用户名: 密码: 验证码:
无机填料对沥青胶浆力学性能影响的细观力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青粘结料是由细集料和沥青胶浆粘结组成。粘结胶浆由沥青胶浆和矿粉填料组成。由于粘结胶浆中含有微细矿粉填料颗粒,所以在一定程度上可以把粘结胶浆作为颗粒填充复合材料处理。微细颗粒的不规则形状和分布特征也会影响沥青粘结胶浆的力学性能。由于受到诸多因素的影响,沥青粘结胶浆的宏观性能具有随机不确定性。在进行胶浆性能试验时由于成型方式的不可逆,使得胶浆某些测试指标呈现较大的随机性,这主要是由内部结构的随机分布所导致的。而采用细观力学研究方法不仅能够实现沥青胶浆内部结构的重构,还能准确分析沥青粘结胶浆和沥青粘结料的破坏机理和粘弹性变形特性。
     在试验测试方面,常规的试验测试均是从唯像学的角度对混合料或粘结料进行的唯像测试分析,材料内部结构的随机性使得混合料内部结构的特性与宏观尺度的指标评价存在很大差异。且由于受分析工具条件的限制,基于现象的经验方法,需要大量的试验,采用宏观指标评价研究沥青混合料的性能时,需要消耗巨大的人力、财力和物力,并且测试结果的变异性较大,再现性差。而采用细观力学分析方法不仅避免了大量的试验,而且能够从细观尺度深入分析胶浆内部力学反应。可见对胶浆细观结构的分析是研究沥青混合料材料破坏特征的前提条件。利用细观建模方法对沥青胶浆结构进行模型重构,结合理论和试验成果建立真实的物理模型,进而揭示出沥青胶浆细观结构变化引起的宏观响应,具有重要的理论意义和工程应用前景。
     本文结合国家自然科学基金项目(51278222)“基于数字图像处理技术的沥青混合料各向异性特性研究”,探讨分析了填料颗粒对沥青胶浆性能的影响规律,主要进行了以下工作:
     1.采用高速剪切搅拌的方法得到了有效的分散填料颗粒,制备了性能一致的沥青胶浆。利用激光粒度分析法快速准确的分析填料的级配组成,为矿粉等填料颗粒的级配测定提供了一个快捷有效的测定方法。
     2.对沥青胶浆粘度预测模型进行研究改进,发现沥青胶浆的粘度随着填料体积分数的增大逐渐增大,在初期填料含量较小的情况下呈现线性增长的趋势,相对粘度增长速度较缓慢。当填料含量超过临界体积分数后,胶浆的相对粘度呈现非线性急剧增大的趋势。此时,填料体积分数的微小变化会引起胶浆粘度的急剧增长。并最终使胶浆流动停止,相对粘度趋近于无穷大。对比Einstein方程和Frankel方程的预测结果发现,在填料含量较少时Einstein方程的预测结果能够与试验测试结果吻合较好,而Frankel方程在低含量下的预测结果明显低于Einstein方程的预测结果。说明在低体积分数含量的胶浆粘度预测方面,Einstein方程具有更好的准确性。明确了胶浆粘度预测的方法和不同预测模型的适用性,有利于提高沥青胶浆粘度预测的准确性。
     3.根据随机填充生成原理,对现有的随机颗粒填充算法进行加窗改进处理,有效的节省了数值样本构建所耗费的计算时间。对比本文的改进方法和现有方法的计算耗时发现,改进方法在较低的面积含量时所消耗的时间与原有方法差别很小,当颗粒面积含量超过40%后,改进方法的计算耗时明显减小,说明加窗改进方法可以提高颗粒填充的计算效率。沥青胶浆内部的颗粒之间的配位数随着裹覆层厚度的增加而呈现阶梯性增长的趋势,配位数均随着裹覆厚度的增加而增加。平均配位数随着面积含量的增加而逐渐增大。通过对颗粒表面间距的研究表明,颗粒间的最小表面间距随着填料体积含量的不断增大,逐渐减小。同时,颗粒表面之间小间距出现的频率明显增大,表明颗粒之间开始慢慢的形成具有摩擦支撑作用的骨架结构。
     4.利用颗粒填充算法分析了颗粒形状、粗细程度、颗粒含量、就位方向以及材料刚度差异对沥青胶浆内部集中应力的影响规律,发现颗粒形状和粗细均会影响沥青胶浆内部的应力分布特性,椭圆形颗粒填充沥青时,胶浆内部的水平拉应力最大。表明扁平颗粒的存在将会增大胶浆内部的应力集中效应。采用低模量柔性颗粒增强沥青胶浆时同样会造成沥青胶浆应力集中效应,此时胶浆集中应力对颗粒模量的变化更敏感。沥青胶浆的极限承载力和切线模量随应变率的增加呈现对数线性增长的趋势,无机填料的加入能够提升沥青胶浆的极限承载力和切线模量,有利于增强沥青混合料的抗疲劳性能。对沥青胶浆蠕变性能的分析结果表明,棱角较多的颗粒有助于降低沥青混合料的粘性流动变形,从而保证沥青混合料良好的高温稳定性。
Asphalt binder is made from fine aggregate and asphalt mortar. Bonding mortar is madefrom asphalt mortar and mineral powder. Because there is tenuous mineral powder in thebonding mortar, we can deal the bonding mortar as particle-filled composite to some degree.The irregular shape and distribution feature of tenuous mineral powder also will affect themechanical properties of asphalt mortar. It is stochastic for the macroscopic properties ofasphalt mortar due to the influence of many factors. Because of the irreversible forming