用户名: 密码: 验证码:
高流态超早强固化材料的机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建筑工程的发展和进步,无机胶凝材料的使用范围越来越广,功能也越来越多,并应用于高速铁路、军事工程、重大基础设施等很多特殊领域和重大工程。在这些特殊工程中的重要部位,要求使用的材料体系具有良好的成型性质,并且在施工和成型时必须具有周期短、效率高和在短期内(成型后的数小时内)具有较高的力学性能等特性。而且由于近年来经济和科技的发展要求建筑物和构筑物的服务期越来越长,施工要求越来越苛刻,所承受的荷载和所处的环境越来越恶劣,甚至还可能会有自然灾害的威胁,导致无机胶凝材料的破坏比以往更为严重,耐久性也大大下降。而当前正在迅速发展的技术又要求无机胶凝材料具有高工作性、高强性和高耐久性等优良性能。根据目前普通早强材料的发展形势和应用情况,提出了利用具有良好耐久性的硫铝酸盐水泥开发高流态超早强型无机固化材料(High Flowability and Ultra-high-early Strength Solidification Materials,简称HUSM)的研究思路。
     本文依托国家“973计划”子课题(2009CB623201-1)和国家自然科学基金课题(51178363),旨在利用硫铝酸盐水泥的快硬、早强、高强和良好耐久性等性能优势,以硫铝酸盐水泥为主体胶凝材料,全面考虑流动性能、力学性能、耐久性能和微观性能,研究流变组分、缓释组分、增强组分和改性组分对HUSM相关性能的影响,探讨高流态硫铝酸盐水泥基材料的超早强固化机理,为特殊胶凝材料体系的应用拓展领域,为硫铝酸盐水泥基超早强材料的研究和应用提供理论指导和应用参考。
     本文的主要工作及所取得的成果如下:
     1、HUSM高流态体系设计与流变模型
     高流态是指材料具有高流动性,不需振捣依靠自重即可充满复杂或者不规则模型,具有良好的施工性和充填性,而且骨料不离析,硬化后具有良好的力学性能和耐久性能。根据高流态材料的要求,本文基于流变理论应用了一个可以更真实描述砂浆流变行为的模型。在本模型中,砂浆的剪切应力由骨料颗粒间的碰撞机械力、骨料颗粒流动的机械力和间接的应力传递机制组成,不规则形状的骨料颗粒模拟为刚性的球状颗粒,均匀分散和悬浮于具有高流动性和粘性的水泥浆体中,则砂浆中的全部剪切应力TM为水泥浆体的屈服应力τ0、水泥浆体的流动剪切应力TP、水泥浆体和骨料间的相互作用力τFA-P和骨料移动产生的屈服应力τFA之和,即:τM-τ0+τP+τFA-P+τFA。
     根据流变模型,研究了浆体粘度、骨料颗粒和骨料体积含量对砂浆剪切应力的影响。通过测试流动度、流变曲线和触变性等研究了三聚氰胺(MSF)、聚羧酸系(PCS)和改性聚羧酸系(PCS+C)三种超塑化组分对砂浆流变行为的影响。分析了硫铝酸盐水泥凝结快的原因,研制了专用缓释剂BM以合理调控HUSM的可操作时间。结果表明:砂浆的屈服应力和粘度随着水泥浆体屈服应力和粘度的增加而提高,随着骨料体积分数从10%增加到40%,砂浆的流动性呈非线性增加的趋势。对于一个给定的骨料体积分数,骨料颗粒大的砂浆比颗粒小的砂浆的非线性趋势表现得更为明显。含有骨料颗粒粒径小的砂浆表现出较高的屈服应力和粘度。利用PCS+C超塑化剂和缓凝剂BM可以有效调控硫铝酸盐水泥的初始和30min的流动性以及凝结时间。
     2.HUSM超早强设计与实现
     利用超细CaCO3粉和硅灰的超细改性效应,使胶凝材料具有良好的级配,从微观尺度上增加了体系的密实度,调整了硫铝酸盐水泥水化产物钙矾石(AFt)的结晶结构,强化了水泥基材,使界面区结构加强,从而提高了AFt的结晶稳定性。在用缓凝剂BM调控的基础上,引入超细掺合料提高了水化热,促进了水化产物的结晶和生成,另外通过超细掺合料的微集料填充效应,降低了结构内部的孔隙率,从而提高了系统强度。
     根据设定的项目目标,筛选出了Ca(NO2)2和Ca(HCOO)2两种对强度有益的组分,研究其对硫铝酸盐水泥基材料水化性能的影响,以分析两种增强组分对强度的影响规律。Ca(NO2)2和Ca(HCOO)2促进了硫铝酸盐水泥的凝结,缩短了初凝和终凝的时间间隔,为硫铝酸盐水泥基HUSM由高流态向结构强度形成的快速转化提供了有利条件。Ca(NO2)2和Ca(HCOO)2显著促进了硫铝酸盐水泥的水化反应,大幅度提高了水化放热量,显著增加了各个龄期水化产物AFt的生成量和结晶度。引入Ca(NO2)2和Ca(HCOO)2使超塑化剂PCS+C和缓凝剂BM调控的具有高流动性的硫铝酸盐水泥基材料由2h时无强度提高到2h强度达到20MPa以上,在超细掺合料的综合作用下,保持强度稳定发展,后期强度不倒缩,28d强度可达70MPa以上。
     3.HUSM改性与耐久性研究
     在硫铝酸盐水泥基HUSM高流态和超早强实现的基础上,引入抗裂剂AA和复合改性剂CM,优化了HUSM的配合比,并测试了HUSM的各项性能。结果表明:优化后的HUSM在5℃、10℃和-5℃条件下2h强度均可达到25MPa以上,而且稳定发展,28d强度可达75MPa以上。具有良好的体积稳定性,线性膨胀率有效的控制在0.01-0.2mm/m范围内,在水化放热速率最快的72h内不出现任何微裂缝和裂纹。通过测试在不同硫酸根离子浓度的溶液中的抗蚀系数,确定了HUSM具有良好的抗硫酸盐侵蚀性能;通过“快冻法”测试了HUSM经过200次冻融循环的质量变化和动弹性模量损失,得出改性后HUSM的抗冻等级达到F200;电通量和孔隙率的测试结果表明HUSM具有良好的抗氯离子渗透性能,从而表明改性后的HUSM具有优良的耐久性。
     4、HUSM工业化生产及在高速铁路工程中的应用
     根据HUSM固化机理的理论研究和配合比确定的基础上,进行了HUSM工业化生产,建立了HUSM工业生产线,并且将HUSM成功应用于高速铁路的桥梁铺架工程中。
As the development and growth of constructional engineering, the scope of ap-plication of the inorganic bond materials are more and more widely; and the function is rapidly increased, it is applied to many special fields and major engineering such as high speed railway, military engineering and major infrastructure. The important part of special projects requires material system to have good forming property and char-acteristics of short cycle, high efficiency and high mechanical properties in a short time (everal hours after molded) during the construction and molding. In recent years, as the development of economy and science and technology, we need the buildings and structures to have longer period of service, to meet more strict construction re-quirements. The destruction of the inorganic bond material is more serious than ever before and the durability also drops greatly because of the increasingly load and se-vere environment even the threat of natural disasters. However, the rapid develop-ment of the technologies in recent years requires inorganic bond materials to have excellent properties such as high workability, high rigidity and high durability. Ac-cording to the current development situation and application of common early strength materials, we think up a research thought that is using SAC which has good durability to develop HUSM (High Flowability and Ultra-high-early Strength Solidi-fication Materials).
