria. IV. Naphthalene derivatives. J. Am. Chem. Soc.1963,85(6),694-697. (b) Dudek, G. O. Spectroscopic studies of keto-enol equilibria. VIII. Schiff base spectroscopic correlations. J. Org. Chem.1965,30,548-552.
    [67](a) Voutsas, G. P.; Keramidas, K. G.; Lalia-Kantouri, M. Crystal structure and spectra of trans-bis(propanone, 1-[2-hydroxyphenyl]-oximato) palladium(Ⅱ). Polyhedron 1996, 15(1),147-151. (b) Lai, Y. C; Chen, H. Y.; Hung, W. C.; Lin, C. C.; Hong, F. E. Palladium catalyzed Suzuki cross-coupling reactions using N,O-bidentate ligands. Tetrahedron 2005, 61(40),9484-9489. (c) Naota, T.; Koori, H. Molecules that assemble by sound:an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc.2005, 127(26),9324-9325.
    [68]Liu, Z.; Zhang, T.; Shi, M. Cyclometalated cis-chelated bidentate N-heterocyclic carbene palladium complexes:synthetic, structural, and catalytic studies. Organometallics 2008, 27(11),2668-2671.
    [69](a) Ryabov, A. D. Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes. Chem. Rev.1990,90(2),403-424. (b) Dupont, J.;Consorti, C. S.; Spencer, J. The potential of palladacycles:more than just precatalysts. Chem. Rev. 2005,105(6),2527-2572. (c) Dupont, J.;Pfeffer, M. Eds. Palladacycles, Wiley-VCH: Weinheim, Germany,2008.
    [70](a) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. Asymmetric dihydroxylation via ligand-accelerated catalysis. J. Am. Chem. Soc.1988, 110(6),1968-1970. (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev.1994,94(9),2483-2547. (c) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis,2nd ed.; I. Ojima, Ed.; VCH:New York,2000. (d) Li, G.; Wei, H.-X.; Kim, S. H. Copper-catalyzed aminohalogenation using the 2-NsNCl2/2-NsNHNa combination as the nitrogen and halogen sources for the synthesis of anti-alkyl 3-chloro-2-(o-nitrobenzenesulfonamido)-3-arylpropionates. Org. Lett.2000,2(15),2249-2252. (e) Li, G.; Wei, H.-X.; Kim, S.-H.; Carducci, M. D. A novel electrophilic diamination reaction of alkenes. Angew. Chem. Int. Ed.2001,40,4277-4280. (f) Chen, D.; Timmons, C.; Wei, H.-X.; Li, G. Direct electrophilic diamination of functionalized alkenes without the use of any metal catalysts. J. Org. Chem.2003,68(14), 5742-5745.
    [71](a) For a review, see Backvall, J. E. Metal-Catalyzed Cross-Coupling Reactions 2nd edn. 2004,2,479-529. (b) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Pd(Ⅱ)-catalyzed intermolecular 1,2-diamination of conjugated dienes. J. Am. Chem. Soc. 2005,727(20),7308-7309. (c) Du, H.; Zhao, B.; Shi, Y. A facile Pd(0)-catalyzed regio-and stereoselective diamination of conjugated dienes and trienes. J. Am. Chem. Soc.2007, 129(4),762-763.
    [72]For more recent selected reports about the mechanism of PdⅡ/PdⅣ catalytic cycle, see:(a) Dick, A. R.; Hull, K. L.; Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C-H bonds. J. Am. Chem. Soc.2004,126,2300-2301. (b) Desai, L. V.; Hull, K. L.; Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C-H bonds. J. Am. Chem. Soc.2004,126,9542-9543. (c) Dick, A. R.; Kampf, J. W.; Sanford, M. S. Unusually stable palladium(IV) complexes:detailed mechanistic investigation of C-O bond-forming reductive elimination. J. Am. Chem. Soc.2005,127, 12790-12791. (d) Deprez, N. R.; Sanford, M. S. Reactions of hypervalent iodine reagents with palladium:mechanisms and applications in organic synthesis. Inorg. Chem.2007, 46(6),1924-1935. (e) Fu, Y.; Li, Z.; Liang, S.; Guo, Q. X.; Liu, L. Mechanism for carbon-oxygen bond-forming reductive elimination from palladium(IV) complexes. Organometallics 2008,27(15),3736-3742. (f) Racowski, J. M.; Dick, A. R.; Sanford, M. S. Detailed study of C-O and C-C bond-forming reductive elimination from stable C2N2O2-ligated Palladium(Ⅳ) complexes. J. Am. Chem. Soc.2009,131,10974-10983. (g) Arnold, P. L.; Sanford, M. S.; Pearson, S. M. Chelating N-heterocyclic carbene alkoxide as a supporting ligand for PdⅡ/Ⅳ C-H bond functionalization catalysis. J. Am. Chem. Soc. 2009,131,13912-13913.
