用户名: 密码: 验证码:
植物信息感知与自组织农业物联网系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业物联网技术作为现代农业最前沿的发展领域之一,是当今世界发展农业信息化,实现农业可持续发展的关键和核心技术。农业物联网信息技术主要包括农业信息感知、传输与信息应用三个层面。而传统农田信息获取面临几大技术瓶颈:一是传感器技术落后,作物养分信息传感器比较鲜见,二是传统农田信息监测只是单点、静态的定时测定,无法实现实时动态检测,难于实现无人值守的农业自动化作业要求。因此,研究植物养分感知技术及关键传感器技术,研究针对大规模农田信息采集无线传输协议与深度路由机制;开发农业物联网软硬件平台已经成为现代农业亟待解决的关键问题。本研究以农业物联网的三个核心层面为研究对象,研究基于可见.近红外光谱植物养分的快速无损感知技术,研究基于FFT算法及小波变换的光谱微弱信号处理方法,并开发了植物叶片养分测定和植物冠层养分、生理信息测定的传感仪器。提出了主动诱导式大规模农业物联网的自组织网络协议和农业物联网深度路由技术,研究了农业物联网故障情况下智能路由维护方法,开发了农业物联网信息采集设备及控制系统,并成功应用到农业生产实践中。主要研究内容与创新性成果有:
     (1)提出了以可见/近红外光谱技术为基础的植物养分测定方法,通过光谱数据预处理-特征波长提取-线性和非线性建模预测的光谱分析技术路径,研究并提取了13个作物养分检测特征波段和3个作物生理信息检测特征波段,开发了适用于农业物联网实时动态植物养分与生理信息检测传感器,通过实验证明,传感器氮素含量检测R2=0.8237,叶绿素检测R2=0.9361,NDVI检测R2=0.9672,LAI检测R2=0.7698。另外,研究了单点作物叶片叶绿素含量、氮含量、水分含量同时检测的方法,开发了多参数叶片养分信息检测仪器,并得到叶绿素检测R2=0.9148,氮素含量检测R2=0.9207,水分含量检测R2=0.8656。
     (2)应用高灵敏度微信号输出的光电感应器作为植物养分检测的光谱信息探测器,设计了信号处理电路,研究了传感的微弱信号处理方法,应用FFT算法及小波分析方法分别对光谱信号进行滤波与微信号提取。经比较发现,小波变换处理后的信号更接近原始有用信号;而FFT算法在高频段处理与小波分析基本相同,低频段信号噪声去除效果略差于小波分析。实验结果表明,处理后信号中噪声振幅被降至0.5uv以下,信噪比提升为8db。
     (3)研究适应于大规模农田信息采集的主动诱导式农业物联网自组织网络组网协议,提出了基于F-MSG,B-MSG (?)肖息事件驱动体制的组网实现方法,并在该组网协议基础上提出了自组织网络协议的最短路径路由组网(SLR)方法,资源竞争模式优化机制(X-SLR)方法,并首次提出深度路由预防(S-SLR)等优化管理方法。实验表明:SLR模式的QoS=1.13,X-SLR优化的QoS=0.14,S-SLR优化的QoS=0.23。经优化后的网络性能大幅提高。在此基础上,提出了网络深度路由的信息调度与组网管理机制,使农业物联网路由深度可达到12级,除了网络延时有所增大外,QoS=0.83,其它参数基本不变。说明网络性能良好,完全达到农业生产的实际需求。
     (4)研究了自组织网络故障发生后的智能化路由维护方法,提出了基于局部网络重组与越级路由两种智能路由维护方式,通过实验表明局部网络重组路由维护对网络平均延时为5秒以内,网络丢包率低于1.5%,QoS=0.15。越级路由维护的网络丢包率控制在3%以内,平均延时为8秒,QoS=0.26。说明两种路由维护完全满足农业物联网的网络性能要求。
     (5)在农业物联网信息实时获取基础上,研究了农业物联网系统与农业自动化控制装备相结的农业智能化信息管理系统,对农业园区水泵恒压控制、自动肥水管理等方法进行了研究,开发物联网信息与控制系统并在农业园区进行了应用示范。
     上述研究成果为大规模田间多维信息实时动态获取、智能化低功耗远程传输及自动控制奠定了理论基础,具有广阔的应用前景。
As one of the forefront areas in the modern agriculture, the agricultural internet of things (IOT) is a key and kernel technology in the development of agricultural informatization and sustainable realization of the world. The Agricultural IOT information technology mainly includes three levels which are agricultural information perception, transmission and information application. While the traditional farmland information acquisition faces several major technical bottleneck:one is backward technology of sensors, as a result, much information of crops lacks corresponding sensors. In addition, the traditional farmland information monitoring is just the single point and static timing measurement which is unable to realize real-time dynamic detection, let alone realize the request of unattended agricultural automation. Therefore, there are some crucial problems that await to be solved urgently in modern agriculture. One is to study the technology of the key sensors and instruments, the wireless transmission agreement and depth routing mechanism based on the characteristics of agricultural IOT netting; the other is to develop the hardware and software platform of the agricultural IOT. Three core levels of agricultural IOT were the objects of this study, nondestructive determining technology of plant nutrients was discussed based on visible/near infrared spectra, and the weak signal detection and development of the corresponding sensing instruments were presented based on the FFT and wavelet transformation. In the research, it was proposed that the active induced self-organized network protocol on large-scale agricultural IOT and the depth routing technology of agricultural IOT. Also,it was investigated that how the intelligent routing maintained under fault conditions, and instruments was developed on the information collection and control systems which had already been successfully used in the agricultural production. The main creative contributions of this paper include:
     (1) A determining method of plant nutrients was proposed based on visible/near infrared spectra. Through analysis methods of spectral data preprocessing-characteristic wavelengths selection-linear and nonlinear calibration modeling,13 effective wavelengths were extracted for the detection of plants nutrients, while 3 effective wavelengths were extracted for plant canopy nutrient information detection, and some sensors were developed for real-time and dynamic detection of this information. The tests of these sensors showed that R2=0.8237 for Nitrogen content detection, R2=0.9361 for chlorophyll detection, R2=0.9672 for NDVI detection, while R2=0.7698 for LAI detection. Some analytical mothods were established for the simultaneous determination of single point chlorophyll content, nitrogen content and moisture content in leaves. Some instruments were developed, and the results of tests were as follows:R2=0.9148 for chlorophyll content detection, R2=0.9207 for nitrogen content detection, and R2=0.8656 for moisture content detection.
     (2) Photoelectric sensors with high-sensitivity photoelectric micro-signals outputting were applied as the spectral information detector of plant nutrients, signal circuit was designed for processing, and processing methods were investigated for output signal. Filter and weak signal extraction were done by FFT algorithm and wavelet transform analysis, respectively. Results showed that signals processed by Wavelet transform were more close to the original useful signal, it was approximately the same of FFT algorithm and wavelet transform analysis in high frequency band, and de-noising effect by wavelet transform analysis was a little better in low frequency band. As a result, the amplitudes of noise dropped below 0.5uv, while SNR (signal-to-noise) was improved to 8db.
     (3) Self-organized network protocol of active induced agricultural IOT was discussed adapted to large-scale agricultural information collection, the realization method was proposed based on F-MSG, B-MSG message event-driven system networking. In this foundation, some optimal management methods were presented as the shortest path routing optimization of self-organized network protocol (SLR), optimization of routing depth defense(S-SLR), optimization mechanism of competition mode(X-SLR). And experiments showed that QoS was 1.13 for SLR, QoS was 0.14 for X-SLR, QoS was 0.23 for S-SLR. Network performances were improved. In this foundation, information scheduling of routing depth and networking management mechanism were presented, routing depth of Agricultural IOT leveled up to 12, other parameters were the same except that network delay was slightly increased as QoS=0.83. The fine network performances meet the practical demands of agricultural industry.
     (4) Intelligent routing maintaining method as responses to network nodes faults was presented by self-organized network protocol technology. Two methods were proposed based on local network reorganization and leapfrog routing, and experiments showed that average network delay was below 5 seconds by routing maintenance of local network reorganization, packet loss rate of network was well controlled below 1.5%,Qos was 0.15, and packet loss rate of network by leapfrog routing maintance was controlled below 3%, average network delay was 8 seconds,QoS was 0.26. It had been proved that these two routing maintenance methods completely satisfied with the desired network performances of the agricultural IOT.