     This paper which bases on the sub-project of "973program"(2009CB623201-1) and NSFC (51178363) aims at studying the influence of the rheological components, slow-release components, enhanced components and modified components on the related characters of HUSM mainly based on SAC which has advantages in properties of rapid hardening, early strength, high-strength and good durability, etc, by testing flowing property, mechanical property and micro property. Curing mechanism of high flowability and ultra-high-early strength SAC-based materials is also discussed in this paper which is intended to expand areas of special cementitious system and provide theoretical guidance and application reference of ultra-high-early strength materials based on SAC. The main work and the results obtained are as follows:
     1、HUSM high flow system design and rheological model
     High flow materials mean materials can fill complicated or irregular model de-pends on dead-weight without vibrating, non segregation and good mechanical prop-erty and durability. This paper sets up a model which can describe the rheological behavior of mortar more realistic according to the requirements of high flow materials. In the model, the shear stress of cement mortar is made up of collision mechanical force between aggregate particles, flowing mechanical force and indirect stress trans-fer mechanism; the irregular shape of aggregate particles are simulated as rigid spherical particles which are uniformly dispersed and suspended in high mobility and viscous cement pastes. In this situation, all mortar shear stress τM is the sum of yield stress τ0and flowing shear stress τp of cement mortar, interaction force τFA-P between aggregates and cement mortar and yield stress τFA resulting from aggregates moving. That is τM=τ0+τp+τFA-P+τFA.
     According to rheological model, we studied the influence of the slurry viscosity, particles of aggregates and aggregates volume content to mortar shear stress, at the same time, we studied the components of MSF, PCS and PCS+C to the influence of mortar rheological behavior by testing fluidity, flow curve and thixotropy. A dedi-cated retarder BM is developed to legitimately regulate the operating time of the HUSM.The results indicate that the yield stress and viscosity of mortar are enhanced with the increase of the yield stress and viscosity of the cement paste. As the aggre-gate volume fraction increased from10%to40%, the fulidity of mortar is also en-hanced nonlinearly. For a given aggregate volume fraction, the nonlinear trend of the large aggregate particales is more obvious than that of the small aggregate particales.The mortar contained smaller aggregate particales shows higher yiled stress and viscosity.The fluidity at the strating and30min and the setting time of the sulphur aluminate cement can be effectively regulated by using the super plasticzer PCS+C and the retarder BM.
