用户名: 密码: 验证码:
变推力轴线无人机飞行控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侦察与打击是无人机在未来战场上发挥重要作用的两个方面。察打一体化无人机具有巡航侦察、实时攻击等多方面的能力,正逐渐成为世界各国研究的重点对象之一。轨迹精确跟踪控制是察打无人机需要解决的重要问题。基于未来战场形势的发展趋势,本文研究了变推力轴线无人机的轨迹控制问题。
     启发于推力矢量技术在飞行控制中的成功应用,提出了螺旋桨无人机的变推力轴线技术。建立了变推力轴线无人机的非线性全量数学模型,分析了与传统无人机数学模型之间的区别。基于常规飞机机动性与敏捷性的概念,推导了变推力轴线无人机能量机动性、变向机动性、变空间位置机动性、瞬态敏捷性、功能敏捷性、潜力敏捷性等指标的计算公式,并与普通无人机进行了比较分析,结果表明了推力变向技术在一定条件下能够提高或改善无人机的机敏性。针对察打一体化无人机的姿态控制问题,在气动舵面控制的基础上,增加了推力变向控制,从而提出了基于气动操纵面与可变推力的混合姿态控制策略,其中推力变向控制律与气动操纵面控制律在形式上是一致的,通过对非线性对象的仿真研究,验证了变推力轴线无人机数学模型的正确性,也表明推力变向技术能够增加飞机的操纵能力,改善了无人机的姿态控制效果。针对察打一体化无人机的轨迹控制问题,设计了由姿态内回路和轨迹外回路组成的控制系统,姿态回路的控制量仍然是三个气动操纵面,而轨迹回路增加了两个推力偏转角,非线性对象的仿真结果表明,基于高度差、偏航距等轨迹信息的推力偏转控制技术能够对实现无人机的较好控制,提高了轨迹控制精度。
     为进一步提高变推力轴线技术在察打一体化无人机上的作用,引入大脑情感学习智能控制技术来设计推力偏转控制律,从而提高控制器的在线自适应能力。在理论分析大脑情感学习智能控制器内部学习权值稳定性的基础上,分别设计了基于大脑情感学习的推力变向直接控制方案与间接控制方案,通过非线性对象的仿真研究,表明了两种智能控制结构均在一定程度上改善了无人机的姿态与轨迹控制效果,充分体现了基于大脑情感学习的飞行控制系统具有较好的自整定和自适应能力。
     为解决变推力轴线无人机飞行控制系统的工程实现问题,在讨论变推力轴线无人机系统整体构架的基础上,分别针对变推力轴线无人机的软硬件系统展开了器件选型和设计。并在设计过程中,应用模块化技术解决了系统硬件组建和通讯软件设计问题,根据飞行控制的任务需求,设计了软件分层、定时器分级的软件逻辑构架,同时为了丰富人机交互界面,基于VC++开发工具设计了一套无人机界面控件库,有效地加快了飞行控制系统的软件研发进度,增强了系统软件的可维护性。
     为验证变推力轴线无人机控制系统的有效性,进行了半物理仿真研究。首先讨论了不同飞行仿真平台的组成,并给出了仿真系统的硬件选型和软件逻辑设计,为了保证飞行仿真的精确度和实时性,对多种飞行仿真算法的计算效率进行了分析,最后通过典型的半物理飞行仿真实验,展现了仿真系统的具体功能以及变推力轴线控制的优越性。
UAV system will be used for reconnaissance missions as well as for strike operations over future battlefield. UAV system’s specific characteristics of ability of loitering and performing sudden strikes make it one of the focuses of research and development all over the world. The problem of precise trajectory control is very important for UAV system’s development. In view of the future of battlefield environment, this dissertation focus on the problem of trajectory control for alterable thrust direction UAVs.
