用户名: 密码: 验证码:
电池储能系统及其在风—储孤网中的运行与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电池储能系统作为一种能实现能量存储及功率双向流动的装置,它不仅为可再生能源大规模接入电网提供了一种有效方法,且有助于提高电网设备的综合利用率、系统调峰调频及无功支撑能力等,进而提高电网运行的稳定性、经济性和灵活性。同时,通过多个子电池储能系统的并联运行可有效提高电池储能系统的容量及其可靠性。目前国内关于电池储能系统的研究还处于基础理论与示范阶段。本论文着重针对电池储能系统中电池系统的建模及其荷电状态估计、电池储能系统在风-储孤网中的运行与控制等方面进行研究。论文的主要工作和取得的创新性成果如下:
     1、分析了大容量电池系统构成、工作原理及其简化模型,考虑到电池单体的不一致性,结合串、并联电路特性及锂离子电池单体的工作特性,提出了一种适宜于电气设计与仿真的大容量电池系统等效电路建模方法,并在Matlab/Simulink环境下分别建立了相应的等效电路模型。
     2、考虑到大容量电池系统的结构形式、电池荷电状态估计算法的精度及电池管理系统的成本等因素,设计了一种大容量电池系统的分层级荷电状态估计方案;针对安时法存在荷电状态初始值难以确定、长时间的误差累积等问题,提出了基于电压补偿的电池单体荷电状态估计法;考虑到大容量电池系统是一个复杂的非线性系统,采用扩展卡尔曼滤波法对电池系统进行荷电状态估计。
     3、建立了电池储能系统的动态模型。介绍了电池储能系统动态模型结构及其基本工作原理,分别分析了功率转换系统与电池系统的数学模型及其控制特性,在PSCAD/EMTDC环境下建立了电池储能系统的动态仿真模型,进行了电池储能系统的充、放电工作特性仿真与分析。
     4、提出了风力机不工作时孤网系统稳定运行控制策略。针对电池储能系统在实际运行时各电池系统的荷电状态并不完全一致而导致系统不稳定、电池使用寿命降低等问题,提出了基于电池系统荷电状态的改进型有功功率下垂控制策略,不仅能有效分配负荷有功功率,也提高了电池系统的管理能力。针对因中低压电网线路阻抗不完全呈纯感性、下垂控制自身存在固有静态误差而导致下垂控制精度不高的问题,采用了含线性补偿环的电压-频率双闭环控制策略,提高了系统电压稳定能力。
     5、设计了风-储孤网系统的系统配置及其运行状态协调控制方案。根据负荷水平、风能年平均利用小时数、风能的间歇性等对系统投资成本的影响,设计了一种风-储孤网系统配置方案,并分析了其投资经济性;考虑到双馈感应发电机组与电池储能系统各自不同的工作特性、各单元的运行约束条件等因素,设计了一种适宜于含双馈感应发电机组及电池储能系统的风-储孤网系统的运行状态协调控制方案。
     6、提出了风-储联合运行时孤网系统稳定运行控制策略。针对双馈感应发电机组的接入带来新的无功功率平衡、运行状态控制等问题,分析了含双馈感应发电机组及电池储能系统的风-储孤网系统的能量与功率平衡关系,采用了分层协调控制策略;针对电池储能系统因保证其有功功率输出能力而导致采用传统下垂控制策略时系统的无功功率输出能力有限的问题,提出了基于电池系统荷电状态的改进型无功功率下垂控制策略,提高了电池储能系统的无功功率输出能力。
     7、进行了风-储孤网系统实验平台的研制及相关实验研究。分析了实验平台的构成及功率转换系统的研制,开展了风力机不工作时系统孤网运行实验和风-储联合运行时风-储孤网系统运行实验,验证了电池储能系统在风-储孤网中的运行及其相关控制策略的正确性。
As a device which can store the chemical energy and transmit thestored energy into the electrical power in bi-direction, battery energy storagesystem (BESS) not only can be widely regarded as an effective solution todeal with the large scale integration of renewable energy sources intoelectric network, but can improve the use ratio of the grid facilities and theability of load following and frequency regulation and reactive powersupporting to the grid. Furthmore, it also can enhance the stability, economyand flexibility of the gird. The capacity and reliability of BESS will beraised when the sub-BESSs operate in parallel. The domestic research onBESS is still in the stage of base theory and demonstration. This dissertationhas focused on the modeling and sate of charge (SOC) estimation of thebattery system and control of the islanded power system based on windpower and BESS. The works and innovative achievements in thedissertation are as follows.