     2. Design and reliazation of ultra-high-early strength of HUSM
     The binding material has a good graduation by taking advantage of the suerfine modification effect of the CaCO3powder and silica fume. The effect enhances the compactness of the system on the microscale and adjusts crystalline texture of the hydration products Aft produced form sulphur aluminate cement. For these reasons, the structure in the interface region and the crystallization stability are enhanced. On the basis of using the retarder BM, the introduction of the superfine admixture in-creases the heat of hydration and accelerates the crystallization and generation of the hydration products. It reduces the porosity of the system because of micro fine filler effect and so the strength of material was increased.
     Based on the project objective, Ca(NO2)2and Ca(HCOO)2which play better role for strength are elected. The influences of Ca(NO2)2and Ca(HCOO)2on the hydra-tion performances of materials based on sulphoaluminate cement and the influencing rule of the two enhanced components on strength were studied. By addition of Ca(NO2)2and Ca(HCOO)2, the setting process of sulphoaluminate cement is substan-tially accelerated, the interval of initial and final setting time is shortened. It provides advantages for HUSM based on sulphoaluminate cement with strength structure formed quickly. The addition of Ca(NO2)2and Ca(HCOO)2promot the hydration re-action of sulphoaluminate cement observably, improve the hydration heat greatly and accelerate the crystallization and generation of the hydration products (AFt) availably. The strength of HUSM based on sulphoaluminate cement could achieve more than20MPa with PCS+C and BM by adjusting Ca(NO2)2and Ca(HCOO)2. But the strength of HUSM is unconspicuous without Ca(NO2)2and Ca(HCOO)2. The strength of HUSM based on sulphoaluminate cement maintains the momentum of steady growth by synthetic action of superfine admixtures and enhanced components and the later strength does not shrink. The strength of HUSM could reach above70MPa at28days
     3. Research of durabilities on modified HUSM
     Based on the high fluidity and ultra-high early strength of HUSM produced by sulphoaluminate cement, the mixing ratio of HUSM was optimized by the introduc-tion of cracking agent AA and composite modifier CM and some performances of the HUSM were tested. The results showed that:the2h strength of optimized HUSM can reach to25MPa or more and gain stable development. The28d strength of optimized HUSM can reach to75MPa or more at5℃,10℃and-5℃conditions and they have good dimensional stability. The linear expansion of HUSM can be controlled between0.01and0.2mm/m range. HUSM does not have any cracks and micro cracks within72h when the heat of hydration reaction generates fastest. Tested at different concen-trations of sulfate ions in solution resist coefficient, determined HUSM good sulfate resistance; through "quick freezing method" test HUSM after200freeze-thaw cycles of quality changes and dynamic elastic modulus the amount of the loss, modification HUSM draw antifreeze level reaches F200; electric flux and porosity test results show that HUSM has good resistance to chloride ion penetration, thus indicating that the modified HUSM with excellent durability.
     4. Commercial process and application on high speed railway project of HUSM
     According to the HUSM theoretical research of curing mechanism and mixture ratio determined on the basis of carried out HUSM industrial production, the estab-lishment of HUSM industrial production lines, and will HUSM successfully used in high-speed railway bridges framing project.
引文
[1]向才旺.水泥应用[M].北京:中国建材工业出版社,1999:1-3.
    [2]F.P.Glasser, L.Zhang. High-performance cement matrices based on calcium sulfoaluminate belitecompositions[J]. Cement and Concrete Research,2001,31:1881-1886.
    [3]刘猛,李百战,姚润明.水泥生产能源消耗内含碳排放量分析[J].重庆大学学报,2011,34(3):116-120.
    [4]王燕谋,苏慕珍,张量.硫铝酸盐水泥[M].北京:北京工业大学出版社,1999:179-198.
    [5]Sharp J.H., Lawrence C.D., Yang R. Calcium sulfoaluminate cements-low-enery cement, special cements or what?[J]. Advances in Cement Research,1999,11(1):3-13.
    [6]Lidstrom L, Westerberg Bo. Fine ground cement in concrete-properties and prospects[J]. ACI Mater J,2003,100:398-406.
    [7]Korpa A, Kowald T, Trettin R. Hydration behaviour, structure and morphology of hydration phase in advanced cement-based systems containing micro and nanoscale pozzolanic addi-tives[J]. Cement and Concrete Research,2008,38:955-962.
    [8]Kadri ELH, Duval R. Effect of ultra-fine particles on heat of hydration of cement mortars[J]. ACI Mater J,2002,99:138-142.