     Inspired by the successful application of thrust vectoring techniques in flight control system, techniques we called“alterable thrust direction”are proposed for propeller-driven UAV system. A nonlinear mathematical model is developed for alterable thrust direction UAV systems, and the difference between it and the traditional UAV mathematical model is analyzed. Based on the concept of maneuverability and agility for routine aircrafts, the computation of indexs of energy maneuverability, course manoeuvrability, space maneuverability, transient agility, functional agility and potential agility is deduced, and comparison with those of routine UAVs is made. The result shows that techniques of alterable thrust direction can improve the UAVs’maneuverability and agility under certain conditions.
     In addition to aerodynamic surfaces control, thrust deflection control is used as well to solve the problem of attitude control for UAVs. And so, a combined attitude control strategy is proposed. In this strategy, the law of alterable thrust direction control and that of aerodynamic surfaces control are consistent in form. The correctness of mathematic model of alterable thrust direction UAVs is verified through simulation of nonlinear object. The simulation also shows that the techniques can improve the maneuverability of UAVs. A control system consisting of inner loop and outer loop is designed to solve the problem of trajectory control. The control variables are still of the three aerodynamic surfaces, but two thrust deflection angles are added into the outer loop. The simulation proves that the alterable thrust direction techniques based on information such as altitude difference and cross track error can improve the precision of UAVs’trajectory control.
     To further improve this technique’s application in UAVs, Brain emotional learning (BEL) model is introduced to design thrust deflection control law, in anticipating the improvement of controller’s online adaptive ability. After the stability analysis of the BEL model’s inner weights, thrust deflection direct control scheme and indirect control scheme are designed respectively. The simulation results show that effect of control is improved under the two schemes, control system based on BEL model exhibits good autotuning ability and adaptiveness.
     As for the engineering realization of this control system, besides the discussion of the architecture of alterable thrust direction UAVs, the selection and design of hardware and software are carried out. During the design process, modular techniques are used to solve the problems in hardware architecture and communication software design. In accordance with the mission requirement of flight control, layered software architecture and grading timer are designed. A GUI software kit is developed using VC++ tools for human computer interface. That kit increases the software development efficiency, and the maintainability of software system is also improved.
     To verify the effectiveness of alterable thrust direction UAV control system, semi-physical simulation is carried out. The constitution of flight simulation platform is discussed, and the hardware selection and software logic design are proposed. The computation efficiencies of various flight simulation algorithms are analyzed to ensure the precision and real-time capability of simulation. In the last part of this dissertation, the specific functions of simulation system and the superiority of alterable thrust direction control techniques are demonstrated through typical semi-physical flight simulations.
引文
[1] Peter van Blyenburgh, UAVs: an Overview, Air & Space Europe, 1999, 1(5):43-47.
    [2]淳于江民,张珩,无人机的发展现状与展望,飞航导弹, 2005, 2:23-27.
    [3]韩冰,张秋菊,徐世录,无人战斗机的现状与发展趋势,飞航导弹, 2005, 10.
    [4]苏鑫鑫,王永寿,欧洲的无人战斗机计划,飞航导弹, 2007, 8.
    [5]洪晔,房建成,基于HMDP的无人机三维路径规划,北京航空航天大学学报, 2009, 1:100-103.
    [6]王金泉,高晓光,史建国,李波,无人机的侦察路径规划,火力与指挥控制, 2008, 7:16-18+27.
    [7]马云红,周德云,无人机路径规划算法与仿真,火力与指挥控制, 2007, 6:33-36.
    [8]高浩,朱培生,高正红,高等飞行动力学,国防工业出版社, 2004, 7.
    [9]邱菊,三翼面飞机与直接力控制,飞机设计, 2005, (4) :7-10.
    [10]徐骋,刘永才,王长青,基于气动力反馈的直接力控制技术,战术导弹技术, 2007, (3):59-63.
    [11]葛致磊,周军,基于直接力控制的导弹高精度末端导引方法研究,系统仿真学报, 2007, (23):5463-5499.
    [12]陈卫民,黄少波,贺永杰,空空导弹直接力控制装置的初步研究,航空兵器, 2009, (2):43-46.