     1. The operation principle and simpled model of large capacity batterysystem (LCBS) is analyzed in details. Considering the inconsistent qualityof the cells and the characteristics of the circuit in series and parallelconnection, an accurate equivalent circuit model of Li-ion LCBS isproposed, which is applicable for electrical circuit design and simulation.The accurate models of the battery system in series and/or parallelconnection are constructed under Matlab/Simulink conditions
     2. Considering the factors such as the structure form, SOC estimationaccuracy of battery system, the cost of battery management system and soon, a hierarchical SOC estimation scheme of LCBS is designed. A cell SOCestimation method based on voltage compensation is proposed for the problems such as the indeterminacy of SOC initial value and the erroraccumulation in current integration operation. Due to the LCBS is anonlinear system, a SOC estimation method which is based on extendedkalman filter is presented to estimate SOC of LCBS.
     3. The dynamic model of BESS is built. The structure and operationalprinciple of BESS dynamic model are introduced in details. Themathematical models and its control characteristics of power conversionsystem (PCS) and battery system are analysized thoroughly. The dynamicsimulation plat is constructed in PSCAD/EMTDC simulation conditions.Some simulations of charging and discharging characteristics of BESS areconducted and the simulational results are analysized extensively.
     4. The control strategy of the islanded system when the wind turbinesare out of operation for long time is proposed. Owing to the problem ofinconsistent SOC of battery system in application, which leading to the lifedecrease of the battery and power system instability, a modified droopcontrol strategy based on SOC of battery sytem is proposed to shareeffectively load active power and enhance the ability of battery managementsystem. Considering an inherent static error in droop control and theimpedance being not pure inductance in middle or low voltage grid, andouble loop control strategy based on linear compensating loop is presented,named volatage amplitude and frequency control.
     5. The system configuration and coordinate operation scheme isdesigned separately for the hybrid power system consisting of doubly-fedinduction generator (DFIG) and BESS. Cosidering the influence of loadlevel and wind energy average using hours per year and wind intermittenceon system investing cost, a system configuration scheme is designed and itseconomy is analyzed. Considering the different operation characteristics ofDFIG and BESS and the different operation restraint conditions of each unit,a coordinate operation scheme is illustrated for the islanded system.
     6. The control strategy of a islanded system consisting of DFIG andBESS is proposed. For the problems caused by the integration of DFIG, such as new reactive power balance and operation state control, the energybalance and a hierarchical control strategy are presented respectively for theislanded power systems. For the problem that the reactive power output ofBESS is limited using the traditional droop control, a modified droopcontrol based on SOC of battery system is raised to share effectively loadreactive power, which can improve the system ability of reactive poweroutput.
     7. The wind-battery hybrid system setup is built and some experimentsare carried. The system setup construction and the design of PCS areintroduced in details. Some experiments are carried to validate theeffectiveness of the presented control strategies, which consisting of theoperation and control of BESS when the wind turbines are out of runningand in operation in the islanded system based on wind-battery.
引文
[1]中华人民共和国国家发展和改革委员会.可再生能源发展“十二五”规划[M].北京.2012.
    [2]中华人民共和国国家发展和改革委员会.能源发展”十二五”规划[M].北京.2012.
    [3] M H Nehrir, C Wang, K Strunz, et al. A Review of Hybrid Renewable/Alternative Energy Systemsfor Electric Power Generation: Configurations, Control, and Applications [J]. IEEE Transactionson Sustainable Energy,2011,2(4):392-403.
    [4]王成山,王守相.分布式发电供能系统若干问题研究.电力系统自动化[J],2008,32(20):1-4.
    [5]邓自刚,王家素,王素玉等.高温超导飞轮储能技术发展现状[J].电工技术学报,2008,23(12):1-10.
    [6] H Nikkhajoei, R H Lasseter. Distributed Generation Interface to the CERTS Microgrid[J], IEEEtrans. power delivery,2009,24(3):1598-1608.