     (5) In the context of real-time agricultural IOT information acquisiton, intelligent information management system of agriculture was proposed of agricultural IOT system combined with agricultural automatic control devices. The methods for constant pressure control of pump and automatic management of fertilizer and water were discussed, and some corresponding systems were developed and successfully applied in plantation as demonstration.
     The studies above have laid a theoretical foundation for real-time dynamic acquisition of multi-dimensional information and intelligent low-power consumption of remote transmission and automatic control in large-scale field, and it has an extensive application prospect.
引文
Benini L., Bogliolo A., De Micheli G. A Survey of Design Techniques for System-level Dynamic Power Management[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,2000,8(3): 299-316
    Chen D., Varshney P. K. QoS Support in Wireless Sensor Networks:A Survey[J]. In Proceeding of International Conference on Wireless Networks (ICWN 04), CSREA Press,2004:227-233
    Daubechies I. The wavelet transform,time-frequency localization and signal analysis[J]. IEEE Transactions on information theory,1990,36(5):961-1005
    David C.T., Lai P.T., et,al. Improved reliability for gate dielectric of low-temperature polysilicon thin film transistors by NO-plasma nitridation[J]. Solid-State Electronics.2003,8(47):1391-1395
    David P.W., Curtis L.M. Linear regression analysis of binary response data with mixed covariates-a simulation study[J]. Controlled Clinical Trials,1984,1(5):73-83
    Dingkuhn D.E., Johnson A. Sow and A.Y. Audebert, Relationships between upland rice canopy characteristics and weed competitiveness[J]. Field Crop. Res,1999,2(61):79-95
    Elisa T.L.(陈家鼎等译).生存数据分析的统计方法[M].北京:中国统计出版社,1998.4
    Elisa T.L. A computer program for linear logistic regression analysis[J]. Computer Programs in Biomedicine, 1974.2(4):80-92
    Ewert F. Modelling.plant responses to elevated CO2:how important is leaf area index[J]. Ann. Bot., 2004,1(93):619-627
    Fasgola O.O.,Hayashi K., Wakatsuki T. Effect of water management and polyolefin-coated urea on growth and nitrogen uptake of indica rice[J]. J Plant Nutr,2002,25(10):2173-2190
    Galvao R.K.H., Araujo M.C.U., Fragoso W.D., et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J]. Chemometrics and Intelligent Laboratory Systems,2008,92(1):83-91
    Ganesan D., Estrin D., Heidemann J. DIMENSIONS:Why do We Need a New Data Handling Architecture for Sensor Networks[J]. ACM SIGCOMM Computer Communication Review,2003,33(1)
    Giuseppe Z., Robert C., Jennings, et al. Independent fluorescence emission of the chlorophyll spectral forms in higher plant Photosystem Ⅱ[J]. Biochimica et Biophysica Acta,1992.2(21):163-169
    Gui C., Mohapatra P. Self-healing and Optimizing Routing Techniques for Mobile Ad Hoc Networks[J]. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing. 2003:279-290
    Hammer M., Hoffmann M.J. Detailed X-ray diffraction analyses and correlation of microstructural and electromechanical properties of La-doped PZT ceramics[J]. J. Electroceram,1998,12 (2):75-84
    Heinzelman W.B., et al. Middleware to Support Sensor Network Applications[J]. IEEE Network,2004,18(1): 6-14
    Huete A.R, A soil-adjusted vegetation index (SAVI).Remote sensing of environment,1988,25:295-309
    Jana A., Zdenek S., et al. Spectral analysis of coniferous foliage and possible links to soil chemistry:Are spectral chlorophyll indices related to forest floor dissolved organic C and N[J]. Science of The Total Environment,2008,2(404):424-432
    Jeanette S.B., Siegrid S. Spectral analysis of chlorophyll-protein complexes from higher plant chloroplasts[J]. Biochimica et Biophysica Acta,1981,2(636):201-209