way,some test indexes of mortar present a little more randomness when conducting mortarperformance testing, it is mainly due to the random distribution of internal structure. Usingmesomechanics research method can not only be used to make the reconstitution of internalstructure of asphalt mortar come true, but also exactly analyze the failure mechanism andviscoelastic strain characteristics of asphalt mortar and binder.
     In experiment test, conventional experimental measurements conduct only-image testanalysis of mixture and binders from the point of only-image study, there is great differencebetween the specialty of the internal structure of mixture and evaluation indicator ofmacroscale because of the randomness of internal structure of the material. Moreover, due tothe limit of analysis tool, empirical method need vast experiments, which is based onphenomenon. When using macro-index to evaluate and research the performance ofbituminous mixture,it will cost enormous manpower, financial and material resources, alsothere is a little more variability and bad reproducibility of the test result. However, themesomechanics analytical method can not only avoid many experiments, but also analysisthe internal mechanics reaction of mortar deeply from meso-scale. So the analysis ofmicrostructure of mortar is the precondition of researching the failure characteristics ofbituminous mixture. To conduct a model reconstitution of the asphalt mortar constructionwith microscomic modeling approach, build a real physical model combining theory and testresult, and then reveal the macroscopic response caused by the microstructure change of asphalt mortar, which has important theoretical significance and engineering applicationprospect.
     This paper combined with the National Natural Science Foundation of China(51278222)"The study of anisotropic properties of asphalt mixture based on digital imageprocessing technology ", investigating the filler particles analyzed the impact law on theperformance of asphalt mortar, mainly achieved the following results:
     1Taking high shear agitation method can effectively disperse the filler particles,prepared the asphalt mortar with consistent performance. Laser particle size analysis methodcan quickly and accurately analyze the filler gradation composition, provides a fast andeffective method to determine the filler particles such as mineral gradation.