    [7] R H Lasseter. MicroGrids[C]. In2002Power Engineering Society Winter Meeting, New York,USA,2002:305-308.
    [8] P Piagi, R H Lasseter. Autonomous control of microgrids[C]. In2006Power Engineering SocietyGeneral Meeting, Montreal, Canada,2006:496-503.
    [9]杨琦,马世英,李胜等.微型电网运行及控制设计[J].电工技术学报,2011,26(1):267-273.
    [10] M B Delghavi, A Yazdani. A Unified Control Strategy for Electronically Interfaced DistributedEnergy Resources [J]. IEEE Transactions on Energy conversion.2012,27(2):803-812.
    [11] F D Kanellos, N D Hatziargyriou. Optimal Control of Variable Speed Wind Turbines in IslandedMode of Operation [J]. IEEE Transactions on Energy conversion.2010,25(4):1142-1151.
    [12] H Chen, T N Cong, W Yang, C Tan, Y Li, and Y Ding. Progress in electrical energy storagesystem:A critical review[J]. Progress in Natural Science,2009,19(3):291–312.
    [13]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89.
    [14]吴晋波.飞轮储能技术及其在电力系统控制中的应用研究[D].武汉:华中科技大学.2011.
    [15]彭思敏,曹云峰,蔡旭.大型蓄电池储能系统接入微电网方式及控制策略[J].电力系统自动化,2011,35(16):38-42.
    [16]金一丁,宋强,刘文华.电池储能系统的非线性控制器[J].电力系统自动化,2009,33(7):75-80.
    [17]廖怀庆,刘东,黄玉辉,等.基于大规模储能系统的智能电网兼容性研究[J].电力系统自动化,2010,34(2):15-19.
    [18]唐捷,任震,高志华,等.峰谷分时电价的成本效益分析模型及其应用[J].电网技术,2007,31(6);61-66.
    [19]陈建斌,胡玉峰,吴小辰.储能技术在南方电网的应用前景分析[J].南方电网技术,2010,4(6):32-36.
    [20]魏学良,戴珂,谢斌,康勇,彭华良.不平衡负载下并联有源电力滤波器的控制策略[J].中国电机工程学报,2008,28(24):64-69.
    [21] P Karuppanan, K Mahapatra. Cascaded multilevel inverter based active filter for power lineconditioners using instantaneous real-power theory[J]. The2010India International Conferenceon Power Electronics (IEEE-IICPE), NSIT-New Delhi, January,2011:1-6.
    [22]周雪松,周永兵,马幼捷.基于自适应滤波器的电网谐波检测[J].电网技术,2008,32(16):91-95.
    [23] WWEA. World wind energy report2011[R]. Bonn.2012.
    [24] GWEC. Globe wind report report2011[R].Brussels.2012
    [25] WWEA. Half-year report2012[R]. Bonn.2012.
    [26]李俊峰,等.中国风电发展报告2012[R].中国环境科学出版社,2012.
    [27]余贻鑫,栾文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8.
    [28]傅书逷.中国智能电网发展建议[J].电力系统自动化,2009,33(20):23-26
    [29] EPRI.1009102Power delivery system and electricity markets of the future[R]. Palo Alto.2003.
    [30] EPRI.1009115Techincal and system requirements of advanced distribution automation[R]. PaloAlto.2004.
    [31] EPRI.1014600Electricite de France research and development, profiling and mapping ofintelligent grid R&D programs[R]. Palo Alto.2006.
    [32] EAC. Energy storage activities in the United States electricity grid[R].Washington.2011.
    [33]严晓辉,陈海生,张雪辉,谭春青.国际储能产业政策及我国储能产业发展分析[J].中国能源,2011,33(11):28-33.
    [34]张雪莉,刘其辉,李建宁,李赢.储能技术的发展及其在电力系统中的应用[J].电气应用,2012,31(12):50-57.
    [35]全国工商联新能源商会储能专业委员会,储能产业研究白皮书2011[R].北京.2011
    [36]刘佳,夏红德,陈海生.新型液化空气储能技术及其在风电领域的应用[J].工程热物理学报,2010,31(12):1993-1996.
    [37]温兆银,俞国勤,顾中华等.中国钠硫电池技术的发展与现状概述[J].供用电,2010,27(6):25-28.