    [13]徐骋,强文义,王长青,基于逆动力学的飞行器直接力控制系统及其稳定性分析,宇航学报, 2008, (4):1308-1313.
    [14]徐瑞娟,直接力控制飞机非常规响应耦合敏感性分析,航空学报, 1995, (4):408-414.
    [15]方德昌,飞机推力矢量技术发展综述.航空科学技术, 1998, (2):10-12.
    [16] KLAFIN, J. F. Integrated thrust vectoring on the X-29A. AHS, and ASEE, Aircraft Design, Systems and Operations Meeting, Atlanta, GA, Sept 7-9, 1988.
    [17] ANDERSON, JOSEPH A. Agile Fighter Aircraft Simulation. Aerospace Sciences Meeting, 27th, Reno, NV, Jan 9-12, 1989.
    [18] ?. Atesoglu, Aselsan Inc., Ankara, Turkey; K. ?zg?ren. High-Alpha Flight Maneuverability Enhancement of a Twin Engine Fighter-Bomber Aircraft for Air Combat Superiority Using Thrust-Vectoring Control. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, Aug. 21-24, 2006.
    [19] REGENIE, VICTORIAGATLIN, DONALD . KEMPEL, ROBERT. MATHENY, NEIL. The F-18 High Alpha Research Vehicle - A high-angle-of-attack testbed aircraft. 6th AIAA Biennial Flight Test Conference, Hilton Head Island, SC, August 24-26, 1992.
    [20] Sparks, A.G. Buffington, J.M. Banda, S.S. Fighter aircraft lateral axis full envelope control law design. Control Applications, 1993., Second IEEE Conference on. 13-16 Sept. 1993 Page(s):21 - 26 vol.1.
    [21] Bowers, Albion H. Pahle, Joseph W. Wilson, R. Joseph Flick, Bradley C. Rood, Richard L. An Overview of the NASA F-18 High Alpha Research Vehicle. NASA Technical Memorandum 4772. Oct. 1996.
    [22] H. Beh, R. van den Bunt, and B. Fischer. High angle of attack approach and landing control law design for the X-31A. AIAA Aerospace Sciences Meeting and Exhibit, 40th, Reno, NV, Jan. 14-17, 2002.
    [23] R. Steinhauser, G. Looye and O. Brieger. Design and Evaluation of Control Laws for the X-31A with Reduced Vertical Tail. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, Aug. 16-19, 2004.
    [24] Loria, C.J. Kelly, M. Hatney, R. X-31A quasi-tailless evaluation. Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE. Volume 4, 3-10 Feb. 1996 Page(s):253 - 276 vol.4.
    [25] Frederick J. Lallman, John B. Davidson, and Patrick C. Murphy. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane. NASA/TP- 1998-208464. 1998.
    [26] Gilyard, Glenn B.; Bolonkin, Alexander. Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes. NASA/TM-2000-209021. March 2000.
    [27] Murphy, Patrick C. Davidson, John B. A Control Law Design Method Facilitating Control Power, Robustness, Agility, and Flying Qualities Tradeoffs: CRAFT. NASA/TP- 1998-208463.Sep.1998.
    [28] Karlsson, Mia. Control of Unmanned Aerial Vehicles using Non-linear Dynamic Inversion. Link?ping University, Department of Electrical Engineering. 2002.
    [29]吴森堂,费玉华,飞行控制系统.北京航空航天大学出版社, 2005, 9.
    [30]张新国,张汝麟,陈宗基,飞行控制系统设计方法研究,航空科学技术, 1997, 1.
    [31]李怡勇,沈怀荣,李岩,先进控制方法在飞行控制系统设计中应用,飞航导弹, 2006, 12.
    [32] Isidori A. Nonlinear control systems, NewYork:Springer-Verlag, 1995.
    [33]朱恩,大迎角超机动飞行控制技术研究,南京航空航天大学, 1995.
    [34]王健,先进短距起飞垂直着陆飞机的非线性动态逆控制,南京航空航天大学, 2000.
