用户名: 密码: 验证码:
易碎复合材料的设计、制备工艺与性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在快速发展的兵器工业产品结构中,出现了一类特殊的复合材料,它一方面必需具备足够的强度和刚度以承受工作载荷,另一方面还必需能够在一定的触发条件下易于碎裂以实现某种功能。本文把具有此类工作机制的复合材料统称为“易碎复合材料”。像导弹发射筒盖等很多易碎复合材料结构传统上常常采用导爆索爆炸切割的方法来实现其瞬间碎裂功能。这种方法在确保结构按时碎裂方面十分可靠,但存在一定的缺点:其一是装机后的爆炸控制元件和火工品由于长期存放可能会失效;其二是爆炸时产生的冲击波可能会伤害结构内的电子元件。由此,寻找和开发适当的非爆炸碎裂方法正在成为兵器工业中易碎复合材料的研究热点。
     本文在查阅国内外相关文献的基础上,归纳出易碎复合材料的工作机制,设计出了若干种新型易碎复合材料及其结构,并对它们的材料和结构设计、制备工艺和相应的碎裂功能进行了较系统的研究。
     本文对短切玻纤/191树脂复合材料进行了拉伸强度试验,通过试验结果修正了短纤维复合材料的强度计算公式;结合易碎复合材料结构的受力特点和工作机制,本文建立了短纤维增强易碎复合材料的强度理论,为短纤维增强易碎复合材料结构强度设计提供了理论基础,并建立了针对短切玻纤/191树脂复合材料的试验资料数据库。
     作为一个应用实例,本文考察并借鉴鸡蛋可承受较大的均布压力的生物力学性能,根据所建立的短纤维增强易碎复合材料强度理论,从仿生学角度出发,设计并制备了一种短纤维增强191树脂易碎复合材料导流罩结构。通过对该结构试样的抗压性能和冲击性能模拟试验,证明所设计的仿生易碎复合材料导流罩能满足易碎复合材料工作机制的要求。
     本文受凤仙花种子苞荚弹射传播机理的启发,设计并制备了仿生易碎复合材料迫击炮弹壳,然后对其进行了性能模拟试验。抗压和冲击模拟试验结果表明,所设计的仿生易碎复合材料迫击炮弹壳可以在空中运行时抵抗所受到的空气阻力以保护壳体内的生化物质,而在冲击力的作用下,会有规律的断裂并弹开,有效的释放出生化活性物质。有限元数值仿真结果与试验结果基本吻合。
     本文利用单向连续纤维层板具有纵向抗拉强度高而横向易于被撕裂的特点,在制备好的单向层板上垂直于纤维方向预制了刻槽,然后将单向层板正交复合而制备成正交各向异性易碎复合材料层合板。文中对这种层合板作了承压试验与冲击试验,试验结果表明,所设计并制备的正交各向异性易碎复合材料层合板试样可承受一定的均布载荷,而在反向受到冲击力时,试样迅速沿着预制刻槽开裂,满足设计要求。
     本文借用Y.Estrin和A.V.Dyskin提出的拓扑互锁材料设计新概念,并参照中国古代智力玩具“鲁班锁”的思维,提出一种拓扑互锁易碎复合材料新型结构。作为应用实例,文中设计并制备了深海导弹潜射系统隔水罩的模型试件,并对试件进行了性能模拟试验。试验结果表明,所设计的新型拓扑互锁易碎复合材料隔水罩可以承受给定的均匀水压,满足其工作要求;当在反向受到一定的冲击力时,结构可完成触发碎裂的工作机制。
     本文从断裂力学理论出发,通过材料配方的设计使短纤维增强树脂复合材料沿厚度方向的断裂韧性值K_(IC)呈梯度变化,根据所推导出的材料配方制备出了K_(IC)梯度易碎复合材料板。采用落重冲击试验方法模拟K_(IC)梯度复合材料板受到撞击触发条件而破坏的情形,观察了破坏后的试样裂纹扩展情况,分析了试样的断口形貌和破坏模式。试验结果表明,所设计的K_(IC)梯度易碎复合材料板受到冲击等触发条件而破坏后,产生的裂纹在低K_(IC)层面内快速扩展;而沿着厚度方向,随着纤维含量的增大,K_(IC)值逐渐增大,纤维对裂纹起到有效地阻滞作用,使裂纹扩展缓慢,直至终止。
     本文的研究工作在以下几方面取得了新的进展:
     1.汇总了兵器工业及某些民用工业在近年发展和推出的一类材料结构的共同工作机制,首次提出“易碎复合材料”的概念。
     2.首次建立了短纤维易碎复合材料的强度理论,为其材料和结构设计提供了理论基础。
     3.首次从仿生学角度出发,根据种子苞荚弹射传播机理,设计并制备了连续纤维预应力弹射易碎复合材料迫击炮弹壳结构。
     4.首次根据拓扑互锁原理,提出并设计了一种新型易碎复合材料结构,丰富了易碎复合材料结构的非爆炸触发碎裂结构形式。
     5.首次利用材料配方设计并制备了一种可以控制裂纹扩展规律的短纤维增强树脂K_(IC)梯度复合材料。
In the structure of weapon industrial products fast developed recently, appeared a special kind of composites which have to have not only sufficient strength and stiffness to bear its working load but also ability to disintegrate in some specific triggering conditions. With this character of working mechanism this kind of composites are called "fragile composites" in this paper. For many fragile composite structures, such as the cover of missile launch canister etc., the function of disintegrating was implemented by explosive cut of blasting fuse. This method is reliable to ensure the structure disintegrating on time but there exist some drawbacks for it. The first one is that the electron component and initiating explosive device would be disabled after long-term deposition, and the second is that the blow wave of the explosive would hurt the electronic instrument inside the missile head. Therefore, to sought and develop new non-explosive fragmentation method is now becoming the focus of study on the fragile composites in weapon industry.