     2The study of prediction model of the asphalt mortar viscosity found that the viscosityof asphalt mortar increases gradually with filler volume fraction increases, in the early caseof small filler content showed a linear growth trend, and the relative viscosity growedrelatively slow. When the filler content exceeds the critical volume fraction, the mortarrelative viscosity increased with a nonlinear sharply trend. At this point, small changes involume fraction of the filler may cause sharp increase in the viscosity of mortar. And finallythe mortar flow is stopped, the relative viscosity approaches infinity. Compared theprediction results of Frankel equation and Einstein equation showed that when the fillercontent is less the Einstein equation predictions agree well with the experimental test results,and Frankel equation predictions results at low levels significantly lower than the Einsteinequation predictions results. Shows that the Einstein equations has a better accuracy mortarviscosity prediction at a low volume fraction content. Identified mortar viscosity predictionmethod and the applicability of different prediction models, help to improve the asphaltmortar predictive accuracy of viscosity.
     3Improvement of particles peripheral windowing method saves sample building valuecomputing time. Contrast the computation time of this improved method and the discoveryof existing methods,the consumed time was little difference between the improved methodand the original method when the area content in the lower level, but when the particle sizeexceeds40%the improved method of calculating consumption significantly reduced which indicate that particles peripheral windowing method can improve the computationalefficiency. The coordination number of the particles in asphalt mortar showed the stepwisegrowth trend with the increasing of the coating thickness, The coordination numberincreased with the coating thickness increasing. And the average coordination numbergradually increased with area content increases. The study of distance between the particlesurface shows the minimum surface distance between the particles gradually decreases withthe content of filler volume increasing. Meanwhile, a small spacing between the particlesurface significantly increased the frequency of occurrence, suggesting that particles beganto slowly form a skeleton structure with supporting role of friction.
     4. Particle shape and thickness of the asphalt mortar will affect the internal stressdistribution characteristic, when the oval-shaped particles filled with asphalt, the internallevel tensile stress was the maximum. Indicate the presence of flat particles will increase thestress concentration within the mortar. Low modulus flexible particle reinforced asphaltmortar is also cause stress concentration, then mortar concentrated stress on the particlemodulus more sensitive to changes. The ultimate bearing capacity and tangent modulusasphalt mortar increased with strain rate showed a log-linear growth trend, inorganic fillerscan enhance the ultimate bearing capacity and tangent modulus, and boosting asphaltmixture fatigue performance. Creep properties of the asphalt mortar analysis showed thatmore angular particles helps to reduce the viscosity flow deformation of asphalt mixture,thus ensuring asphalt good high temperature stability.
引文
[1] Scarpas, A, Gurp, C.A.M.P. van, Al-Khoury, R.I.N. and Erkens, S.M.J.G., Finite ElementSimulation of Damage Development in Asphalt Concrete Pavements[C].8thInternational Conference on Asphalt Concrete Pavements, Seattle, Washington, U.S.A.,1997.
    [2] Sousa.JB.Permanent.Deformation.of.Aggregate.Mixes [R]. Washington.D C: StrategicHighway. Research.Program, National Research Program Council, Report. NO. SHRP-415,1994.
    [3] Barksdal RD.Laboratory Evaluation of Rutting in Base Course Materials[C].ProceedingsThird International Conference on the Structural Design of AsphaltPavements, Vol.1, London,1972.161-174.
    [4] Dukatz, E.L. Aggregate properties in relation to pavement performance[J]. Journal of theAssociation of Asphalt Paving Technologists,1989,58:492-501.
    [5] Gorkem C, Sengoz B. Predicting stripping and moisture induced damage of asphaltconcrete prepared with polymer modified bitumen and hydrated lime[J].Constr BuildMater2009;23(6):2227-2236.
    [6] Chen X, Huang B. Evaluation of moisture damage in hot mix asphalt using simpleperformance and superpave indirect tensile tests[J]. Constr Build Mater2008,22(9):1950-1962.
    [7] Wu S, Ye Q, Li N. Investigation of rheological and fatigue properties of asphalt mixturescontaining polyester fibers[J]. Constr Build Mater2008,22(10):2111-2115.