    [35]黄一敏,直升机飞行控制技术研究,南京航空航天大学, 1999.
    [36]苏丙未,无人机先进飞行控制技术研究,南京航空航天大学, 2001.
    [37] Tomlin C, Lygeros J, Benvenuti L. Output tracking for a non-minimum phase dynamic CTOL aircraft model, Proc. 34th IEEE Conference on Decision and Control, Vol. 2: 1867-1872. 1995.
    [38] Meyer G, Su R, Hunt L R. Application of nonlinear transformation to automatic flight control. Automatica, Vol. 20, No. 1: 103-107, 1984.
    [39] Hauser, J., Sastry, S., and Meyer, G. 1992. Nonlinear control design for slightly non-minimum phase systems: application to V/STOL aircraft. Automatica, Vol. 28, No. 4: 665-679, 1992.
    [40] Bortoff S A. Approximate feedback linearization using spline functions. Automatica, Vol. 33, No. 8: 1449-1458, 1997.
    [41] Naidu D S, Calise A J. Singular Perturbations and Time Scales in Guidance and Control of Aerospace Systems: A Survey. AIAA Journal of Guidance, Control, and Dynamics, Vol. 24, No. 6: 1057-1078, Nov-Dec 2001.
    [42] Tomlin C J, Sastry S. Bounded Tracking for Nonminimum Phase Nonlinear Systems with Fast Zero Dynamics. International Journal of Control, Vol. 68, No. 4: 819-848, Nov. 1997.
    [43] Baumann W T, Rugh W J. Feedback control of nonlinear systems by extended linearization. IEEE Transactions on Automatic Control, Vol. 31, No. 1, pages: 40-46, 1986.
    [44] Doyle F J, Algower F, Morari M. A normal form approach to approximate input-output linearization for maximum phase nonlinear SISO systems. IEEE Transactions on Automatic Control, 1996, 41(2):305-309.
    [45] Peterson BB, Narendra K S. Bounded Error Adaptive Control. IEEE Transactions on Automatic Control, Vol. 27, No. 6: 1162-1168, 1982.
    [46] Naik S M, Kumar P R, Y dstie B E. Robust continuous-time adaptive control by parameter projection. IEEE Transactions on Automatic Control, Vol. 37, No. 2: 182-197, 1992.
    [47] Serrani A, Isidori A, Marconi L. Semiglobal nonlinear output regulation with adaptive internal model. IEEE Transactions on Automatic Control, Vol. 46, No. 8: 1178-1194, 2001.
    [48] Marconi L, Isidori A, Serrani A. Autonomous vertical landing on an oscillating platform: an internal-model based approach. Automatica, Vol. 38, No. 1: 21-32, January 2002.
    [49] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter.IEEE Transactions on Automatic Control. Vol. 48, No. 3: 413-426, March 2003.
    [50] Krstic M, Sun J, Kokotovic P.V. Control of feedback linearizable systems with input unmodeled dynamics. Proceedings of the 33rd Conference on Decision and Control, pages: 1633-1638,1994.
    [51] Kokotovic P.V. Joy of Feedback: Nonlinear and Adaptive. IEEE Control Systems Magazine, Vol. 12, No. 3: 7-17, 1992.
    [52] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller. Journal of Guidance, Control and Dynamics, Vol. 24, No. 4: 675-682, 2001.
    [53] Stengel R F. Toward intelligent flight control. IEEE Transaction on Systems, Man and Cybernetics, Vol. 23, No. 6: 1699-1717, 1993.
    [54] Lin C L, Su H W. control theory in guidance and control system design: an overview. Proceedings of the National Science Council. R.O.C., Part A, Vol.24, No.1: 15-30, 2000.
    [55] Linse D J, Stengel R F. Identification of aerodynamic coefficients using computational neural networks. Journal of Guidance, Control and Dynamics, Vol.16, No.6: 1018-1025, 1993.
    [56] Hu Z, Balakrishnan S N. Online identification and control of aerospace vehicles using recurrent networks. Proceedings of the 1999 IEEE International Conference on Control Applications, 225-230 Vol. 1: 225-230, 1999.