     According to the related literatures home and abroad, the working mechanism of fragile composites was proposed and some new fragile composites and structures were designed in this paper. Meanwhile, the design of material and its structure, and its preparation technology and fragmentation character were systematically studied.
     In this paper, the formula for calculating the strength of the short fiber reinforced composites was modified according to the tensile testing results of short glass fiber /191 resin composites. The failure criteria for short fiber fragile composites was established which provided a theoretical basis for the design of short fiber fragile composites. And also the testing database for short glass fiber /191 resin composites was established.
     The biomechanical property of eggs which can bear large uniform pressure was studied, and based on the failure criteria of short fiber fragile composites a short fiber/191 resin composite dome was designed as an application example. The results of the compressive test and the impact test showed that the fragile composite dome meets the requirements of its working mechanism.
     In this paper, a prestressed continuous fiber reinforced ejection fragile composite mortar case was designed based on the ejection propagation mechanism of the garden balsam seeds, and the mortar case model was prepared by filament winding process. The results of the compressive test and the impact test showed that the fragile composite mortar case can bear the air resistance to protect the biochemical substance in the shell and the mortar case will regularly fracture and release the biochemical substance under the impact. The numerical results agree well with the experimental results.
     According to the characteristics of unidirectional composites which tensile strength along the fiber direction is much higher than that along the direction vertical to the fiber a groove was made perpendicular to fiber direction, and then the orthotropic fragile composite laminate was prepared by these unidirection plies with grooves. The results of the compressive test and the impact test showed that the orthotropic fragile composite laminate can bear given uniform pressure, and will rapidly fracture along the pre-cast groove under impact.
     In this paper, based on a new concept of material design using regular assemblies of topologically interlocked elements proposed by Y. Estrin and A. V. Dyskin, and also based on the idea of "lu ban lock", a Chinese ancient educational toy, a new topologically interlocked fragile composite structure was proposed. As an application example, the model of water-resisting cover of deep sea missile launcher system was designed and its test specimen was prepared. The results of the simulation test showed that the topologically interlocked composite water-resisting cover can bear certain uniform water pressure, and will rapidly fracture under the reverse impact.