    [9]刁江京.硫铝酸盐水泥的生产与应用[M].北京:中国建材工业出版社,2006:68-110.
    [10]李启棣,吴淑华.硫铝酸盐水泥混凝土的特性与应用[J].铁道建筑,1985,4:86-89.
    [11]迟宗立,任光月,刘普清.硫铝酸盐水泥在冬季泵送混凝土施工中的试验研究[J].混凝土,1999,1:44-46.
    [12]叶建平.硫铝酸盐水泥在抢修大型设备混凝土基础中的应用[J].徐煤科技,1995,1:20-21.
    [13]张德成.硫铝酸盐水泥基高性能混凝土的结构-性能及工程应用研究[D].武汉:武汉理工大学材料学院,2009.
    [14]胡曙光.特种水泥[M].武汉:武汉工业大学出版社,1999:22-24.
    [15]程日盛.美国战略公路研究计划(SHRP)简介[J].河南交通科技,1999,5:10-15.
    [16]张重禄,肖秋明.水泥混凝土路面快速修复技术展望[J].国外公路,2000,1:23-26.
    [17]Kwang H.S., Sang J.P., Yong J.K., et al. Utilization of separator bag filter dust for high early strength cement production[J]. Construction and Building Materials,2011,25:2318-2322.
    [18]Syed A.R., Thomas A.B. Blends of limestone powder and fly-ash enhance the response of self-compacting mortars[J]. Construction and Building Materials,2012,27:398-403.
    [19]Ethar T D, Mahyuddin R. High strength characteristics of cement mortar reinforced with hy-brid fibres[J]. Construction and Building Materials,2011,25:2240-2247.
    [20]Burak F, Kamile T, Bulent B, et al. The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars[J]. Cement and Concrete Re-search,2006,36:1719-1726.
    [21]K.Sobolev, A.Yeginobali. The development of high-strength mortars with improved thermal and acid resistance[J]. Cement and Concrete Research,2005,35:578-583.
    [22]A.Yahia, M.Tanimura, Y.Shimoyama. Rheologocal properties of high flowable mortar con-taining limestone filler-effect of powder content and W/C ratio[J]. Cement and Concrete Re-search,2005,35:532-539.
    [23]Burak F, Selcuk T, Yigit A. Effect of steel fiber reinforcement on surface wear resistance of self-compacting repair mortars[J]. Cement and Concrete Composites,2007,29:391-396.
    [24]P.Kumar Mehta. Advancements in polymer Concrete Technology[S]. Concrete International, 1999,21(6):3-4.
    [25]李文秀.用于氯离子和硫酸盐侵蚀环境下的水泥修补砂浆的研究[D].北京:北京工业大学硕士学位论文,2009:2-3.
    [26]Su Muzhen, kurdowski W, Sonentino F. Development in non-Portland cement[C].9th Inter-national Congress on the Chemistry of Cement,1991,1:2-3.
    [27]曹瑞军,梅冬,原建安.水泥混凝土路面的快速修补材料的研制[J].江苏科技,1998,2:1-3.
    [28]贺曼罗.环氧树脂胶粘剂[M].北京:中国石化出版社,2004.
    [29]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社,2004.
    [30]蔡跃,鲁彩凤,孙泽世.修复材料的物理力学性能研究现状[J].四川建筑科学研究,1999,9:12-13.
    [31]S. Laxmi. Development to fast setting high strength cement composite[S].8th International Congress on the Chemistry of Cement,1986:357-362.
    [32]Camille A. Issa, Pauls Debs. Experimental study of epoxy repairing of cracks in concrete[J]. Construction and Building Materials,2005,2(5):14-20.
    [33]Kamal.H, Khayat. Viscosity-Enhancing Admixtures for Cement-Based Materials An Over-view[J]. Cement and Concrete Composites,1998,21:171-188.
    [34]M.Sahmaran, N.Zkan, B.Keskin, et al. Evaluation of naturalzeolite as a viscosity-modifying agent for cement-based grouts[S]. Cement and Concrete Research.2008,36:930-937.
    [35]S.Laxmi. Development to fast setting high strength cement composite[S].8th International Congress on the Chemistry of Cement,1986,357-362.
    [36]H.Li, M.R.Silsbeeand, D.M.Roy. Particle packing characteristics and effects on high strength cement[J]. Materials science of concrete,2009,5(4):509-515.
    [37]Bentz D P, Peltz M A, Winpigler J. Early-age properties of cement-based materials. Ⅱ:Influ-ence of water-to-cement ratio[J]. ASCE J Mater Civ Eng,2009,21(9):512-517.
    [38]Camille A, Issa, Pauls Debs. Experimental study of epoxy repairing of cracks in concrete[J]. Construction and Building Materials,2005,2(5):14-20.
    [39]万正安,戴炜.GS型道路混凝土快速修补剂的研究与应用[J].湖南交通科技,2002,9(7):1-2.