    [8] Sayyed Mahdi Abtahi, Mohammad Sheikhzadeh, Sayyed Mahdi Hejazi. Fiber-reinforcedasphalt-concrete-A review[J]. Construction and Building Materials.2010,24(6):871-877.
    [9] E. Ray Brown, Jolm E. Haddoek, and Campbell Crawford. Investigation of stone matrixasphalt mortars[R]. Transportation research record1530.
    [10] Ebrahim Hesami, Denis Jelagin, Niki Kringos, Bj rn Birgisson. An empiricalframework for determining asphalt mastic viscosity as a function of mineral fillerconcentration[J]. Construction and Building Materials35(2012)23–29.
    [11] Allex E. Alvarez, Evelyn Ovalles a, Silvia Caro. Assessment of the effect of mineralfiller on asphalt–aggregate interfaces based on thermodynamic properties[J].Construction and Building Materials28(2012)599–606.
    [12] Hui Yao, Zhanping You, Liang Li, Xianming Shi, Shu Wei Goh, Julian Mills-Beale,David Wingard. Performance of asphalt binder blended with non-modified andpolymer-modified nanoclay[J]. Construction and Building Materials35(2012)159-170.
    [13] Behnam Golestani, Fereidoon Moghadas Nejad, Saeed Sadeghpour Galooyak.Performance evaluation of linear and nonlinear nanocomposite modified asphalts[J].Construction and Building Materials35(2012)197-203.
    [14]Cheng-Tsung Lu a, Ming-Feng Kuo, Der-Hsien Shen. Composition and reactionmechanism of cement–asphalt mastic[J]. Construction and Building Materials23(2009)2580–2585.
    [15] Feipeng Xiao, Serji N. Amirkhanian, Junan Shen, Bradley Putman. Influences of crumbrubber size and type on reclaimed asphalt pavement (RAP) mixtures[J]. Constructionand Building Materials23(2009)1028-1034.
    [16] M. El-Shafie, I.M. Ibrahim, A.M.M. Abd El Rahman. The addition effects of macro andnano clay on the performance of asphalt binder[J]. Egyptian Journal of Petroleum (2012)21,149-154.
    [17] Hartmut R. Fischer, E.C. Dillingh, C.G.M. Hermse. On the interfacial interactionbetween bituminous binders and mineral surfaces as present in asphalt mixtures[J].Applied Surface Science265(2013)495-499.
    [18] Carl Thodesen, Feipeng Xiao, Serji N. Amirkhanian. Modeling viscosity behavior ofcrumb rubber modified binders[J]. Construction and Building Materials23(2009)3053–3062.
    [19] Junan Shen, Serji Amirkhanian, Feipeng Xiao, Boming Tang. Influence of surface areaand size of crumb rubber on high temperature properties of crumb rubber modifiedbinders[J]. Construction and Building Materials23(2009)304-310.
    [20] Roman Lackner; Markus Spiegl; Ronald Blab; and Josef Eberhardsteiner. IsLow-Temperature Creep of Asphalt Mastic Independent of Filler Shape and Mineralogy?Arguments from Multiscale Analysis[J]. JOURNAL OF MATERIALS IN CIVILENGINEERING2005:485-491
    [21] Wojciech Grabowski Jaroslaw Wilanowicz. The structure of mineral fillers and theirstiffening properties in filler-bitumen mastics[J]. Materials and Structures (2008)41:793–804.
    [22] Peiliang Cong, Shuanfa Chen, Huaxin Chen. Effects of diatomite on the properties ofasphalt binder[J]. Construction and Building Materials30(2012)495-499.
    [23] Shutang Liu, Cheng Ma, Weidong Cao, Jianguo Fang. Influence of aluminate couplingagent on low-temperature rheological performance of asphalt mastic[J]. Constructionand Building Materials24(2010)650-659.
    [24] Tan Yi-qiu, Zhang Lei, Zhang Xing-you. Investigation of low-temperature properties ofdiatomite-modified asphalt mixtures[J]. Construction and Building Materials36(2012)787-795.