    [73]Alexanian, E. J.; Lee, C.; Sorensen, E. J. Palladium-catalyzed ring-forming aminoacetoxylation of alkenes. J. Am. Chem. Soc.2005,127(21),7690-7691.
    [74](a) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. Palladium(II)-catalyzed intramolecular diamination of unfunctionalized alkenes. J. Am. Chem. Soc.2005,127(42), 14586-14587. (b) Muniz, K. Advancing palladium-catalyzed C-N bond formation: bisindoline construction from successive amide transfer to internal alkenes. J. Am. Chem. Soc.2007,129(47),14542-14543. (c) Muniz, K.; Hovelmann, C. H.; Streuff, J. Oxidative diamination of alkenes with ureas as nitrogen sources:mechanistic pathways in the presence of a high oxidation state palladium catalyst. J. Am. Chem. Soc.2008,130(2), 763-773.
    [75]Liu, G. S.; Stahl, S. S. Highly regioselective Pd-catalyzed intermolecular aminoacetoxylation of alkenes and evidence for cis-aminopalladation and SN2 C-O bond formation. J. Am. Chem. Soc.2006,128(22),7179-7181.
    [76]Desai, L. V.; Sanford, M. S. Construction of tetrahydrofurans by PdⅡ/PdⅣ-catalyzed aminooxygenation of alkenes. Angew. Chem., Int. Ed.2007,46,5737-5740.
    [77]Tong, X.; Beller, M.; Tse, M. K. A Palladium-catalyzed cyclization-oxidation sequence: synthesis of bicyclo[3.1.0]hexanes and evidence for SN2 C-0 bond formation. J. Am. Chem. Soc.2007,129(16),4906-4907.
    [78]Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. Synthesis of cyclopropanes via Pd(II/IV)-catalyzed reactions of enynes. J. Am. Chem. Soc.2007,129(18),5836-5837.
    [79]Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. PdⅡ/PdⅣ catalytic enantioselective synthesis of bicyclo[3.1.0]hexanes via oxidative cyclization of enynes. J. Am. Chem. Soc.2009,131(10),3452-3453.
    [80](a) Li, Y.; Song, D. T.; Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc.2008,130(10),2962-2964. (b) Wang, A.; Jiang, H. F.;Chen, H. J. Palladium-catalyzed diacetoxylation of alkenes with molecular oxygen as sole oxidant. J. Am. Chem. Soc.2009,131(11),3846-3847.
    [81]Herein, H2O2 (30 wt%, aqueous) was tested to be an effective oxidant. For example, by using H2O2 (6 equiv) instead of PhI(OAc)2, catalyst Ⅱ-1a exclusively afforded hydroxyacetate Ⅲ-3 in 70% yield (syn:anti=90:10) at ambient temperature for 72 h. A PdⅡ/Ⅳ-catalyzed oxidative cyclization of enynes with H2O2 as the oxidant:Yin, G. Y.;Liu, G. S. Palladium-catalyzed oxidative cyclization of enynes with hydrogen peroxide as the oxidant. Angew. Chem. Int. Ed.2008,47,5442-5445.
    [82]For examples for cis-oxypalladation of alkenes, see ref80b and:(a) Hamed, O.; Henry, P. M.; Thompson, C. Palladium(II)-catalyzed exchange and isomerization reactions.17. Exchange of chiral allyl alcohols with hydroxide, methoxide, and phenyl at high [Cl-]. Stereochemistry of the Wacker reaction. J. Org. Chem.1999,64(21),7745-7750. (b) Hayashi, T.; Yamasaki, K.; Mimura, M.; Uozumi, Y. Deuterium-labeling studies establishing stereochemistry at the oxypalladation step in Wacker-type oxidative cyclization of an o-allylphenol. J. Am. Chem. Soc.2004,126(10),3036-3037. (c) Ney, J. E.; Wolfe, J. P. Selective synthesis of 5-or 6-aryl octahydrocyclopenta[b]pyrroles from a common precursor through control of competing pathways in a Pd-catalyzed reaction. J. Am. Chem. Soc.2005,127(24),8644-8651. (d) Hay, M. B.;Wolfe, J. P. Palladium-catalyzed synthesis of 2,1'-disubstituted tetrahydrofurans from γ-hydroxy internal alkenes. Evidence for alkene insertion into a Pd-O Bond and stereochemical scrambling via β-hydride elimination. J. Am. Chem. Soc.2005,127(47),16468-16476.
    [83]Herrmann, W. A.;Cornils, B. Organometallic homogeneous catalysis-quo vadis? Angew. Chem. Int. Ed.1997,36,1048-1067.
