用户名: 密码: 验证码:
网络系统的性能分析与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络系统无处不在,宏观世界和微观世界的一切事物都可以用网络系统的观点去描述和分析。本文的研究涉及到了两类典型的网络系统:网络控制系统和无线传感器网络。在网络控制系统中,参考输入、对象输出和控制输入等信息通过网络在控制器、执行器和传感器之间传输,形成了更加灵活、功能更为强大的控制体系。网络化控制实现了资源的共享,降低了控制系统的复杂度和开发成本,近年来得到研究者的广泛关注。网络的引入既给控制系统带来了便利,同时也带来了新的挑战。一般来说,信号在网络中传输必然受到通讯因素的制约,进而影响网络控制系统的稳定和性能。目前网络控制系统的研究主要集中在基于状态空间法研究网络诱导参量,如时延对系统稳定性的影响,而基于频域最优控制的方法研究网络控制系统性能则较少。本文的研究从后者出发,通过研究网络控制系统的性能极限来揭示通讯信道特征参量与控制系统性能极限之间的内在联系。本文也研究了另外一类网络系统——无线传感器网络。无线传感器网络的研究涉及到电子电路、计算机科学、通讯理论、控制理论等领域,目前在各个学科领域都有大量的研究者从事相关工作。本文从复杂网络的角度出发建立无线传感器网络的模型,并利用复杂网络中常用的分析手段对无线传感器网络进行分析,解决无线传感器网络中网络性能与节点可用能量受限的矛盾,提高网络的使用寿命。全文主要内容概括如下:
     研究了线性时不变、多输入多输出系统对随机信号的平均跟踪性能极限问题。考虑的随机参考输入信号为布朗运动。研究结果表明此类系统的跟踪性能极限完全由被控对象的结构特征和参考输入的统计特征决定。其中结构特征指被控对象的非最小相位零点和不稳定极点的位置和方向。作为特殊情形,给出了参考输入为一致随机信号以及被控对象仅含有单个非最小相位零点和单个不稳定极点时系统跟踪性能极限。最后,给出了两自由度控制器跟踪系统对随机信号的跟踪性能极限。
     研究了线性时不变、多输入多输出、连续系统在输出反馈受到加性高斯噪声的干扰时的跟踪性能极限问题。也即求取系统跟踪布朗运动的最小误差值,其中布朗运动用于模拟确定性系统中的阶跃信号。这部分研究同时考虑了单位反馈和两自由度控制器结构。对于单位反馈结构,得到了跟踪性能极限的一个下界,而对于两自由度控制器结构,则得到了跟踪性能极限的精确值。所有结果表明高斯噪声与不稳定极点和非最小相位零点等对象内部结构特征相互作用,恶化了系统的跟踪性能。
     研究了线性时不变、离散系统在输出反馈经过均匀量化器时的跟踪性能极限问题。考虑的系统为两自由度控制器结构,分别考虑单输入单输出和多输入多输出对象。结果表明量化的输出反馈使网络控制系统的跟踪性能变差。对于固定的量化间隔,跟踪性能恶化的程度取决于对象的内部结构特征。对于多输入多输出对象,合适选择量化方式能有效地降低量化带来的负面影响,提高系统的跟踪性能。
     利用随机图的键逾渗模型为无线传感器网络建模。利用键逾渗模型的相变现象考察无线传感器网络中节点工作状态与网络连通性的关系,使得网络在保证连通性的同时降低节点能量消耗。提出了节点工作方式改进算法,使得整个网络的能量消耗更为均匀,延长了网络的使用寿命。
     提出了一类复杂网络模型——多半径地理空间网络。研究了该模型的统计学特性并基于节点广播半径调节机制为无线传感器网络建模。通过分析和仿真证实采用多半径地理空间网络模型的无线传感器网络相对于传统节点等作用半径工作的无线传感器网络,具有更长的网络寿命和更快的数据传输速度。
     最后对全文进行了总结,并对今后的研究工作进行了展望。
Networked systems are commonly seen in real world. All the things in both macrocosmos and microcosmos can be described and analyzed from the point view of networked systems. The discussions in this dissertation refer to two representative networked systems:networked control systems and wireless sensor networks. Reference input, plant output and control input signals are transmitted through networks between controllers, actors and sensors, which makes networked control systems more flexible with more powerful function. Networked control systems make it possible to share the resources, to reduce the complexity and producing costs, and thus, attract many attentions from researchers in recent years. Networks bring convenience to control systems, at the same time, it bring new challenges. Generally speaking, signals that transmitted in networks will also suffer the constraints originated from communication, which affect stability and performance of networked control systems. Recent studies are focused on stability of systems with considering networks induced parameters, such as time delay based on state space method. However, there are few works on the study of networked control systems performance based on frequency optimal control method. This dissertation addresses issues in this spirit, it try to establish the relationship between communication channel characteristic parameters and control systems performance through the analysis of limitations on networked control systems performance. Also, this dissertation studies another kind of networks and systems, which is wireless sensor networks. The studies on wireless sensor networks relate to knowledge in the field of electronic circuit, computer science, communication and control theory. Nowadays, the study on wireless sensor networks can be seen in many fields. From the view of complex networks, this dissertation establishes models of wireless sensor networks and gives the analysis by the tools that are commonly seen in complex networks analysis, which gives a way to solve the conflict between networks performance and limited nodes energy, and thus improves lifetime of wireless sensor networks. The main contents of this dissertation are outlined as follows.