    [40]陈忠达,张登良.水泥混凝土路面裂缝环氧灌浆材料的试验研究[J].西安公路交通大学学报,1997,17(3):2-3.
    [41]R.S.Rollings, J.P.Burkes, M.P.Rollings. Investigation of Joint Spelling on Concrete Run-way[J]. Journal of Performance of Constructed Facilities,1998,2:12-19.
    [42]宋海江,陈忠达.水泥混凝土路面裂缝灌浆材料的试验研究[J].中南公路工程,1997,22(9):3-7.
    [43]J. Ambroise. New applications of calcium sulfoaluminate cement[J]. Cement and Concrete Research,2004,34:671-676.
    [44]任增洲.地面用高性能水泥基自流平砂浆的配制及应用[D].重庆:重庆大学建筑系,2010:1-81.
    [45]张超.超早强灌注性材料试验研究[D].武汉:武汉大学,2005:1-73.
    [46]何涛.不同水灰比水泥灌浆材料的制备及其性能研究[D].武汉:武汉理工大学,2011:1-98.
    [47]杜纪锋,叶正茂,芦令超,等.高性能水泥基灌浆料试验研究[J].济南大学学报,2008,22(1):11-14.
    [48]刘春德,熊晓丽.高性能自流平干混砂浆的研究[J].建材发展导向,2010,3:33-35.
    [49]张民庆,孙国庆.硫铝酸盐水泥单液浆的研究与应用[J].现代隧道技术,2009,46(6):73-76.
    [50]涂胜强.硫铝酸盐水泥灌浆料试验研究[J].城市建设理论研究,2013,2:1-5.
    [51]陈娟,卢亦炎.硫铝酸盐水泥性能的调整与应用[J].混凝土,2007,9:54-56.
    [52]张景发.硫铝酸盐水泥用泵送剂的研制与应用[J].商品混凝土,2011,5:32-36.
    [53]赵若鹏,吴配刚,郭自力,等.掺粉煤灰的80MPa高强大流动性混凝土研究[J].工业建筑,2002,2:12-14.
    [54]Okamura H, Ouchi M. Self-compacting concrete[J]. J Adv Concr Technol 2003,1(1):5-15.
    [55]Larrard D, Ferraris C F, Sedan T. Fresh concrete:a Herschel-Bulkley material[J]. Material Structure,1998,31(211):494-498.
    [56]Bird R B, Dai G C, Yarusso B J. The rheology and flow of viscoplastic materials[J]. Reviews in Chemical Engineering,1983,1(1):62-70.
    [57]Topcu I B, Kocataskin F. A two-phase composite materials approach to the workability of concrete[J]. Cement and Concrete Composites,1995,17(4):319-325.
    [58]Kurokawa Y, Tanigawa Y, Nishinosono K, et al. Analytical study on effect of volume frac-tion of coarse aggregate on Bingham's constants of fresh concrete[J]. Trans Jpn Concr Inst, 1996,18:37-44.
    [59]Pimanmas A, Ozawa K. Mathematical modeling of shear constitutive relationship for flowing fresh concrete[C]. In:Proceedings of ICUEACC, Bangkok, Thailand,1996:128-133.
    [60]Gang Lu, Kejin Wang, Thomas J Rudolphi. Modeling rheological behavior of highly flowable mortar using concepts of particle and fluid mechanics[J]. Cement and Concrete Composites,2008,30:1-12.
    [61]Franzini J B, Finnemore E J. Fluid mechanics with engineering application[C]. New York: Mc Graw-Hill,1997.
    [62]Ferraris C F. Measurement of the rheological properties of high performance concrete:state of the art report[J]. Journal of Research National Institute Standard technology,1999,104(5): 461-477.
    [63]Feys D, Verhoeven R, DeSchutter G. Fundamental study of the rheology of Self Compacting Concrete, composed with Belgian materials[C]. In:The 7th national congress on theoretical and applied mechanics NCTAM,2006.
    [64]Mehta P K, Monteiro P J M. Concrete-structure, properties and materials[M].2nd ed. Pren-tice-Hall,1993
    [65]P.Kmehta著.混凝土结构、性能与材料.祝永年等译[M].上海:同济大学出版社,1991.
    [66]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [67]吴中伟.高强、特高强水泥基材料的研究与应用[C].“高强混凝土及其应用”第一届学术讨论会论文集,中国土木工程学会混凝土与预应力混凝土学会高强混凝土委员会,1992:89-95
    [68]吴中伟.水泥基复合材料的界面问题[J].武汉建材学院学报,1984,4(2):24-28.
    [69]黄蕴元.混凝土料组分结构界面力学行为关系的多层次研究[J].上海建材学院学报,1989,3:24-28.
    [70]黄蕴元.混凝土工艺理论的科学基础[J].混凝土与水泥制品,1985,4:56-62.