    [25] Hainian Wang, Zhanping You, Julian Mills-Beale, Peiwen Hao. Laboratory evaluationon high temperature viscosity and low temperature stiffness of asphalt binder with highpercent scrap tire rubber[J]. Construction and Building Materials26(2012)583–590.
    [26]Xiaoming Liu, Shaopeng Wu, Qunshan Ye, Jian Qiu, Bo Li. Properties evaluation ofasphalt-based composites with graphite and mine powders[J]. Construction andBuilding Materials22(2008)121-126.
    [27]Yong Ye, Xinhua Yang, Chuanyao Chen. Experimental researches on visco-elastoplasticconstitutive model of asphalt mastic[J]. Construction and Building Materials23(2009)3161-3165.
    [28] Peiliang Cong, Peijun Xun, Mingliang Xing, Shuanfa Chen. Investigation of asphaltbinder containing various crumb rubbers and asphalts[J]. Construction and BuildingMaterials40(2013)632–641.
    [29] Shaopeng Wu, Jiqing Zhu, Jinjun Zhong, Dongming Wang. Experimental investigationon related properties of asphalt mastic containing recycled red brick powder[J].Construction and Building Materials25(2011)2883–2887.
    [30] Jianying Yu, Xuan Zeng, Shaopeng Wu, Lin Wang, Gang Liu. Preparation andproperties of montmorillonite modified asphalts[J]. Materials Science and EngineeringA447(2007)233–238.
    [31]莫石秀,孔令云,王娜.矿粉粒径对沥青胶浆性能影响的试验研究[J].广西大学学报:自然科学版.2011,26(3):616-621.
    [32]彭波,丁智勇,戴经梁.不同类型沥青胶浆路用性能对比[J].交通运输工程学报,2007,7(3):61-65.
    [33]詹小丽,张肖宁,王端宜.基于DMA方法的沥青胶浆微观结构[J].吉林大学学报:工学版,2009,39(4):916-920.
    [34]邵显智,谭忆秋,孙立军.几种矿粉指标与沥青胶浆的关联分析[J].公路交通科技,2005,22(2):10-13.
    [35]郑嘉,史洋博,赵阳.矿粉比表面积对沥青胶浆性能的影响[J].山西交通科技.2013.02.
    [36]李平,张争奇,孙鸿伟,王秉纲.沥青胶浆粘度特性研究[J].交通运输工程学报2008,02
    [37]张华,钱觉时,吴文军.粉胶比对浇注式沥青胶浆高低温性能的影响[J].重庆大学学报.2009,06
    [38] A. Munjiza, J. P. Latham and N. W. M. John.3D dynamics of discrete elementsystems comprising irregular discrete elements-integration solution for finite rotationsin3D[J].Int. J. Numer. Meth. Engng2003;56:35-55.
    [39]张剑,金南国,金贤玉,郑建军.混凝土多边形骨料分布的数值模拟方法[J].浙江大学学报(工学版).2004,38(5):581-585.
    [40] C. Nouguier-Lehon, E. Vincens, B. Cambou。Structural changes in granular materials:The case of irregular polygonal particles[J]. International Journal of Solids andStructures42(2005)6356–6375.
    [41]李运成,马怀发,陈厚群,胡晓.混凝土随机骨料模型可视化方法[J].中国水利水电科学研究院学报.2006,4(4):258-263.
    [42]宋晓刚,杨智春.一种新的混凝土圆形骨料投放数值模拟方法[J].工程力学.2010,27(1):154-159.
    [43] Wei Guo Yang and Hong Jun Xiang. A new approach for the simulation of cementitiousmaterials[J]. Journal of Mechanical Science and Technology26(1)(2012)45~51。
    [44]宋来忠,王乾峰,彭刚,姜袁.具有大量椭圆随机分布区域的数值模拟及应用[J].计算力学学报.2012,29(5):662-667.