     Averaged tracking performance limitations in linear time invariant multi-input multi-output systems with random signal reference input has been studied. The random input signal considered is the Brownian motion sequence. Results show that tracking performance limitations in these kinds of systems depend on the structure of plant and statistic characteristics of reference input. Here the structure of plant refers to location and direction of nonminimum phase zeros and unstable poles. As special cases, this dissertation also studies tracking performance limitations when uniform random reference input and only single non-minimum phase zero with single unstable pole are considered. Finally, tracking performance limitations of two-degree-of-freedom controller tracking system with random reference input are given.
     This dissertation studies the tracking performance limitations of linear time invariant, multi-input multi-output, continuous-time systems in which the output feedback is subject to an additive white Gaussian noise corruption. The problem under consideration amounts to determining the minimal error in tracking a Brownian motion random process, which emulates a step reference signal in the deterministic setting. Both the unity feedback and two-degree-of-freedom controller structure are considered. In the former case this dissertation derives an explicit bound, and in the latter an exact expression of the minimal tracking error attainable under the noise effect. Both results demonstrate how the additive white Gaussian noise may degenerate the tracking performance, and how the noise effect may intertwine with unstable poles and nonminimum phase zeros which are intrinsic characteristics of the plant.
     Also, this dissertation considers the issue of tracking performance limitations for linear time invariant discrete-time systems when the output feedback signal is subject to uniform quantization. Based on a two-degree-of-freedom controller structure, this dissertation addresses the issue in both single input single output and multi-input multi-output systems. Results show that quantization invariably degenerates the achievable tracking performance. For a certain quantization interval, the extent of degeneration depends on the structure of the underlying system. For multi-input multi-output plant, it is found that a proper choice of the quantization method could reduce the negative effect of quantization, and thus improve the best tracking performance.
     Based on site percolation model, which is a special kind of random graphs, this dissertation establishes a model for wireless sensor networks. Relationship between work mode of node and connectivity of networks has been studied with the aid of phase transition phenomena in site percolation model, which reduces energy consumption of nodes and guarantees connectivity of networks. Furthermore, an algorithm has been proposed to mend the work mode of node. As a result, energy consumption becomes more averaged, and thus lifetime of networks is prolonged.
     A new kind of complex networks model named multi-radius geographical spatial network model has been proposed. This dissertation studies statistic characteristics of this model and then proposes an efficient mechanism of broadcasting radius adjustment that maps sensor networks to multi-radius geographical spatial networks. Analysis and simulation show that sensor networks working under our mechanism could consume energy uniformly to prolong lifetime of networks and have faster data delivering speed than those in traditional uniform radius sensor networks.
     Finally, a summary for all discussions is given in the dissertation. Future works that related to this work are also presented.
引文
[1]Doyle J C, Francis B A, Tannenbaum A. Feedback Control Theory. New York: Macmillan,1992.
    [2]Bode H W. Network Analysis and Feedback Amplifier Design. Princeton:NJ:Van Nostrand,1945.
    [3]Chen J, Nett C N. Sensitivity integrals for multivariable discrete-time systems. Automatica,1995,31(8):1113-1124.
    [4]Sung H K, Hara S. Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems. International Journal of Control,1988,48(6):2429-2439.