     In the last part of this paper, starting from fracture mechanics theory, a K_(IC) gradient composite plate which actively control the crack growth was designed and prepared with different material prescriptions in different layers. The crack propagation and the fracture morphology were observed by scanning electron microscopy (SEM). Results showed that the crack propagated rapidly in the layers with lower value of K_(IC), howether, the crack propagated difficultlyalong with the thickness direction.
     Summarily, some new development was made in this paper in the following aspects:
     1. The concept of "fragile composites" was firstly put forward based on their common character of working mechanism.
     2. The failure criteria of short fiber fragile composites was firstly established. The failure criteria provides a theoretical basis for the design of short fiber fragile composites.
     3. Starting from Bionics, the prestressed continuous fiber ejection fragile composite mortar case was designed and prepared based on the ejection propagation mechanism of the garden balsam seeds, firstly.
     4. A new topologically interlocked fragile composite structure was put forward and designed. This structure will enrich the non-explosive trigger fragmentation methods of the fragile composite structure.
     5. A K_(IC) gradient composite plate which actively control the crackgrowth was designed and prepared with different material prescriptions in different layers, firstly.
引文
[1]2005年世界最新潜艇大扫描[EB/OL]http://military.china.com/zh_an/critical3/2720050220/12118586_2.html,2005-02-20.
    [2]夏德顺.航天运载器贮箱结构材料工艺研究[J].导弹与航天运载技术,1993,(3):7.
    [3]孙甫.MY-9易碎材料在武器系统上的应用[J].宇航材料工艺,2002(2):26.
    [4]Richerson W D.Aviation Week & Space Technology.2005.
    [5]钟志华,张维刚,曹立波,何文.汽车碰撞安全技术[M].机械工业出版社.2003.
    [6]Matthew Jerinsky,William T.Hollowell,NHTSA's Review of a Vehicle Compatibility Pertormance Metric Through Computer Simulation.2003 ASME International Mechanical Engineering Congress & Exposition,Washington,D.C.,November,2003:16-21.
    [7]陈泳颜.便携式地空导弹技术及其发展[J].中国航天,1998,(4):22.
    [8]才满瑞等.国外航天运载器的发展状况、发展趋势及采用的关键技术[J].导弹与航天运载技术,1998,(3):27.
    [9]刘巩权,王静,魏永刚.几种全通径起爆器初探[J].火工品,2003(1):49.
    [10]孙蕊,贺玉龙,孙小端等.美国的路侧解体消能设施设计[J].道路交通与安全,2006,6(4):34.
    [11]兰剑,李长城.断裂型基础可解体立柱的理论与实验模拟[J].浙江交通职业技术学院学报,2006,10(7):12.
    [12]AASHO.Roadside Design Guide[M].American Association of State Highway and Transportation Officials,2002.
    [13]Transportation Research Board National Research Council.NCHRP REPORT 350[M].Washington,D.C.:NATIONAL ACADEMY PRESS,1993.
    [14]王兴东,赵江.如何提高包装物的易开启性[J].包装工程,2007(2):28.
    [15]金钊,陈思庄.舰空导弹垂直发射系统发展概况[J].航空导弹,2006(1):25.
    [16]Navy patents.Frangible fly through diaphragm for missile launch canister[P].USA:4498368,1985-02-12.
    [17]Copeland R L and Greene R F.Protective cover for a missile nose cone[P].US Pat,1976,3970006.
    [18]Boeglin P H.Plate-glass fitted with an explosion-cutting device[P].US Pat,1982,4333381.
    [19]Bell R E.Missile weapon system[P].US Pat,1992,5239909.
    [20]Krol U B.Frangible cover assembly for missile launchers[P].US Pat,1971,3742814.
    [21]苗佩云,袁曾凤.同心发射筒燃气开盖技术[J].北京理工大学学报,2004,24(4):284.