    [57]张锐,武装直升机大机动、高敏捷性神经网络鲁棒自适应飞行控制研究,南京航空航天大学, 2002.
    [58] Calise A J. Neural Networks in Non-Linear Aircraft Flight Control. IEEE Aerospace and Electronic System Magazine, Vol.11, No.7: 5-10, 1996.
    [59] Calise A J, Rysdyk R T. Nonlinear Adaptive Flight Control Using Neural Networks.IEEE Control System Magazine, Vol.18, No.6: 14-25, 1998.
    [60] Nardi F. Neural network based adaptive algorithms for nonlinear control. Atlanta: Georgia Institute of Technology, 2000.
    [61]王源,不确定非线性系统的神经网络自适应重构控制,南京航空航天大学, 2002.
    [62] Shin D, Kim Y. Reconfigurable Flight Control System Design Using Adaptive Neural Networks. IEEE Transactions on Control Systems Technology, Vol.12, No.1: 87-100, 2004.
    [63] Steiberg M, DiGirolamo R. Applying neural network technology to future generation military flight controlsystems. International Joint Conference on Neural Networks, Seattle, WA, 1991.
    [64] Napolitano M R, Kincheloe M. On-line learning neural-network controllers for autopilot systems .Journal of Guidance Control and Dynamics, Vol.18, No.5: 1008-1015, 1995.
    [65] Napolitano M R, Molinaro G, Innocenti M, etal. A complete hardware package for a fault tolerant flight control system using online learning neural networks. Proceedings of the American Control Conference, Vol.4: 2615-2619, 1999.
    [66] Calise A J, Sharma M, Corban J E. Adaptive autopilot design for guided munitions. AIAA Journal of Guidance, Control and Dynamics, Vol.23, No.5: 837-843, 2000.
    [67] Nardi F, Rysdyk R T, Calise A J. Neural network based adaptive control of a thrust vectored ducted fan. AIAA-1999-3996, 1999.
    [68] Leitner J, Calise A J, Prasad J V R. A full authority helicopter adaptive neuron-controller. IEEE Aerospace Conference Proceedings, Vol. 2: 117-126, 1998.
    [69] McFarland M B, Calise A J. Robust adaptive control of uncertain nonlinear systems using neural network, Proceedings of the American Control Conference, pages: 1996-2000, 1997.
    [70] Rysdyk R T, Calise A J. Fault tolerant flight control via adaptive neural network augmentation. AIAA-1998-4483, 1998.
    [71] Calise A J, Lee S, Sharma M. Development of a reconfigurable flight control law for tailless aircraft. Journal of Guidance, Control and Dynamics, Vol.24, No.5: 896-902, 2001.
    [72] McFarland MB. Augmentation of gain-scheduled missile autopilots using adaptive neural networks. AIAA-98-4491, 1998.
    [73] Shin Y, Johnson M, Calise A. Neural network-based adaptive control for nonlinear flight regimes. AIAA-2003-5717, 2003.
    [74] Johnson E N, Calise A J, Corban E. Reusable launch vehicle adaptive guidance and control using neural networks. AIAA-2001-4381, 2001.
    [75] Brinker J S, Wise K A. Reconfigurable flight control for a tailless advanced fighter aircraft. AIAA-98-4107, 1998.
    [76] Brinker J S, Wise K A. Flight Testing of Reconfigurable Control Law on the X-36 Tailless Aircraft. Journal of Guidance, Control and Dynamics, Vol.24, No.5: 903-909, 2001.
    [77] Rolls, E. A theory of emotion and consciousness, and its application to understanding the neural basis of emotion. In Gazzaniga,M., The Cognitive Neurosciences, pages:1091–1106, Cambridge, MA. 1995, the MIT Press.
    [78] Dias, R., Robbins, T., and Roberts, A. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the wisconsin card sort test: Restriction to novel situations and independence from“on-line”processing. The Journal of Neuroscience,1997, 17(23):9285–9297.