    [5]Braslavsky J H, Seron M M, Mayne D Q, et al. Limiting performance of optimal linear filters. Automatica,1999,35(2):189-199.
    [6]Havre K, Skogestad S. Achievable performance of multivariable systems with unstable zeros and poles. International Journal of Control,2001,74(11):1131-1139.
    [7]Nair G N, Evans R J, Mareels I M Y, et al. Topological feedback entropy and nonlinear stabilization. IEEE Transactions on Automatic Control,2004, 49(9):1585-1597.
    [8]Zhou K, Doyle J C, Glover K. Robust and Optimal Control. Englewood Cliffs, N.J.: Prentice Hall,1996.
    [9]周克敏,Doyle K.鲁棒与最优控制.北京:国防工业出版社,2002.
    [10]Seron M, Braslavsky J, Goodwin G C. Fundamental Limitations in Filtering and Control. London:Springer-Verlag,1997.
    [11]Francis B A. A Course in H-infinity Control Theory. Berlin:Springer-Verlag,1984.
    [12]Chen J, Qiu L, Toker O. Limitations on maximal tracking accuracy. IEEE Transactions on Automatic Control,2000,45(2):326-331.
    [13]Toker O, Chen J, Qiu L. Tracking performance limitations in LTI multivariable discrete-time systems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,2002,49(5):657-670.
    [14]Elia N. When bode meets shannon:control-oriented feedback communication schemes. IEEE Transactions on Automatic Control,2004,49(9):1477-1488.
    [15]Lian F L. Analysis, design, modeling and control of networked control systems: [PhD Dissertation]. USA:Department of Mechanical Engineering, University of Michigan,2001.
    [16]Tatikonda S, Mitter S. Control under communication constraints. IEEE Transactions on Automatic Control,2004,49(7):1056-1068.
    [17]Rojas A, Braslavsky J H, Middleton R H. Control over a bandwidth limited signal to noise ratio constrained communication channel. Proceedings of the 44th IEEE Conference on Decision and Control,2005,197-202.
    [18]Rojas A J, Freudenberg J S, Braslavsky J H, et al. Optimal signal to noise ratio in feedback over communication channels with memory. Proceedings of the 45th IEEE Conference on Decision and Control,2006,1129-1134.
    [19]Fagnani F, Zampieri S. Quantized stabilization of linear systems:complexity versus performance. IEEE Transactions on Automatic Control,2004, 49(9):1534-1548.
    [20]Gupta V, Dana A F, Murray R M, et al. On the effect of quantization on performance at high rates. Proceedings of the 2006 American Control Conference, 2006,1364-1369.
    [21]Lemmon M, Ling Q. Control system performance under dynamic quantization:the scalar case. Proceedings of the 43th IEEE Conference on Decision and Control, 2004,1884-1888.
    [22]Seung H, H. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Transactions on Control Systems Technology,1995,3(2):225-230.
    [23]Wang J D, Chen T W, Huang B. Multirate sampled-data systems:computing fast-rate models. Journal of Process Control,2004,14(1):79-88.
    [24]Guan Z H, Yang C X, Huang J. Stabilization of networked control systems with short or long random delays:A new multirate method. Proceedings of International Federation of Automatic Control,2008,4204-4209.
    [25]Gao H J, Chen T W, Lam J. A new delay system approach to network-based control. Automatica,2008,44(1):39-52.
    [26]Sahebsara M, Tongwen C, Shah S. Optimal H2 filtering in networked control systems with multiple packet dropout. IEEE Transactions on Automatic Control, 2007,52(8):1508-1513.
    [27]Elia N, Mitter S K. Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control,2001,46(9):1384-1400.
    [28]Eduardo I S. A unified framework for the analysis and design of networked control systems:[PhD Dissertation]. Australia:Department of Electrical Engineering and Computer Science, The University of Newcastle,2009.
    [29]Braslavsky J H, Middleton R H, Freudenberg J S. Feedback stabilization over signal-to-noise ratio constrained channels. IEEE Transactions on Automatic Control,2007,52(8):1391-1403.
    [30]Fu M, Y, Xie L, H. The sector bound approach to quantized feedback control. IEEE Transactions on Automatic Control,2005,50(11):1698-1711.
    [31]Wang H N, Guan Z H, Ding L. Tracking and disturbance rejection for networked feedback systems under control energy constraint. Proceedings of the 27th Chinese Control Conference,2008,578-581.