    [38]程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用,2005,24(4):1-8.
    [39]中关村储能产业技术联盟储能专业委员会.储能产业研究白皮书2012[R].北京.2012.
    [40]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [41] C D Parker. Lead-acid battery energy-storage systems for electricity supply networks[J]. Journalof Power Sources,2001,100:18-28
    [42] K C Divya, and J Ostergaard. Battery Energy Storage Technology for Power Systems-AnOverview[J]. Electric Power Systems Research,2009,79(4):511-520.
    [43] J K Kaldellis, D Zafirakis, K Kavadias. Techno-economic comparison of energy storage systemsfor island autonomous electric networks[J]. Renewable&Sustainable Energy Reviews,2009,13(2):378-392.
    [44] EPRI. Electricity energy storage technology options white paper2010[R].California,2010.
    [45]曾乐才.储能锂离子电池产业化发展趋势[J].上海电气技术,2012,5(1):43-48.
    [46]史正军,李勇琦. MW级电池储能站在电网中的应用[J].科技风,2010,19:252-254.
    [47] F S Barnes, J G Levine. Large Energy Storage Systems Handbook[M]. CRC P可再生能源,2011.
    [48] M Beaudin, H Zareipour, A Schellenberglabe, W Rosehart. Energy storage for mitigating thevariability of renewable electricity sources-An updated review[J]. Energy for SustainableDevelopment,2010,14(4):302-314.
    [49] EPRI, DOE. EPRI-DOE handbook of energy storage for transmission and distributionapplication[M], Washington,2003.
    [50]严干贵,谢国强,李军徽等.储能系统在电力系统中的应用综述[J].东北电力大学学报,2011,31(3):7-12.
    [51]赵平,张华民,王宏等.全钒液流储能电池研究现状及展望[J].沈阳理工大学学报,2009,28(2):1-5.
    [52] A Bito. Overview of the Sodium-Sulfur Battery for the IEEE Stationary Battery Committee[C].Power Engineer Society General Meeting,2005:1232-1235.
    [53]程时杰,李刚,孙海顺等.储能技术在电气工程领域中的应用与展望[J].电网与清洁能源,2009,25(2):1-7.
    [54]李战鹰,胡玉峰,吴俊阳.大容量电池储能系统PCS拓扑结构研究[J].南方电网技术,2010,4(5):39-42.
    [55] L Maharjan, S Inoue, H Akagi, J Asakura. State-of-Charge (SOC)-Balancing Control of a BatteryEnergy Storage System Based on a Cascade PWM Converter[J]. IEEE Transactions on powerelectronics,2009,24(6):1628-1636.
    [56] L Maharjan, S Inoue, H Akagi. A transformerless energy storage system based on a cascademultilevel PWM converter with star configuration[J]. IEEE Transactions on IndustryApplications,2008,44(5):1621-1630.
    [57] L Maharjan, T Yanagishi, H Akagi, J Asakura. Fault-Tolerant Operation of a Battery-Energy-Storage System Based on a Multilevel Cascade PWM Converter With Star Configuration[J].IEEE Transactions on Power Electronics,2010,25(9):2386-2396.
    [58] D Boylestad. Introductory Circuit Analysis[M],9th ed., Prentice-Hall, NewYork,2002, p.161.2.
    [59]贾玉健,解大,顾羽洁等.电动汽车电池等效电路模型的分类和特点[J].电力与能源,2011,32(6):516-521.
    [60]陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005,(3):1-5
    [61]冯旭云,魏学哲,朱军. MH_Ni电池等效电路模型的研究[J].电池,2007,37(4):286-288.
    [62] V H Johnson. Battery performance models in ADVISOR[J]. Journal of Power Sources2002(110):321-329.
    [63] B Y Liaw, G Nagasubramanian, R G Jungst, D H. Doughty, Modeling of lithium ion cells-asimple equivalent-circuit model approach[J]. Solid State Ionics,2004,175:835-839.
    [64] S Barsali, M Ceraolo. Dynamical models of lead-acid batteries: implementation issues[J]. IEEETrans Energy Conversion,2002,17(1)16-23.
    [65] Liaw B Y, Rudolph G J, Ganesan N, et al. Modeling capacity fade in lithium-ion cells[J]. Journalof Power Sources,2005,140:157-161.