    [22]Yagla J J.Concentric canister launcher[J].Naval Engineers Journal,1997,109:313-330.
    [23]张玲翔.国外小间隙发射箱技术的发展[J].飞航导弹,1998(1):23-28.
    [24]常卫伟.舰载导弹垂直发射系统巡礼[J].舰载武器,2004.(1):67.
    [25]Boshagour S M.Missile canister and method of fabrication.USP 5115711,1992.
    [26]Pickens J R.et al.High strength AL-Cu-Li alloys for launch systems.NASA,Aluminum-Lithium Alloys for Aerospace Applications Workshop,2004,28(6):58.
    [27]Doane W J.Frangible fly through diaphragm for missile launch canister[P].US Pat,1986,4498368.
    [28]Booth L R Sea Lance weapon development-system and naval engineering aspects if the capsule,Naval Engineering Joural,1988(5).
    [29]张玲翔.飞航导弹箱式发射技术[J].飞航导弹,1996,36(6):276.
    [30]周光明,袁卓伟.新型穿透式复合材料薄膜盖的设计、制作与实验[J].宇航学报,2006,36(6):276.
    [31]Wu JH,Wang W T,Kam T Y Failyre analysis of a frangible laminated composite canister cover[J].Proe Inst Mech Eng,1999,213,G:187-95.
    [32]周光明,袁卓伟,王新峰.整体冲破式复合材料薄膜盖的设计与试验研究[J]. 宇航学报,2007,28(3):708-709.
    [33]陈思信.汽车车身新材料[J].玻璃钢,2007(3):29-31.
    [34]Mike Fairley,闵耀霞,郭华清.标签智能化成发展趋势[J].中国防伪报道,2007(9):54-55.
    [35]顾振隆.短纤维复合材料力学[M].国防大学出版社,1987,146-150.
    [36]Y.T.ZHU,G Zong,A.Manthiram,Z.Eliezer.Strength analysis of random short-fiber-reinforced metal matrix composite materials[J].Journal of materials science.1994(29):6281-6286.
    [37]曾庆敦,复合材料的细观破坏机制与强度[M].北京,科学出版社,2002,52-54.
    [38]Bowyer W H,Bader M G.On the reinforcement of thermoplastics by imperfectly aligned discontinuous fibers[J].J Mater Sci,1972(7):1315-1318.
    [39]J.D.Eshelby,The Elastic Field Outside an Elliposidal Inclusion[J].Proceedings of the Royal Society,London Series A.1959,Vol.252.
    [40]Rosen B.W.,Mechanics of Composite Strengthening[M].Fiber Composite Materials,ASM,Metal Park,Ohio,Chapter 3,1965.
    [41]杜善义,王彪.复合材料细观力学[M].科学出版社,1998.
    [42]孙爱芳,刘敏珊,董其伍,短切纤维增强复合材料拉伸强度的预测[J].2008,22(3):333-336.
    [43]Curtis P T,Bader M G,Bailey J E.The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibers[J].J Mater Sci,1978,13:377-380.
    [44]沈开猷.不饱和聚酯树脂及其应用[M].化学工业出版社,2005.
    [45]全国塑料标准化技术委员会石化石化塑料树脂产品分会.塑料标准大全[M].中国标准出版社,2005.
    [46]任奕林,王树才,丁幼春,文友先.鸡蛋壳生物力学特性分析及试验研究[J].农业工程学报,2007,23(6):145-149.
    [47]普朗特等著,郭永怀、陆士嘉译.流体力学概论[M],科学出版社,北京,1981.
    [48]熊永亮,郜治,杨丹.不同攻角运动的水下导弹表面空泡流场数值研究[J]哈 尔滨工程大学学报,2007,28(7):738-741.
    [49]黄汉雄.塑料模压成型技术(二)[J].橡塑技术与装备.2001年第27卷:12-20.
    [50]郭领军等.模压工艺制备短纤维增强C/C复合材料的研究[J].宇航材料工艺.2004,6:11-12.