    Jonckheere, Fleck S., Nackaerts K., et al. Review of methods for in-situ leaf area index determination. Part Ⅰ. Theories, sensors and hemispherical photography [J]. Agric. Forest Meteorol,2004,13(121):19-35
    Jordan C.F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969,50:663-666
    Kazuaki N., Yoshihiro O., et al. Assessment of herbicidal toxicity based on non-destructive measurement of local chlorophyll content in photoautotrophic hairy roots[J]. Journal of Bioscience and Bioengineering, 2003,3(95):264-270
    Kimura N., Jolly V., Latifi S. Information Dissemination with Resource management in Wireless Sensor Networks, accepted and appearing in IASTED International Conference on Communications And Computer Networks,2005,24-26
    Krzysztof Z.H., Mirosaw A.C. Effect of temperature and water content on the structure of 1,2-propanediol and 1,3-propanediol:Near-infrared spectroscopic study[J]. Vibrational Spectroscopy,2009,1 (51):80-85
    Leblanc S.G., Chen J.M. A practical scheme for correcting multiple scattering effects on optical LAI measurements[J]. Agric. Forest Meteorol,2001,2(110):125-139
    Li B.Z, Li M.X,Zhou X,Zhang L,Zhang H. Hyperspectral estimation models for nitrogen contents of apple leaves[J]. Journal of Remote Sensing,2010,14(4):761-766
    Madden S., Szewczyk R., Franklin M.J., et. al. Supporting Aggregate Queries over Ad-Hoc Wireless Sensor Networks[J]. Proc. IEEE WMCSA,2002
    Mallat S., Hwang W.L. Singularity Detection and Processing With Wavelets[J]. IEEE Trans information theory,1992,38(2):617-643
    Malone S., Herbert D.A., Holshouser D.L. Evaluation of the LAI-2000 plant canopy analyzer to estimate leaf area in manually defoliated soybean[J]. Agron. J,2002,4(94):1012-1019
    Masuo A., Nobukazu S. Photo-induced electron transfer of a chlorophyll—liquid crystal electrode to water[J]. Electrochimica Acta,1998,10(23):1061-1065
    Mizunuma, Katoh M., Hata S. Applying IT to farm fields—a wireless LAN[J]. NTT Tech.,2003,1(1):6-60
    Moreno S., Niell F. X. Scales of variability in the sediment chlorophyll content of the shallow Palmones River Estuary[J]. Spain, Estuarine, Coastal and Shelf Science,2004,1(60):49-57
    Norman C., Murdock J.M., Gower L.M. Characterizing canopy nonrandomness with a multiband vegetation imager (MVI)[J]. Geophys. Res.,2002,13(24):29455-29473
    Patrick M., John G., Antonio C. Miranda. Photographic method to measure the vertical distribution of leaf area density in forests[J]. Agricultural and Forest Meteorology,2007,12(3):105-111
    Pering T., Burd T., Brodersen R. The Simulation and Evaluation of Dynamic Voltage Scaling Algorithms[J]. In:Proceedings of the ACM International Symposium on Low Power Electronics and Design, Monterey, CA, USA,1998. New York, NY:ACM Press.76-81
    Pearson R.L., Miller D.L. Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie. Proceedings of the eighth international symposium on remote sensing of environment[J].1972,2:1357-1381
    Pietrini F., Chaudhuri D., et al. Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery[J]. Agriculture, Ecosystems & Environment, 2005.2(106):189-198
    Rao S.S. Optimization Theory and Applications[M]. John Wiley, New York,1984
    Raun W.R., Solie J.B., Johnson G.V., et al. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application [J]. Agron. J,2002,94(7-8):815-820
    Raun W.R., Solie J.B., Johnson G.V., et al. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application[J]. Agron J,2002,94:815-820
    Richardson A.J., Wiegand C.L.. Distinguishing vegetation from soil bachground information[J]. Photogrammetric engineering and remote sensing,1977, (43):1541-1522
    Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Harlan. J.C. Monitoring the vernal advancement of natural vegetation. NASA/GSFC,Type Ⅲ, Final Report, Greenbelt, MD,USA.1974.