    [66] United States IdAho National Engineering&Enviromental Laboratory. PNGV battery test manual[M]. IdAho,2001.
    [67]林成涛,仇斌,陈全世.电动汽车电池非线性等效电路模型的研究[J].汽车工程,2006,28(1):38-42.
    [68] C Min, A R M Gaberil. Accurate eletrical battery model capable of predicting runtime and I-Vperformance[J].IEEE Transaction on energy coversion,2006,21(2):504-511.
    [69] Z Jiucai, C Song, S Hamid, et al. An enhanced circuit based model for single cell battery[C].APEC, IEEE, NE. USA,2010:672-675.
    [70] B Schweighofer, K M Raab, G Brasseur, Modeling of high power automotive batteries by the useof an automated test system[J]. IEEE Transaction on instrum, Meas,2003,52(40):1087-1091.
    [71] S A Sharkh, D Doerffel. Rapid test and non-linear model characterization of solid-statelithium-ion batteries[J]. Journal of Power Sources,2004,130:266-274.
    [72] K Taesic, Q Wei. A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristicsand Nonlinear Capacity Effects[J]. IEEE Transaction on energy conversion,2011,26(4):1172-1180.
    [73] M R Jongerden, B R Haverkort. Which battery model to use?[J]. IET Software,2009,3(6):445-457.
    [74] M Doyle, Y Fuentes. Computer Simulations of a Lithium-Ion Polymer Battery and Implicationsfor Higher Capacity Next-Generation Battery Designs[J]. Journal of Electronchemical Society,2003,150(6):706-713.
    [75] M W Verbrugge, B J Koch. Electrochemical Analysis of Lithiated Graphite Anodes[J]. Journal ofElectronchemical Society,2003,150(3):374-384
    [76] R Darling, J Newman. Modeling Side Reactions in Composite LiyMn2O4Electrodes[J]. Journalof Electronchemical Society,1998,145(3):990-998
    [77] P Arora, M Doyle, R E White. Mathematical Modeling of the Lithium Deposition OverchargeReaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes[J]. Journal ofElectronchemical Society,1999,146(10):3543-3553
    [78] V Srinivasan, J Newman. Discharge Model for the Lithium Iron-Phosphate Electrode[J]. Journalof Electronchemical Society,2004,151(10):1517-1529
    [79] U S Kasavajjula, C Wang, P E Arce, Discharge Model for LiFePO4Accounting for the SolidSolution Range[J]. Journal of Electronchemical Society,2008,155(11):866-874.
    [80] M Safari, C Delacourt, Mathematical Modeling of Lithium Iron Phosphate Electrode:Galvanostatic Charge/Discharge and Path Dependence[J]. Journal of Electronchemical Society,2011,158(2):63-73.
    [81] P Rong, M Pedram. An analytical model for predicting the remaining battery capacity oflithium-ion batteries[J]. IEEE Transactions on Very Large Scale Integration system,2006,14(5):441-451.
    [82] M Sarvi, M A S Masoum. A Neural Network Model for Ni-Cd Batteries, Universities PowerEngineering Conference[C]. UPEC2008,43rd International,1-4Sept.2008, pp:1-5.
    [83] C Piao, X Yang, C Teng, H Yang. An improved model based on artificial neural networks andThevenin model for nickel metal hydride power battery[J]. Proc. Int. Conf. Opt., Photon. Ener.Eng.,2010:115-118.
    [84] Y Song, L Gao. Incremental Battery Model Using Wavelet-Based Neural Networks[J]. IEEETransactions on components, Packaging and Manufacturing Technology,2011,1(7):1075-1081.
    [85] X Long, W Junping, C Quanshi. Kalman filtering state of charge estimation for batterymanagement system based on a stochastic fuzzy neural network battery model[J]. Energyconversion and Management,2012,53:33-39.
    [86] X Lei, C C Chan, K Liu, L Ma. Pruning LS-SVM Based Battery Model for Electric Vehicles[C].ICNC2007,2007,3:333-337.
    [87] J P Wang, Q S Chen, B G Cao. Support vector machine based battery model for electricvehicles[J]. Energy Convertion and Management,2006,47:858-864.