    [71]王爱勤.张承志水泥石-骨料界面过渡区的形成机理及改善途径[J].混凝土与水泥制品,1994,5:36-40.
    [72]Zhang L, Glasser FP. Hydration of calcium sulfoaluminate cement at less than 24h[J]. Ad-vanced Cement Research,2002,14:141-155.
    [73]Hanic F, Kapralik I, Gabrisova A, et al. Mechanism of hydration reactions in the system C4A3 S-CS-CaO-H2O referred to hydration of sulphoaluminate cement[J]. Cement and Concrete Research,1989,19:671-682.
    [74]Pera J, Ambroise J. New applications of calcium sulfoaluminate cement[J]. Cement and Con-crete Research,2004,34:671-676.
    [75]Stephane Berger, Celine Cau Dit Coumes, Patrick Le Bescop. influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum con-tents[J]. Cement and Concrete Research,2011,41:149-160.
    [76]Georgin J F, Ambroise J, Pera J, Reynouard JM. Development of self-leveling screed based on calcium sulfoaluminate cement:modelling of curling due to drying[J]. Cement and Con-crete Composites,2008,30:769-78.
    [77]Pelletier L, Winnefeld F, Lothenbach B. The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite:hydration mechanism and mortar properties[J]. Cement and Concrete Composites,2010,32:497-507.
    [78]Peysson S, Pera J, Chabannet M. Immobilization of heavy metals by calcium sulfoaluminate cement[J]. Cement and Concrete Research,2005,35:2261-2270.
    [79]张巨松,李好新,隋智通.高硅贝利特-硫铝酸盐水泥的热分析实验研究[J].沈阳建筑工程学院学报(自然科学版),2003,4:143-146.
    [80]Sherman N, Beretka J, Santoro L, et al. Long-term behaviour of hydraulic binders based on calcium sulfoaluminate and calcium sulfosilicate[J]. Cement and Concrete Research,1995, 25:113-126.
    [81]周华新,刘家平,刘建忠.低碱度硫铝酸盐水泥水化硬化历程调控及其微观结构分析[J].新型建筑材料,2012,1:4-8.
    [82]杨克锐,张彩文,郭永辉,等.延缓硫铝酸盐水泥凝结的研究[J].硅酸盐学报,2002,4:155-161.
    [83]Xinghua Fu, Chunxia Yang, Zongming Liu, et al.Studies on effects of activators on properties and mechanism of hydration of sulphoaluminate cement[J]. Cement and Concrete Research, 2003,3:317-324.
    [84]覃维祖.混凝土组分的复合与相容性[J].1998,5:1-4.
    [85]杨芳.高性能外加剂和水泥相容性的试验研究[J],温州大学学报,2003,1:88-92.
    [86]徐永模,黄大能,谢尧生.新拌水泥浆体结构及其触变特性的探讨[J].硅酸盐学报,1989,17(4):105-111.
    [87]陈慧钊.粘度测量[M].北京:中国计量出版社,2003.
    [88]M.ISH-SHALON, S.A.GREEBENG. The rheology of fresh Portland cement pastes[C]. Pro-ceedings of the 4th International Symposium on Chemistry of Cement,1960,2:731-735.
    [89]S. Chandra, J. Bjornstrom. Influence of cement and super plasticizers type and dosage on the fluidity of cement mortars. Part Ⅰ[J]. Cement Concrete Research,2002,32:1605-1611.
    [90]M Collepardi. Admixtures used to enhance placing characteristics of concrete[J]. Cement and Concrete Composites.1998,20:103-112.
    [91]G Telysheva, T Dizhbite, E Paegle, et al. Surface active properties of hydrophobized deriva-tives of lignosulfonates:effect of structure of organosilicon modifier[J]. Journal of Applied Polymer Science,2001,71:1013-1020.
    [92]S.A.Gundersen, M.H.Ese, J.Sjoblom. Langumir surface and interface films of lignosulfonates and kraft lignins in the presence of electrolyte and asphaltenes:correlation to emulsion sta-bility [J]. Colloids Surface. A:Physicochem Engaging Aspects,2001, (82):199-218.
    [93]杨克锐,张彩文,郭永辉,等.延缓硫铝酸盐水泥凝结的研究[J].硅酸盐学报,2002,30(2):155-160.
    [94]U Chikawa H, U Chika S. The analysis of ettringite in hardened cement paste[J]. Cement and Concrete Research,1974, (4):821-824.
    [95]李加和,张洪涛,王素梅.石膏在硫铝酸盐水泥中的作用[J].哈尔滨建筑工程学院学报,1994, (27)1:57-61.
    [96]要秉文,梅世刚,宋少民.石膏对高贝利特硫铝酸盐水泥水化的影响[J].武汉理工大学学报,2009, (31)7:1-4.