    [32]Liu Y, Qi T, Su W, Z. Optimal tracking performance of a linear system with a quantized control input. Proceedings of the 26th Chinese Control Conference, 2007,531-535.
    [33]Qi T, Su W Z. Tracking performance limitation of a linear MISO unstable system with quantized control signals. The 10th International Conference on Control Automation Robotics & Vision,2008,1424-1429.
    [34]Qi T, Su W Z. Optimal tracking design for a linear system with a quantized control input. Proceedings of the 27th Chinese Control Conference,2008,437-441.
    [35]孙利民,李建中,陈渝.无线传感器网络.清华大学出版社,2005.
    [36]Estrin D. Wireless sensor networks. Proceedings of the 8th ASM/IEEE International Conference on Mobile Computing and Networking,2002,
    [37]Rentala P, Musunuri R, Gandham S, et al. Survey on sensor networks. Technical Report, University of Texas,2002, UTDCS-33-02.
    [38]Warneke B, Last M, Liebowitz B, et al. Smart dust:Communicating with a cubic-millimeter computer. Computer,2001,34(1):44-51.
    [39]崔逊学,左从菊.无线传感器网络简明教程.清华大学出版社,
    [40]李建中.无线传感器网络专刊前言.软件学报,2007,18(5):1077-.079.
    [41]李晓维,徐勇军,任丰原.无线传感器网络技术.北京理工大学出版社,2007.
    [42]任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7):1282-1291.
    [43]王殊,阎毓杰,胡富平等.无线传感器网络的理论及应用.北京航空航天大学出版社,2007.
    [44]Estrin D, Govindan R, Heidemann J, S, et al. Next century challenges:Scalable coordinate in sensor network. Proceedings of the 5th ASM/IEEE International Conference on Mobile Computing and Networking,1999,163-170.
    [45]Sohrabi K, Gao J, Ailawadhi V, et al. Protocols for self-organization of a wireless sensor network. IEEE Personal Communications,2000,7(5):16-27.
    [46]Sinha A, Chandrakasan A. Dynamic power management in wireless sensor networks. IEEE Design& Test of Computers,2001,18(2):62-74.
    [47]张学,陆桑璐,陈贵海等.无线传感器网络的拓扑控制.软件学报,2007,18(4):943-954.
    [48]西安交通大学高等数学教研室.复变函数.北京:高等教育出版社,1996.
    [49]Hara S, Sugie T. Independent parameterization of two-degree-of-freedom compensators in general robust tracking systems. IEEE Transactions on Automatic Control,1988,33(1):59-67.
    [50]Vidyasagar M. Control System Synthesis:A Factorization Approach. Cambridge, Mass.:MIT Press,1985.
    [51]Skogestad S, Postlethwaite I. Multivariable Feedback Control:Analysis and Design. Chichester, West Sussex:Wiley,1996.
    [52]Chen J, Hara S, Chen G.Best tracking and regulation performance under control energy constraint. IEEE Transactions on Automatic Control,2003, 48(8):1320-1336.
    [53]Morari M, Zafiriou E. Robust Process Control. Englewood Cliffs, N.J.:Prentice Hall,1989.
    [54]Chen J, Qiu L, Toker O. Limitations on maximal tracking accuracy. I. Tracking step signals. Proceedings of the 35th IEEE Conference On Decision and Control, 1996,726-731.
    [55]Su W, Z, Qiu L, Chen L. Fundamental performance limitations in tracking sinusoidal signals. IEEE Transactions on Automatic Control,2003, 48(8):1371-1380.
    [56]Gasparyan O. Linear and Nonlinear Multivariable Feedback Control:A Classical Approach. Chichester, England; Hoboken, NJ:Wiley,2008.
    [57]Goodwin G C, Salgado M E, Yuz J I. Performance limitations for linear feedback systems in the presence of plant uncertainty. IEEE Transactions on Automatic Control,2003,48(8):1312-1319.
    [58]Qiu L, Davison E J. Performance limitations of nonminimum phase systems in the servomechanism problem. Automatica,1993,29(2):337-349.
    [59]Seron M M, Braslavsky J H, Kokotovic P V, et al. Feedback limitations in nonlinear systems:from Bode integrals to cheap control. IEEE Transactions on Automatic Control,1999,44(4):829-833.