    [88] R Peng, M Pedram. Battery-aware power management based on Markovian decisionprocesses[J]. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst,2006,25(7):1337-1349.
    [89] C F Chiasserini, R R Rao. Energy efficient battery management[J].IEEE J. Select. AreasCommun.2001,19(7):1385–1394.
    [90] D Rakhmatov, S Vrudhula, and D A Wallach. A model for battery lifetime analysis fororganizing applications on a pocket computer[J]. IEEE Trans. VLSI Syst.,2003,11(6):1019-1030.
    [91] A J Salkind, C Fennie, P Singh, T Atwater, and D E Reisner. Determination of state of charge andstate of health of batteries by fuzzy logic methodology[J]. Journal of Power Sources,1999,80:293-300.
    [92] P Singh, C Fennie, D E Reisner. Fuzzy logic modeling of state-of-charge and available capacityof nickel/metal hydride batteries[J]. Journal of Power Sources,2004,136:322-333.
    [93] Ch Ehret, S Piller, W Schroer, A Jossen. State of charge determination for lead acid batteries inPV-applications[C]. Proceedings of the16thEuropean Photovoltaic Solar Energy ConferenceGlasgow,2000.
    [94]雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的支持向量机方法[J].中国电机工程学报,2008,28(18):114-119.
    [95] C C Christianson, R F Bourke. Battery state of charge gauge, US Patent3946299,1975, filed11February.
    [96] S Lee, J Lee, B H Cho. State-of-charge and capacity estimation of lithium-ion battery using anew open-circuit voltage versus state-of-charge[J]. Journal of Power Sources,2008,185:1367-1373.
    [97] C S Moo, K S Ng, Y P Chen, Y C Hsieh. State-of-charge estimation with open-circuit-voltage forlead-acid batteries[C]. Proc. IEEE PCC'07, Apr.2007, pp.758-761.
    [98] F Huet. A review of impedance measurements for determination of the state-of-charge or state ofhealth of secondary batteries[J]. Journal of Power Sources,1998,70:59-69.
    [99] S Rodrigues, N Munichandraiah, A K Shukla. A review of state-of-charge indication of batteriesby means of AC impedance measurements[J]. Journal of Power Sources,2000,87:12-20.
    [100] S Piller, M Perrin, A Jossen. Methods for state-of-charge determination and their applications[J].Journal of Power Sources,2001,96:113-120.
    [101] J H Aylor, A Thieme, B W Johnson. A battery state-of-charge indicator for electric wheelchairs[J]. IEEE Transaction on Industrial Electron,1992,39(5):398-409.
    [102]林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):336-339.
    [103]林成涛,陈全世,王军平,等.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251.
    [104] K W E Cheng, B P Divakar, H Wu, K Ding, H F Ho. Battery-management system (BMS) andSOC development for electric vehicles[J]. IEEE Trans. Veh. Technol,2011,60(1):76-88.
    [105] C Bo, B Zaifeng, C Binggang. State of charge estimation based on evolutionary neuralnetwork[J].Energy Conversion and Management,2008,49:2788-2794.
    [106] N A Monfared, N Gharib, H Moqtaderi, et.al. Prediction of state-of-charge effects on lead-acidbattery characteristics using neural network parameter modifier[J]. Journal of Power Sources,2006,158:932-935.
    [107] S Yanqing. Adaptive online state-of-charge determination based on neuro-controller and neuralnetwork[J]. Energy Conversion and Management,2010,51:1093-1098.
    [108]雷肖,陈清泉,刘开培,马历.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-131.
    [109] R E Kalman. A new approach to linear filtering and prediction problems [J].Trans. ASME-J.Basic Eng., Ser. D82(1960)35-45.
    [110] A Jossen, V Spath, H Doring, J Garche. Battery Management Systems (BMS) for IncreasingBattery Life Time[C]. The Third International Conference on Telecommunications EnergySpecial,2000, pp.85-88.
    [111] G Plett. Kalman-Filter SOC Estimation for LiPB HEV Cells[C]. in CD-ROM Proceedings ofthe19th Electric Vehicle Symposium (EVS19), Busan Korea, October2002.
    [112] G Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV batterypacks: Part1. Background[J]. Journal of Power Sources,2004,134:252-261.
    [113] G Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV batterypacks: Part2. Modeling and identification[J]. Journal of Power Sources,2004,134:262-276.