    [79] Neese R. Emotional Disorders in Evolutionary Perspective. British Journal of Medical sychology, 1998, 71:397-415.
    [80] Greece J D, Sommerville R B, Nystorm L E, Darley J M, Cohen J D. An MRI Investigation of Emotional Engagement in Moral Judgment. Science, 2001, 293(14):2105-2108.
    [81] Moren J, Balkenius C. A Computational Model of Emotional Learning in the Amygdala. Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior, Cambridge, Mass, 2000, the MIT Press.
    [82] Moren J. Emotion and Learning-a Computational Model of the Amygdala. PhD Dissertation, Lund University, 2002.
    [83] Lucas C, Shahmirzadi D, Sheikholeslami N. Introducing BELBIC:Brain Emotional Learning Based Intelligent Controller. International Journal of Intelligent Automation and Soft Computing, 2004, 10(1):11-22.
    [84] Jafarzadeh, S., Jahed Motlagh M.R., Barkhordari M., Mirheidari R., A new Lyapunov based algorithm for tuning BELBIC controllers for a group of linear systems, 16th Mediterranean Conference on Control and Automation, 25-27 June, 2008:593-595.
    [85] Mehrabian A R, Lucas C., Emotional Learning Based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems. Computational Intelligence. 2005, 2(4):1304-4508.
    [86] Rahman M.A., Milasi R.M., Lucas C., Araabi B.N., Radwan, T.S. Implementation of Emotional Controller for Interior Permanent-Magnet Synchronous Motor Drive, IEEE Transactions on Industry Applications, Sept.-oct. 2008, 44(5): 1466-1476.
    [87] Mohammdi-Milasi R., Lucas C., Nadjar-Arrabi B., Speed control of an interior permanent magnet synchronous motor using belbic (brain emotional learning based intelligent controller), World Automation Congress, 28 June-1 July 2004,(16):280-286.
    [88] Milasi R M, Lucas C, Araabi B N, Intelligent Modeling and Control of Washing Machine Using LLNF Modeling and Modified BELBIC, International Conference on Control and Automation, Budapest, Hungary, 2005:812-817.
    [89] Rouhani H, Jalili M, Babak N, Araabi, Eppler W, Lucas C, Brain Emotional Learning Based Intelligent Controller Applied to Neurofuzzy Model of Micro-heat Exchanger. Expert Systems with Applications, 2007, 32:911-918.
    [90] Parsapoor M., Lucas C., Setayeshi S., Reinforcement _recurrent fuzzy rule based system based on brain emotional learning structure to predict the complexity dynamic system, Third International Conference on Digital Information Management, 13-16 Nov. 2008 Page(s):25-32.
    [91] Mehrabian A R, Lucas C, Roshanian J, Aerospace Launch Vehicle Control:an Intelligent Adaptive Approach, Aerospace Science and Technology, 2006:149-155.
    [92] Zhen Ziyang, Wang Daobo, Wang Zhisheng, Flight simulation servo system based on brain emotional learning based intelligent controller, Proceedings of the 4th International Conferenceon Impulse and Hybrid Dynamic Systems, 20-22 July, 2007:1372-1375.
    [93]甄子洋,王道波,王志胜,黄国勇,基于大脑情感学习的转台逆模型补偿控制,应用科学学报, 2009, 27(3), 326-330.
    [94]宋彦国,张呈林.小型无人直升机模糊飞行控制系统设计,南京航空航天大学学报, 2. 2007, 2:103 -106.
    [95]苏志伟.基于神经网络的飞行控制系统重构理论及仿真研究,西北工业大学学位论文, 2004.
    [96]商重阳,高正红,过载极曲线及其在比较飞机机动性中的应用,飞行力学, 2002, 6:15-18.
    [97] Tamrat B F. Fighter agility assessment concepts and their implications on future agile fighter design. AIAA Paper 88-4400, 1988.