    [60]Chen J, Hara S, Qiu L, et al. Best achievable tracking performance in sampled-data systems via LTI controllers. IEEE Transactions on Automatic Control,2008, 53(11):2467-2479.
    [61]Su W Z, Qiu L, Petersen I R. Tracking performance limitations under disturbance and perturbation. SICE 2003 Annual Conference,2003,480-481.
    [62]Wang H N, Ding L, Guan Z H, et al. Limitations on the minimum tracking energy for SISO plants. Proceedings of the 21st Chinese Control and Decision Conference, 2009,1443-1448.
    [63]Braslavsky J H, Middleton R H, Freudenberg J S. Feedback stabilization over signal-to-noise ratio constrained channels. Proceedings of the 2004 American Control Conference,2004,4903-4908.
    [64]Cover T M, Thomas J A. Elements of Information Theory. New York:Wiley,1991.
    [65]Li Y Q, Tuncel E, Chen J. Optimal tracking and power allocation over an additive white noise channel. Proceedings of IEEE International Conference on Control and Automation,2009,1541-1546.
    [66]Qiu L, Chen L. Time domain performance limitations of feedback control, in Mathematical Theory of Networks and Systems. Beghi A, Finesso L, Picci G, Rome:II Poligrafo,1998.
    [67]Kwakernaak H, Sivan R. Linear Optimal Control Systems. New York: Wiley-Interscience,1972.
    [68]Su W Z, Qiu L, Chen J. Fundamental limit of discrete-time systems in tracking multi-tone sinusoidal signals. Automatica,2007,43(1):15-30.
    [69]Chen J. New development and applications in performance limitations of feedback systems. IEEE Transactions on Automatic Control,2003,48(8):
    [70]Bakhtiar T, Hara S. Tracking performance limits for SIMO discrete-time feedback control systems. SICE 2004 Annual Conference,2004,1825-1830.
    [71]Chen G, Chen J, Middleton R. Optimal tracking performance for SIMO systems. IEEE Transactions on Automatic Control,2002,47(10):1770-1775.
    [72]Baillieul J, Antsaklis P J. Control and communication challenges in networked real-time systems. Proceedings of the IEEE,2007,9-28.
    [73]Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE,2007,138-162.
    [74]Corradini M L, Orlando G. Robust quantized feedback stabilization of linear systems. Automatica,2008,44(9):2458-2462.
    [75]Ishii H, Francis B A. Quadratic stabilization of sampled-data systems with quantization. Automatica,2003,39(10):1793-1800.
    [76]Tian E G, Yue D, Peng C. Quantized output feedback control for networked control systems. Information Sciences,2008,178(12):2734-2749.
    [77]Widrow B, Kollr I. Quantization Noise:Roundoff Error in Digital Computation, Signal Processing, Control and Communications. Cambridge:Cambridge University Press,2008.
    [78]Kwakernaak H, Sivan R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Transactions on Automatic Control, 1972,17(1):79-86.
    [79]Akyildiz I F, Su W L, Sankarasubramaniam Y, et al. A survey on sensor networks. IEEE Communications Magazine,2002,40(8):102-114.
    [80]Akyildiz I F, Su W L, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey. Computer Networks,2002,38(4):393-422.
    [81]Carl J, Simplot-Ryl D. Energy-efficient area monitoring for sensor networks. Computer,2004,37(2):40-46.
    [82]Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences,2000,1-10.
    [83]Muruganathan S D, Ma D C F, Bhasin R I, et al. A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, 2005, S8-S13.
    [84]Miller M J, Vaidya N H. A MAC protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Transactions on Mobile Computing, 2005,4(3):228-242.
    [85]Baek S J, de Veciana G, Su X. Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communications,2004,22(6):1130-1140.
    [86]Chen Y Z P, Liestman A L, Liu J C. A hierarchical-energy-efficient framework for data aggregation in wireless sensor networks. IEEE Transactions on Vehicular Technology,2006,55(3):789-796.
    [87]Luo H, Luo J, Liu Y, et al. Adaptive data fusion for energy efficient routing in wireless sensor networks. IEEE Transactions on Computers,2006, 5(10):1286-1299.
    [88]Makowiec D, Gnacinski P, Miklaszewski W. Amplified imitation in percolation model of stock market. Physica A,2004,331(269-278.
    [89]Moret M A, Santana M C, Nogueira E, et al. Protein chain packing and percolation threshold. Physica A,2006,361(1):250-254.