    [114] G Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV batterypacks: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134:277-292.
    [115] S John, D Richard, D R Simon. DC-bus signaling a distributed control strategy for a hybridrenewable nanogrid[J]. IEEE Transactions on Indurstrial Electronics,2006,53(5):1453-1460.
    [116] H Kakigano, Y T I Miura, R Uchida. A dc microgrid for superhigh quality electric powerdistribution[J]. Electrical Engineering in Japan,2008,164(1):34-42.
    [117] B V Perumal, J K Chatterjee. Voltage and frequency control of a stand alone brushless windelectric generation using generalized impedance controller[J]. IEEE Transaction on EnergyConversion,2008,23(2):632-641.
    [118] B Singh, G K Kasal. Voltage and frequency controller for a three-phase four-wire autonomouswind energy conversion system[J]. IEEE Transactions on Energy Conversion,2008,23(2):509-518.
    [119]杨琦,马世英,李胜,等.微型电网运行及控制设计[J].电工技术学报,2011,26(S1):267-273.
    [120]唐西胜,邓卫,齐智平.基于储能的微网并网/离网无缝切换技术[J].电工技术学报,2011,26(S1):279-284.
    [121] J A P Lopes, C L Moreira, A G Madureira. Defining control strategies for MicroGrids islandedoperation[J]. IEEE Trans. Power Syst,2006,21(2):916-924.
    [122]王成山,杨占刚,王守相,车延博.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010.34(1):99-105.
    [123] I A Engler. Applicability of droops in low voltage grids[J]. International Journal of DistributedEnergy Resources,2005,1(1):3-15.
    [124]陈达威,朱桂萍.低压微电网中的功率传输特性[J].电工技术学报,2010,25(7):117-123.
    [125]林新春,段善旭,康勇,等. UPS无互联并联中基于解耦控制的下垂特性控制方案[J].中国电机工程学报,2003,23(12):117-122.
    [126] Li Y, Li Y W. Power Management of Inverter Interfaced Autonomous Microgrid Based onVirtual Frequency-Voltage Frame[J]. IEEE Transactions on Smart Grid,2011,2(1):30-40.
    [127]阚加荣,谢少军,吴云亚.无互联线并联逆变器的功率解耦控制策略[J].中国电机工程学报,2008,28(21):40-45.
    [128]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制[J].中国电机工程学报,2009,29(24):32-39.
    [129]吴云亚,阚加荣,谢少军.适用于低压微电网的逆变器控制策略设计[J].电力系统自动化,2012,36(6):39-44.
    [130] J M Guerrero, L G D Vicuna, J Matas, et al. Output Impedance Design of Parallel-ConnectedUPS Inverters With Wireless Load-Sharing Control[J]. IEEE Trans.Ind.Electron,2005,52(4):1126-1135.
    [131]华明,胡海兵,邢岩,等.逆变器多层控制无线并联技术[J].中国电机工程学报,2011,31(36):33-39.
    [132] J Y Kim, J H Jeon, S K Kim, et al. Cooperative control strategy of energy storage system andmicrosources for stabilizing the microgrid during islanded operation[J]. IEEE Transactions onPower Electronics,25(12):3037-3048.
    [133] C K Sao, P W Lehn. Autonomous load sharing of voltage source converters [J]. IEEETransactions on Power Delivery,2005,20(2):1009-1016.
    [134] C K Sao, P W Lehn. Control and power management of converter fed microgrids[J]. IEEETransactions on Power Systems,2008,23(3):1088-1098.
    [135] A Bidram, A Davoudi. Hierarchical Structure of Microgrids Control System[J]. IEEETrasactions on Smart grid,2012,(99):1-14.
    [136] J M Gurrero, J C Vasquez, J Matas, al et. Hierachial control of droop controlled AC and DCmicrogrids-A General approach toward standardization[J]. IEEE Transactions on IndustrialElectronics,2011,58(1):158-172.
    [137] D Matthieu, V Nicolas, Y L Bor. Origins and accommodation of cell variations in Li-ion batterypack modeling [J]. International journal of energy research,2010,34:216-231
    [138] D Mathieu, Y L Bor. Development of a universal modeling tool for rechargeable lithiumbatteries[J]. Journal of Power Sourece,2007,174:856-860.