    [51]马淑雅.复合材料模压制品工艺及其新进展[J].复合材料.1998,9:9-11.
    [52]王佩玲.玻璃钢模具的设计制造方法[J].玻璃钢/复合材料2000,9:49-50.
    [53]Toshiyuki Uenoya.Acoustic emission analysis on interfacial fracture of fabric laminated polymer matrix composites,progress in acoustic emission Ⅶ.The Japaness Society for NDI,1994:387-393.
    [54]Thomas M.Ely,Eric V,Hill K.Longitudinal splitting and fiber breakage characterization in graphite epoxy using acoustic emission data.Materials Evaluation,1995,2:288-294.
    [55]袁振明,任荣镇.碳纤维复合材料破坏过程的声发射表征.全国第四届声发射技术学术讨论会议论文集,1989,215-219.
    [56]李兰,赵建华.玻璃纤维复合材料中不同破坏类型的声发射特征[J].复合材料学报.1986(2):33-39.
    [57]Hamstad M A.大型凯夫拉/环氧火箭发动机壳体的声发射检测结果.科技情报专题研究文集,航空航天部47所.1993,72-87.
    [58]Durant Y G.Composite material selection study for non-lethal mortars [Z].Non-lethal Technology and Academic Research Symposia(Ⅲ),2001,11(7):116
    [59]赵渠森.先进复合材料手册[M].机械工业出版社.2003,284-286.
    [60]周履,王振鸣,范赋群.复合材料及其结构的力学进展[M].华南理工大学出版社.1991,37-38.
    [61]林启鹏:李红波.ANSYS预应力施加方法在工程分析中的应用[J].山西建筑,2007,33(22):63.
    [62]姜新佩,刘丽娜,邓子辰.预应力碳纤维布加固混凝土梁的试验研究[J].西北工业大学学报,2007,,25(4):492-495.
    [63]Less J M,Winistorfer A C.External Prest ressed Carbon Fiber Reinforced Polymer Straps for Shear Enhancement of Concreate.Journal of Composites for Construction,2002(12):249-265.
    [64]鲁云,朱世杰,马鸣图,潘复生.先进复合材料[M].机械工业出版社.
    [65]AV.Dyskin,Yuri.Estrin.Toughening by Fragmentation----How Topology Helps[J].Advanced engineering materials,2001,11(3):885-888.
    [66]F.M.Jenkins,P.G.Chamberlain,E.R.Podnieks,Developing resource utilisation technology for space,in:J.-C.Roediers(Ed.),Rock Mechanics as a Multidisciplinary Science,Balkema,Rotterdam,1991,pp.1199-1204.
    [67]D.Schrunk,B.Sharpe,B.Cooper,M.Thangavelu,The Moon,Resources,Future Development and Colonization,Wiley,Chichester,New York,Brisbane,Toronto,Singapore,1999.
    [68]Hause T,Johnson TF,Librescu L.Effect of face-sheet anisotropy on buckling and postbuckling of sandwich plates.J Spacecraft Rockets 2000;37(3):331-41.
    [69]刘红艳,赵树立,岳永志.一种材料和结构设计的新概念[J].辽宁工程技术大学学报,2004,23(3):342-344.
    [70]AV.Dyskin,Yuri.Estrin,A.J.Kanel-Belov,E.Pasternak.A new principle in design of composites materials:reinforcement by interlocked element[J].Composites science and technology,2003(63):483-491.
    [71]D.Gilroy,E.D.Goffi,Modular interlocking brick system in wide use at BHP,AISE Steel Technology,January,2001.
    [72]Y.Estrin,A.V.Dyskin,A.J.Kanel-Belov,E.Pasternak,Materials with novel architectonics:assemblies of interlocked elements,in:B.Karihaloo(Ed.),IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-homogeneous Materials,Kluwer Academic Press,Dordrecht,2002:51-56.