    [90]Chen Y P, Paul G, Cohen R, et al. Percolation theory and fragmentation measures in social networks. Physica A,2007,378(1):11-19.
    [91]Glauche I, Krause W, Sollacher R, et al. Continuum percolation of wireless ad hoc communication networks. Physica A,2003,325(3-4):577-600.
    [92]Dousse O, Baccelli F, Thiran P. Impact of interferences on connectivity in Ad Hoc Networks. IEEE Transactions on Networking,2005,13(2):425-436.
    [93]Franceschetti M, Dousse O, Tse D N C, et al. Closing the gap in the capacity of wireless networks via percolation theory. IEEE Transactions on Information Theory,2007,53(3):1009-1018.
    [94]Krishnamachari B, Wicker S B, Bejar R. Phase transition phenomena in wireless ad hoc networks. IEEE Global Telecommunications Conference,2001,2921-2925.
    [95]Shen C C, Huang Z C, Jaikaeo C. Directional broadcast for mobile ad hoc networks with percolation theory. IEEE Transactions on Mobile Computing,2006, 5(4):317-332.
    [96]Xu Y, John H, Deborah E. Geography-informed energy conservation for Ad Hoc routing. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking,2001,70-84.
    [97]Erdos P, Renyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences,1960,5(17-61.
    [98]Balescu R. Statistical Dynamics. Imperial College Press,1997.
    [99]Vidales A M. Difference percolation on a square lattice. Physica A,2000,259-266.
    [100]Chen J R, Kher S, Somani A K. Energy efficient model for data gathering in structured multiclustered wireless sensor networks. IEEE International Performance Computing and Communications Conference,2006,381-388.
    [101]张志涌.精通Matlab6.5版.北京航空航天大学出版社,2003.
    [102]Heinzelman W B, Chandrakasan A P, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,2002, 1(4):660-670.
    [103]Watts D J, Strogatz S H. Collective dynamics of "small-world" networks. Nature, 1998,393(440-442.
    [104]Barabasi A L, Albert R. Emergence of scaling in random networks. Science,1999, 286(5439):509-512.
    [105]Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks. Physica A,1999,272(1-2):173-187.
    [106]Ding L, Guan Z H. Modeling wireless sensor networks using random graph theory. Physica A,2008,387(12):3008-3016.
    [107]Wu Z P, Guan Z H, Wu X Y. Consensus problem in multi-agent systems with physical position neighbourhood evolving network. Physica A,2007, 379(2):681-690.
    [108]Lammer S, Gehlsen B, Helbing D. Scaling laws in the spatial structure of urban road networks. Physica A,2006,363(1):89-95.
    [109]Xu X J, Wu Z X, Chen G R. Epidemic spreading in lattice-embedded scale-free networks. Physica A,2007,377(1):125-130.
    [110]Liu F, Zhao Q C. An efficient organization mechanism for spatial networks. Physica A,2006,366(1):608-618.
    [111]Guo W P, Li X, Wang X F. Epidemics and immunization on Euclidean distance preferred small-world networks. Physica A,2007,684-690.
    [112]Tao S, Marwan K, Sarma V. Power balanced coverage-time optimization for clustered wireless sensor networks. Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing,2005,111-120.
    [113]Younis O, Krunz M, Ramasubramanian S. Node clustering in wireless sensor networks:Recent developments and deployment chollenges. Network,2006, 20(3):20-25.
    [114]Hill J, Szewczyk R, Woo A, et al. System architecture directions for networked sensors. Architectural Support for Programming Languages and Operating Systems, 2000,35(11):93-104.
    [115]Wang X F, Chen G R. Complex networks:small-world, scale-free and beyond. IEEE Circuits and Systems Magazine,2003,3(1):6-20.
    [116]Santi P, Blough D M. The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing,2003, 2(1):25-39.
    [117]Haenggi M. On distances in uniformly random networks. IEEE Transactions on Information Theory,2005,51(10):3584-3586.
    [118]Ochiai H, Mitran P, Poor H V, et al. Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions on Signal Processing,2005, 53(11):4110-4124.
    [119]Li S F. Wireless sensor actuator network for light monitoring and control application. IEEE Consumer Communications and Networking Conference,2006, 974-978.
    [120]Xia F, Tian Y C, Li Y J, et al. Wireless sensor/actuator network design for mobile control applications. Sensors,2007,7(10):2157-2173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700