    [139]胡运飞,廖承林,王丽芳.混合动力汽车用MH/Ni电池的建模[J].电池,2008,38(4):236-238.
    [140] L David, B R Thomas. Handbook of Batteries(3rd Edition)[M], Mc Graw-Hill Companies, Inc.2002.
    [141]郭炳焜.徐徽.王先友,等.锂离子电池[M].中南大学出版社,2002.
    [142]徐杰.基于卡尔曼滤波的动力电池组SOC精确估计[D].杭州.杭州电子科技大学硕士学位论文.2009.
    [143] M Liserre, F Blaabjerg, S Hansen. Design and control of an LCL-filter-based three-phase activerectifier[J]. IEEE Transactions on Industry Appoications,2005,41(5):1281-1291.
    [144]刘飞,查晓明,段善旭.三相并网逆变器LCL滤波器的参数设计与研究[J].电工技术学报,2010,25(3):110-116.
    [145]何良,越继敏,谢海先.三相电压型脉宽调制整流器的LCL滤波器设计[J].电网技术,2006,30(S):51-53.
    [146] B Stefanao, C Massimo. Dynamical models of lead-acid batteries:implementation issues[J].IEEE Transaction on energy conversion,2002,17(1):16-23.
    [147] K Jonghoon, S Jongwon, et al. Stable configuration of a li-ion series battery pack based on ascreening process for improved voltage/SOC balancing[J]. IEEE Transaction on powerelectronics,2012,27(1):411-424.
    [148] K Jonghoon, S Jongwon,et al. High accuracy state of charge estimation of li-ion battery packbased on screening process[C].APEC,2011Twenty-sixth annual IEEE,2011,pp.1984-1991.
    [149] S Rob, T Carl, et al. Modeling of highly-parallel lithium-ion batteries [C]. Proc.Eur.Spacepower conf, Porto, Portugal,2002,502:685-691.
    [150] USABC. USABC Electric Vehicle Battery Test Procedures Manual[M], Revision2, Washington1996.
    [151]麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法[J].清华大学学报(自然科学版),2001,41(11):95-97.
    [152] S J Julier, J K Uhlmann. A new extension of the kalman filter to nonlinear systems[J].Proc.AeroSense:11thInt. Symp. Aerospace/Defense Sensing, Simulation and Controls,1997:182-193.
    [153]陈勇军.磷酸铁锂电池建模及SOC算法研究[D],哈尔滨:哈尔滨工业大学硕士学位论文,2011.
    [154]李福东,吴敏.微网孤岛模式下负荷分配的改进控制策略[J].中国电机工程学报,2011,31(13):18-25.
    [155]董亮,张尧,马皓,张仲超.微电网无互联逆变器并联系统新型相位调节法[J].电力系统自动化,2012,36(2):52-57.
    [156] J W Smith, D L Brooks. Voltage impacts of distributed wind generation on rural distributionfeeders[C]. Proceedings of IEEE/PES Transmission and Distribution Conference and Exposion.Atlanta, USA,2001:492-497.
    [157] E Muljadi, H E McKenna. Power quality issues in a hybrid power system[J]. IEEE Transactionon Indutry Applications,2002,38(3):803-809.
    [158]邓卫,唐西胜,齐智平.异步风力发电机对微网稳定性的影响与对策[J].中国电机工程学报,2011,31(1):32-38.
    [159] M Ross, R Hidalgo, C Abbey, G Joos. Energy storage system scheduling for an isolatedmicrogird[J]. IET Renewable Power Generation,2011,5(2):117-123.
    [160]张庆海,彭楚武,陈燕东,等.一种微电网多逆变器并联运行控制策略[J].中国电机工程学报,2012,32(25):126-132.
    [161]郜登科,姜建国,张宇华.使用电压-相角下垂控制的微电网控制策略设计[J].电力系统自动化,2012,36(5):29-34.
    [162] Wu G X, Chen G C, Cao D P. An investigation on idle load cutting-in control strategy forvariable-speed constant-frequency (VSCF) wind power generation [C]. Proc.ICEF2008, Chongqing, China,2008:1-5.
    [163]李明.风电孤网中功率调节器的研究[D].上海.上海交通大学硕士学位论文.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700