    [98] Bitten R. Qualitative and quantitative comparison of goverment and industry agility metrics. AIAA -89-3389-CP , 1989.
    [99] Skow A M. Agility as a contribution to design balance. AIAA-90-1305, 1990.
    [100] Liefer R K. Assessment of proposed fighter agility metrics . AIAA -90-2807-CP , 1990.
    [101] Eggdd D P, et al. The measurment and improvement of the lateral agility of the F-18. AIAA 91-2220-CP , 1991.
    [102] Valasek J , et al. A study of a proposed modified torsional metric . AIAA-91-2883-CP , 1991.
    [103] Liefer R K, et al. Fighter agility metrics research and test. NASA-CR-186118.
    [104] Cox B W , Downing D R. Evaluation of functional agility metrics for fighter class aircraft .AIAA -92-4487-CP , 1992.
    [105] Cliff E M , Thompson B G. Aircraft agility manevers . AIAA-92-4489-CP , 1992.
    [106]贾忠湖,郭卫刚,王秀霞,陈立奎,飞机瞬时敏捷性研究,海军航空工程学院学报, 2005, 7.
    [107]高浩,张曙光,战斗机的机敏性与超机动性(二),飞行力学, 1991(4).
    [108] Mark G Baxter and Elisabeth A Murray, The Amygdala and Reward, Natural Review Neuroscience, July 2002.
    [109] Joseph Ledoux, Cognitive-Emotional Interactions: Listen to the Brain, Chapter 7 in Cognitive Neuroscience of Emotion, 2002 Oxford University Press.
    [110]何德富,封茂滋,曹晓华,周绍慈,杏仁体与情绪及感觉功能的关系,心理科学, 2001, (5):576-639.
    [111]Dias, R., Robbins, T., and Roberts, A. Dissociable forms of inhibitory control within prefrontalcortex with an analog of the wisconsin card sort test: Restriction to novel situations and independence from“on-line”processing. The Journal of Neuroscience, 17(23) pages: 9285–9297, 1997.
    [112]陈天华,郭培源,小型无人机自主飞行控制系统的实现,航天控制, 2006, 24(5): 86-90..
    [113]陈坚,郑忠培,一种小型无人机简易飞行控制系统的方案,实验流体力学, 2006, 20(4): 99-105.
    [114](?)zgür Atesoglu, M. Kemal (?)zg(?)ren, High-Alpha Flight Maneuverability Enhancement of a Fighter Aircraft Using Thrust-Vectoring Control . Journal of Guidance, Control, and Dynamics, 30(5) pages: 1480-1493, 2006.
    [115]Beyers Martin E., Ericsson Lars E., Unsteady aerodynamics of combat aircraft maneuvers, AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, Aug.11-13, 1997.
    [116]Bei Lu, Fen Wu, Probabilistic Robust Linear Parameter-Varying Control of an F-16 Aircraft, Journal of Guidance, Control, and Dynamics, 29(6) pages: 1454-1460, 2006.
    [117]杨晖,无人作战飞机自主控制技术研究,无人机, 2007(1): 27-29.
    [118]高劲松,陈哨东,邹庆元等,美国无人机的自主性研究,无人机, 2006(5): 37-39.
    [119]张新国,从自动飞行到自主飞行──飞控与导航技术发展的转折和面临的挑战,无人机, 2003(6): 33-36.
    [120]童时中,模块化原理设计方法及应用,中国标准出版社, 2000.
    [121]黄国勇,马国梁,王道波,一种无人机控制回路的参数整定方法,系统仿真学报, 2009(1) : 289-291.
    [122]蔡晓华,人的反应时间在单摆实验中不引进个人误差,浙江水利水电专科学校学报, 1999(3) : 61-63.
    [123]于增亮,基于仿真环境驾驶员临界反应能力的研究,吉林大学硕士论文, 2005.
    [124]曹鹏,高速公路限速标志设置的有效性研究,吉林大学博士论文, 2007.
    [125]肖筱南,赵来军,党林立,现代数值计算方法,北京大学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700