    [45]宋来忠,彭刚,姜袁.混凝土三维随机参数化骨料模型[J].水利学报,2012,43(1):91-98.
    [46] Guilhem Mollon, Ji dong Zhao.. Generating realistic3D sand particles using Fourier descriptors[J].Granular Matter (2013)15:95–108。
    [47] Zhan Liu,Jixiong Zhang,Nan Zhou. Random Meso-structure Model Generation and Numerical BiaxialTest of Waste-Fly Ash Backfill Materials[J]. EJGE,Vol.18[2013],1321-1334.
    [48]许淳.玻璃纤维-硅藻土复合改性沥青混凝土性能研究[D].长春:吉林大学交通学院.2010.12.
    [49]黄建平.硅藻土粉沥青胶浆及混合料性能研究[D].长春:吉林大学交通学院.2013.6.
    [50] Yildirim Y, Solaimanian och M, Kennedy TW. Mixing and compaction temperaturesfor superpave mixes[R]. Association of Asphalt Paving Technologists;2000.
    [51] Bennert T, Reinke G, Mogawer och W, Mooney K. Assessment of workability andcompactability of warm-mix asphalt[J]. Transp Res Rec2010;2180:36–47.
    [52] Gudimettla JM, Cooley och LA, Brown ER. Workability of hot-mix asphalt[J]. TranspRes Rec2004;1891:229–37.
    [53] Einstein A. New determination of molecular dimensions[J]. Annales de physique1906:289.
    [54] Taylor GI. The viscosity of a fluid containing small drops of another fluid[M].London;1932.
    [55] Guth E. On the hydrodynamical theory of the viscosity of suspensions[J]. Phys Rev1938;53:322.
    [56] Vand V. Viscosity of solutions and suspensions. I. Theory[J]. J Phys Chem1948;52(2):277–99.
    [57] Saito N. Concentration dependence of the viscosity of high polymer solutions[J]. J PhysSoc Japan1950;5:4–8.
    [58] Mooney M. The viscosity of a concentrated suspension of spherical particles[J]. JColloid Sci1952;6(2):162–70.
    [59] Simha R. A treatment of the viscosity of concentrated suspensions[J]. J Appl Phys1952;23(9):1020–4.
    [60] Roscoe R. The viscosity of suspensions of rigid spheres[J]. British J Appl Phys1952;3:267–9.
    [61] Brikman HC. The viscosity of concentrated suspensions and solutions[J]. J Chem Phys1952;20(4):571.
    [62] Maron SH, Pierce PE. Application of ree-eyring generalized flow theory to suspensionsof spherical particles[J]. J Colloid Sci1952;11:80–95.
    [63] Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions ofrigid spheres[J]. Trans Soc Rheol1959:137–52.
    [64] Ford TF. Viscosity–concentration and fluidity–concentration relationships forsuspensions of spherical particles in Newtonian liquids[J]. J Phys Chem1960;64(9):1168–74.
    [65] Thomas DG. Transport characteristics of suspension: VIII. A note on the viscosity ofNewtonian suspensions of uniform spherical particles[J]. J Colloid Sci1965;20(3):267–77.
    [66] Frankel och NA, Acrivos A. On the viscosity of a concentrated suspension of solidspheres[J]. Chem Eng Sci1967;22(6):847–53.
    [67] Chong JS, Christiansen och EB, Baer AD. Rheology of concentrated suspensions[J]. JAppl Polym Sci1971;15(8):2007–21.
    [68] Fedors RF. Viscosity of Newtonian suspensions[J]. Polymer1975;16(4):305–6.
    [69] Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension ofspherical particles[J]. J Fluid Mech1977;83(1):97–117.
    [70] De Kruif CG, van lersel och E, Vrij A. Hard sphere colloidal dispersions: viscosity as afunction of shear rate and volume fraction[J]. J Chem Phys1985;83(9):4717–25.