    [97]Babu K G, Nageswara, Rao G S. Early behavior of fly ash concretes[J]. Cement and Concrete Research,1994,24:277-282.
    [98]Roy D M, Goudu G R, Brobrowsky A. Very high st rength cement pastes prepared by hot pressing and other high pressure techniques[J]. Cement and Concrete Research,1972,2: 349-355.
    [99]GleizeP.J.P. Microstructural investigation of asilicafume-cement-lime mortar. Cement and Conerete Composites[J].2003,25(2):71-275.
    [100]姜鲁华,杜芳林等.纳米碳酸钙的制备及应用进展[J].中国粉体技术,2002,8(1):28-32.
    [101]Abo-EI-Enein S A, Daimon M. Hydration of low porosity slag-lime pastes[J]. Cement and Concrete Research,1974,4:299.
    [102]De Larrard F, Sedran T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research,1994,24:997-105.
    [103]Pan G, Sun W. Experimental study on the micro-aggre-gate effect in high strength and su-per-high strength cementitious composites[J]. Cement and Concrete Research,1998,28: 171-178.
    [104]Motz H, Geiseler J. Products of steel slags an opportunity to save natural resources[J]. Waste Management,2001,21:285-293.
    [105]Conjeaud M, George C M, Sorrentino F P. A new steel slag for cementmanufacture:Miner-alogy and hydraulicity[J]. Cement and Concrete Research,1981,11:85-102.
    [106]Quanlin Niu, Naiqian Feng, et al. Effect of SuPerfine Slag Powder on Cement Properities[J]. Cement and Conerete Researeh,2002,32:615-621.
    [107]F. Aim, H. Goff, V.Rudert. Dense packing of cement pastes and resulting consequences on mortar properties [J]. Cement and Conerete Researeh,1997,27(10):1481-1488.
    [108]周世华.超细粉体对硫铝酸盐水泥性能的影响研究[D].重庆:重庆大学硕士学位论文2005:1-60.
    [109]Kun-Mo Lee, Pil-Ju Park. Estimation of the environment credit for the recycling of granu-lated blast furnace slag based on LCA[J]. Resources Conservation and Recycling,2005,44: 139-151.
    [110]Pera J, Husson S, Guilhot B. Influence of finely ground limestone on cement hydration[J]. Cement and Concrete Composites,1999,21:99-105.
    [111]Ramachandran V. Thermal analyses of cement components hydrated in the presence of cal-cium carbonate[J]. Thermochim Acta,1988,127:385-394.
    [112]Richard P, CheyrezyM. Composition of reacitve powder concretes[J]. Cement and Concrete Research,1995,25(7):1501-1511.
    [113]Sadrekarmi A. Development of a light weight reactive powder concrete[J]. Journal of Ad-vanced Concrete Technology,2004,2(3):409-417.
    [114]何峰,黄政宇.硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析[J].混凝土,2006,(1):39-42.
    [115]Cheyrezy C, Maret V, Frouin L. Microstructural analysis of RPC (Reactive Powder Con-crete) [J]. Cement and Concrete Research,1995,25 (7):1491-1500.
    [116]Zanni H, Cheyrezy M, Maret V, et al Investigation o f hydration and pozzolanic reaction in reacitve powder concrete (RPC) Using 29Si NMR[J]. Cement and Concrete Research,1996, 26(1):93-100.
    [117]Chan Yinwen, Chu Shuhsien. Effect of silica fume on steel fiber bond characteristics in re-active powder concrete[J]. Cement and Concrete Research,2004,34:1167-1172.
    [118]Ji Yajun, Jong Herman Cahyadi. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes[J]. Cement and Concrete Research,2003,33: 1543-1548.
    [119]A.M.Boddy, R.D. Hooton, M.D.A.Thomas. The effect of productform of silica fume on its ability to control alkali-silica reaction[J]. Cement and Concrete Research,2000, (30): 1139-1150.
    [120]Ping G U, Beaudoin J J. Lithium salt -based additives for early strength-enhancement of ordinary portland cement-high alumina cement paste[J]. Journal of Materials Science Letters, 1997,16(9):696-698.
    [121]H Y Ghorab.Trudies on the stability of the caleium suifoaluminate hydrates. PartⅡ:effect of alite, lime and moon carboaluminate hydrates[J]. Cement and Concrete Research,1998,28(1): 623-630.
    [122]Garces P. Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions sim-ulating the electrolytic environments of micropores of concrete in the propagation period [J]. Corrosion Science,2008, (50)498-509.
    [123]Tritthart J, Babbfill P F G. Nitrite binding in cement and factors of influence[C].Innovations and developments in concrete materials and construction:proceedings of the International Conference held at the University of Dundee, Scotland,2002, (9-11):345-355.
    [124]Mohamed Heikal. Effect of calcium formate as an accelerator on the physicochemical and mechanical properties of pozzolanic cement pastes[J]. Cement and Concrete Research,2004, (34):1051-1056.