    [73]H.C.Khor,A.V.Dyskin,E.Pasternak,Y.Estrin,A.J.Kanel-Belov,Integrity and fracture of plate-like assemblies of topologically interlocked elements,in:A.V.Dyskin,X.Z.Hu,E.Sahouryeh(Eds.),Structural Integrity and Fracture,SIF2002,Swets & Zeitlinger,Lisse,2002:449-456.
    [74]M.Thangavelu,MALEO:modular assembly in low orbit,in:D.Schrunk,B.Sharpe,B.Cooper,M.Thangavelu(Eds.),The Moon,Resources,Future Development and Colonization,Wiley,Chichester,New York,Brisbane,Toronto,Singapore,1999:377-396.
    [75]A.V.Dyskin,Y.Estrin,E.Pasternak,H.C.Khor,A.J.Kanel-Belov,Fracture resistant structures based on topological interlocking with non-planar contacts,Advanced Engineering Materials 2003,5(3):116-119.
    [76]A.V.Dyskin,Y.Estrin,A.J.Kanel-Belov,E.Pasternak,Topological interlocking of platonic solids:a way to new materials and structures,Philosophical Magazine Letters 2003,83(3):197-203.
    [77]基于ANSYS软件的接触问题分析及在工程中的应用[M].吉林大学硕士学位论文:26-32.
    [78]宁桂峰,满翠华.有限元接触分析应用研究[J].现代制造工程.2005(4):66-68.
    [79]易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社.2002,11(1):343-360.
    [80]杜成斌,任青文.用于接触面模拟的三维非线性接触单元.东南大学学报(自然科学版).2001,7,31(4):45-47.
    [81]张健康、凌静.大型舰炮玻璃钢防护罩体手糊成型工艺探讨[J].工程塑料应用.2002,30(6):12-15.
    [82]拓扑自锁易碎隔水罩[P].中国专利:2006201475600.2004.01.28.
    [83]David Roylance.Introduction of Fracture Mechanics.Massachusetts Institute of Technology.2001,6,14.
    [84]赵建生.断裂力学及断裂物理[M].华中科技大学出版社,2003:96-99.
    [85]赖祖涵.断裂力学原理[M].冶金工业出版社,1990.
    [86]G.P.Potimiche,S.R.Daniewicz.Analysis of crack tip plasticity for microstructurally small cracks using crystal plasticity theory[J].Engineering Fracture Mechanics 70(2003):1623-1643.
    [87]史建平,林吉忠.反复低速冲击下短纤维复合材料的能量耗散与损伤演变[J].材料科学与工程学报.2007,25(1):61-65.
    [88]张彦,来新民,朱平,梁新华.复合材料铺层板低速冲击作用下损伤的有限元分析[J].上海交通大学学报,2006,40(8):1349-1352.
    [89]De Moura MFSF,Goncalves J P M.Modeling the interaction between matrix cracking and delamination in carbon-epoxy laminates under low velocity impact[J].Composites Science and Technology,2004,64(7-8):1021-1027.
    [90]De Moura MFSF,Marques A T.Prediction of low velocity impact damage in carbon-epoxy laminates.Composite Part A[J].Applied Science and Manufacturing,2002,33(3):361-368.
    [91]Konish,M.J.;Swedlow,J.L.;Cruse,T A.Experimental Investigation in an Advanced Fiber Composite.J.Composite Materials,Chapter6,1972.
    [92]Nuismer,R.J.;Whitney,J.R.Fracture Mechanics of Composites ASTM STP,1973.
    [93]Beaumont,P.W.R.;and Phillips,D.C.The Fracture Energy of a Glass Fiber Composite J.Material Sci.7,1972.
    [94]Agarwal B.D.;Giare,G.S.Crack Growth Resistance of Short Fiber Composite:ⅡInfluence of Test Temperrature Fiber Sci.Tech.15,1981.
    [95]Grakovich P N,Shelestova V A.Plasma2chemical modification of carbon fibers as an efficient met hod of regulating properties of PTFE-based composite materials[J].Science China,Ser.A,2001,44:292-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700