    [71] Verberg R, de Schepper IM, Cohen EGD. Viscosity of colloidal suspensions[J]. PhysRev1997;55(3):3143–58.
    [72] Zholkovskiy EK, Adeyinka och OB, Masliyah JH. Spherical cell approach for theeffective viscosity of suspentions[J]. J Phys Chem2006;110:19726–34.
    [73] Mendoza CI, Santamaría-Holek I[J]. J Chem Phys2009;130(4).
    [74] Santamaria-Holek och I, Mendoza CI. The rheology of concentrated suspensions ofarbitrarily-shaped particles[J]. J Colloid Interface Sci2010;346:118–26.
    [75] Buttlar WG, Bozkurt D, Al-Khateeb och GG, Waldhoff AS. Understanding asphaltmastic behavior through micromechanics[J]. J Transp Res Board1999;1681:157–69.
    [76] Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of compositestructures [J]. Materials Science and Engineering,1985,68(2):239―248。
    [77] Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: Generation ofrandom aggregate structure and finite element mesh [J]. Computers and Structures,1999,70:533―544.
    [78]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报:自然科学版,2003,43(5):710-714.
    [79]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [80]伍君勇.混凝土细观结构的自动生成[D].大连:大连理工大学,2006.
    [81]张剑,金南国,金贤玉,郑建军.混凝土多边形骨料分布的数值模拟方法[J].浙江大学学报(工学版),2004,38(5):581-585.
    [82]杜成斌,孙立国.任意形状混凝土骨料的数值模拟及其应用[J].水利学报2006,37(6):662-668.
    [83]马怀发,书贞,陈厚群.一种混凝土随机凸多边形骨料模型生成方法[J].中国水利水电科学研究院学报.2006,4(3):196-202.
    [84]钟根全,李丽娟,刘锋,郭永昌.混凝土二维随机骨料的数值模拟[J].2008,9:70-73.
    [85]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报(自然科学版),2003.43(8):1120-1123.
    [86]孙立国.三级配(全级配)混凝土骨料形状数值模拟及其应用[D].南京:河海大学.2005,5
    [87]彭国军.考虑骨料形状时混凝土细观结构特性及应用[D].杭州:浙江工业大学,2009.4
    [88]黄碧霞体视学与图像处理技术在混合料级配识别中的应用[D].成都:西南交通大学.2007.3.
    [89]王端宜,吴文亮,张肖宁,虞将苗,李智.基于数字图像处理和有限元建模方法的沥青混合料劈裂试验数值模拟[J];吉林大学学报(工学版),2011,41(4):968-973.
    [90]郭庆林.沥青混合料内部应力分布及其对粘弹性能的影响研究[D].长春:吉林大学交通学院.2013.6.
    [91]邓学筠.路基路面工程[M].人民交通出版社,北京,2004,9
    [92] Peiliang Cong, Shuanfa Chen, Huaxin Chen. Effects of diatomite on the properties ofasphalt binder[J]. Construction and Building Materials30(2012)495-499.
    [93] Liu Y. A direct method for obtaining discrete relaxation spectra from creep data[J].Rheologia Acta.2001,40(3):256-260.
    [94] S. W. Parka R.A. Schapery. Methods of interconversion between linear viscoelasticmaterial functions Part I-a numerical method based on Prony series[J]. InternationalJournal of Solids and Structures.1999,36:1653-1675.
    [95]黄仰贤,余定选,齐诚.路面分析与设计[M].北京:人民交通出版社.1994.
    [96] S. Mun G. R. Chehab, Y. R. Kim Determination of time-domain viscoelastic functionsusing optimized interconversion techniques[J]. Road materials and Pavement design.2007,8(2):351-366.
    [97] J. Kim, G.A.Sholar, S.Kim. Determination of accurate creep compliance and relaxtionmodulus at a single temperature for viscoelastic solids[J]. Journal of Materials in CivilEngineering.2008,20(2):147-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700