    [84](a) Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 2007,446,395-403. (b) Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 2007,107(7),3180-3211. (c) Jimemez-Nunez, E.; Echavarren, A. M. Molecular diversity through gold catalysis with alkynes. Chem. Commun.2007,333-346. (d) Furster, A.; Davies, P. W. Catalytic carbophilic activation:catalysis by platinum and gold π acids. Angew. Chem. Int. Ed.2007,46,3410-3449. (e) Hashmi, A. S. K. "High Noon" in gold catalysis:carbene versus carbocation intermediates. Angew. Chem. Int. Ed.2008,47, 6754-6756. (f) Duschek, A.; Kirsch, S. F. Combining the concepts:dual catalysis with carbophilic lewis acids. Angew. Chem. Int. Ed.2008,47,5703-5705. (g) Bongers, N.; Krause, N. Golden opportunities in stereoselective catalysis. Angew. Chem. Int. Ed.2008, 47,2178-2181. (h) Li, Z.; Brouwer, C.; He, C. Gold-catalyzed organic transformations. Chem. Rev.2008,108(8),3239-3265. (i) Arcadi, A. Alternative synthetic methods through new developments in catalysis by gold. Chem. Rev.2008,108(8),3266-3325. (j) Jimenez-Nunez, E.; Echavarren, A. M. Gold-catalyzed cycloisomerizations of enynes:a mechanistic perspective. Chem. Rev.2008,108(8),3326-3350. (k) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev.2008,108(8), 3351-3378.
    [85]Cinellu, M. A.; Minghetti, G.; Cocco, F.; Stoccoro, S.; Zucca, A. Reactions of gold(Ⅲ) oxo complexes with cyclic alkenes. Angew. Chem. Int. Ed.2005,44,6892-6895.
    [86](a) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. Gold(Ⅰ)-catalyzed stereoselective olefin cyclopropanation. J. Am. Chem. Soc.2005,127(51),18002-18003. (b) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. Gold(Ⅰ)-catalyzed enantioselective intramolecular hydroamination of allenes. J. Am. Chem. Soc.2007, 129(9),2452-2453. (c) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 2007,317, 496-499. (d) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Gold(Ⅰ)-catalyzed enantioselective hydroamination of N-allenyl carbamates. Org. Lett.2007,9(15), 2887-2889. (e) Zhang, Z.; Widenhoefer, R. A. Gold(Ⅰ)-catalyzed intramolecular enantioselective hydroalkoxylation of allenes. Angew. Chem. Int. Ed.2007,46,283-285. (f) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Gold(Ⅰ)-catalyzed dynamic kinetic enantioselective intramolecular hydroamination of allenes. J. Am. Chem. Soc.2007, 129(46),14148-14149. (g) Kleinbeck, F.; Toste, F. D. Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. J. Am. Chem. Soc.2009,131(26),9178-9179.
    [87](a) de Fremont, P.; Scott, N. M.; Stevens, E. D.; Nolan, S. P. Synthesis and structural characterization of N-heterocyclic carbene gold(Ⅰ) complexes. Organometallics 2005, 24(10),2411-2418. For reviews on [(NHC)Au] complexes, see:(b) Marion, N.; Nolan, S. P. N-heterocyclic carbenes in gold catalysis. Chem. Soc. Rev.2008,37,1776-1782. (c) Raubenheimer, H. G.; Cronje, S. Carbene complexes of gold:preparation, medical application and bonding. Chem. Soc. Rev.2008,37,1998-2011. (d) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Coinage metal-N-heterocyclic carbene complexes. Chem. Rev.2009,109(8),3561-3598.
    [88]Matsumoto, Y.; Selim, K. B.; Nakanishi, H.; Yamada, K.; Yamamoto, Y.; Tomioka, K. Chiral carbene approach to gold-catalyzed asymmetric cyclization of 1,6-enynes. Tetrahedron Lett.2010,51(2),404-406.
    [89](a) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J. P. Functionalized carbo- and heterocycles via Pt-catalyzed asymmetric alkoxycyclization of 1,6-enynes. Chem. Commun.2004,850-851. (b) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Ligand effects in gold- and platinum-catalyzed cyclization of enynes:chiral gold complexes for enantioselective alkoxycyclization. Organometallics 2005,24(6), 1293-1300. (c) Chao, C. M.; Genin, E.; Toullec, P. Y.; Genet, J. P.; Michelet, V. Towards asymmetric Au-catalyzed hydroxy- and alkoxycyclization of 1,6-enynes. J. Organomet. Chem.2009,694,538-545.
    [90]Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. Gold(Ⅰ)-catalyzed oxidative rearrangements. J. Am. Chem. Soc.2007,129(18), 5838-5839.
    [91]Choi, H. S.; Kuczkowski, R. L. Ozonolysis of styrene and p-nitrostyrene. Secondary deuterium isotope effects. J. Org. Chem.1985,50(6),901-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700