    [125]J Bensted. Early strength behavior of Portland cement in water, calcium chloride and cal-cium formate[J]. Silicates Industriels,1980, (45):67-69.
    [126]马保国,朱艳超,胡迪,等.甲酸钙对硫铝酸盐水泥早期水化过程的影响[J].功能材料,2013,12(44):1763-1767.
    [127]H El-Didamony, A. A Amer, M Heikal. Effect of calcium acetate as an acceterator and water reducer on the properties of silica fume blended cement[J]. Ceramics-Silikaty,1999,43(1): 29-33.
    [128]Lura P, Durand F, Jensen OM. Autogenous strain of cement pastes with superabsorbent polymers. In:Proceedings of international RIELM conference onvolume changes of harden-ing concrete:testing and mitigation[C]. Technical University of Denmark, Lyngby, Denmark, 20-23 August 2006,57-65.
    [129]Tazawa E, Miyazawa S. Experimental study on mechanismof autogenous shrinkage of con-crete [J]. Cement and Concrete Research,1998,28(8):1633-1638.
    [130]中华人民共和国工业和信息化部.JC/T313-2009膨胀水泥膨胀率检验方法[S].北京:中国标准出版社,2009-12-04.
    [131]郭俊萍,梁树娟,张秋英,等.低碱度硫铝酸盐水泥干缩性能影响因素的研究[J].水泥,2010,1:8-11.
    [132]笠井芳夫,大演嘉彦,松井勇.建筑材料学[M].东京:图书出版-理工学社,2000.
    [133]贺传卿,李永贵,王怀义,等.硫酸盐对水泥混凝土的侵蚀及其防治措施[J].混凝土2003, (3):56-57.
    [134]Bakharev T, Sanjayan J G, Cheng Y B. Sulfate attack on alkali-activated slag concrete[J]. Cement and Concrete Research,2002, (32):211-216.
    [135]Yamada K, Ogawa S, Hanehara S. Controlling of the adsorption and dispersing force of polyccarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase[J]. Ce-ment and Concrete Researeh,2001,31(3):375-383.
    [136]Sahu S, Havlica J, Tomkovav, et al. Hydration behavior of sulphoaluminate belite cement in the presence of various calcium sulphates[J]. Thermo Chimica Acta,1991,175(1):45-52.
    [137]郑连从,叶正茂,程新.硫酸盐环境中硫铝酸盐水泥的侵蚀行为[C].中国硅酸盐学会水泥分会首届学术年会论文集,2009,8:255-258.
    [138]K K Sideris, A E Savva. Durability of Mixtures Containing Calcium Nitrite Based Corro-sion Inhibitor[J]. Cement and Concrete Composites,2005,27:277-287.
    [139]J Edward. Garboczi. Permeability, Diffusivity and microstructure parameters:a critical re-view. Cememt and Concrete Research,1990,20(4):591-601.
    [140]中华人民共和国住房和城乡建设部.GB/T50082-2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2009-11-30.
    [141]陈立军,王永平,尹新生,等.混凝土孔径尺寸对其抗渗性的影响[J].硅酸盐学报,2005,4(33):500-505.
    [142]Manmohan D, Mehta P K. Study on blended portland cements containing santorin earth[J]. Cement and Concrete Research,1981,11(4):507-518.
    [143]Whiting H, Ludirdija D, J F Young, et al. Simple method for measuring water permeability of concrete[J]. ACI Materials Journal,1982,5(86):433-439.
    [144]ASTM C1202-91[S]. Standard method of Test for Electrical Indication of Concrete's Abil-ity to Resist Chloride Ion Penetration.
    [145]易成,谢和平,孙华飞,等.混凝土抗渗性能研究的现状与进展[J].混凝土,2003,2(60):7-11.
    [146]Rakesh Kumar, B Bhattacharjee. Assessment of Permeation Quality of Concrete Through Mercury Intrusion Porosimetry[J]. Cement and Concrete Research,2004,34:321-328.
    [147]A K Suryavanshi, J D Scantlebury, S B Lyon. Pore Size Distribution of OPC and SRPO Mortars in Presence of Chlorides[J]. Cement and Concrete Research,1995,25(5):980-988.
    [148]P K Mehta, C CYang. Relationship between migration coefficient of chloride ions and charge passed in steady state[J]. ACI Materials Journal,2004,5:58-63.
    [149]丁荣昌.高速铁路桥梁架设方法与设备配置分析[J].铁道工程学报,2001(12)128-131.
    [150]杨宝森.客运专线箱梁架设施工控制要点浅议[J].山西建筑,2008,34(13):333-334.
    [151]Pandey S P, Sharma R L. The influence of mineral additives on the strength and porosity of OPC mortar[J]. Cement and Concrete Research,2000,30:19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700