    Salem H., Nader M. Middleware Middleware Challenges and Approaches for Wireless Sensor Networks[J]. IEEE Distributed Systems Online,2006,7(3)
    Sinha A., Wang A., Chandrakasan A.P. Algorithmic Transforms for Efficient EnergyScalable Computation. In Proceedings of the ACM International Symposium on Low Power Electronic Design (ISLPED2000), Rapallo, Italy,2000. New York, NY:ACM Press.31-36
    Shibayama M.. Akiyama T.. Seasonal visible, Near-infrared and mind-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass[J]. Remote sensing of environment,1989,27:119-127
    Svetlana M., Kochubey, Taras A., Kazantsev. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content[J]. Journal of Plant Physiology,2007.12(3): 1648-1655
    Wilhelm W.W., Ruwe K. Schlemmer M.R. Comparison of three leaf area index meters in a corncanopy[J]. Crop Sci.,2000,16(40):1179-1183
    Young X.L., Kim J., Govindan R., et. al. Multi-Dimensional Range Queries in Sensor Networks. Proc.1st ACM ENSS,2003
    Yu S.W., Zhu K.J, Diao F.Q. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction.Applied Mathematics and Computation.2008,1(195):66-75
    Zhang J., Kulasekere E.C., Premaratne K., Bauer P.H. Resource Management of Task Oriented Distributed Sensor Networks. In Proceeding of the 2001 IEEE International Symposium on Circuits and Systems, May 2001,3 (2):513-516
    Zhang Y.Q., Chen J.M., Miller J.R., et al. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery[J]. Remote Sensing of Environment,2008.7(112):3234-3247
    毕贤,李通化,吴亮.独立组分分析在红外光谱分析中的应用[J].高等学校化学学报,2004,6:1023-1027
    邴志刚,卢胜利,刘景泰.面向精准灌溉的传感器网络的研究[J].仪器仪表学报,2006,27(z1):294-296
    戴晓华,王智,蒋鹏,夏锋,孙优贤.无线传感器网络智能信息处理研究[J].传感技术学报,2006,19(1):1-7
    冯冬霞,便携式叶面积仪的研制[D],中国农业大学.2005
    冯雷,方慧,周伟军,黄敏,何勇.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752
    冯雷,方慧,黄敏.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006.26(9):1749-1752
    高洪智,卢启鹏,丁海泉,彭忠琦,基于连续投影算法的土壤总氮近红外特征波长的选取.光谱学与光谱分析.2009,29(11):2951-2954
    侯瑞,吉海彦,饶震红,申兵辉.基于近红外光谱的活体植物叶片水分检测仪器[J].农业工程学报,2009,25(S2):92-96
    侯振雨,姚树文,谷永庆,徐甲强.独立成分分析支持向量机回归模型及其在近红外光谱分析中的应用[J].河南师范大学学报(自然科学版),2006,34(2):75-78
    江国星,易明.低开销的MANET网络按需路由协议[J].通信学报,2009,30(7):27-35
    匡迎春,沈岳,段建南,姚帮松.模糊控制在水稻节水自动灌溉中的应用[J].农业工程学报,2011,27(4):18-21
    李德威,曾鹏,肖金超.基于双向多路径的工业无线传感器网络路由维护机制[J].小型微型计算机系统,2011,32(6):1094-1098
    李刚华,丁艳锋,薛利红等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展[J].植物营养与肥料学报,2005,11(3):412-416.
    李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报.1999,5(3):193-205
    李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮积累量与冠层反射光谱指数的定量关系[J].作物学报,2006,32(2):203-209
    林芬芳,陈祝炉,邓劲松,王珂.傅立叶变换中红外光谱估测水稻叶片氮素含量的研究[J].植物营养与肥料学报,2009,15(04):750-755
    刘飞,王莉,何勇.应用多光谱图像技术获取黄瓜叶片含氮量及叶面积指数[J].光学学报,2009a,29(6):16]6-1620
    刘飞,王莉,何勇等.基于可见/近红外光谱技术的黄瓜叶片SPAD值检测[J].红外与毫米波学报,2009b,28(4):272-276
    刘飞,张帆,方慧,金宗来,周伟军,何勇.连续投影算法在油菜叶片氨基酸总量无损检测中的应用[J].光谱学与光谱分析,2009c,29(11):3079-3083
    刘飞.基于光谱和多光谱成像技术的油菜生命信息快速无损检测机理和方法研究[D].浙江大学,201 1
    刘宏斌,张云贵.光谱技术在冬小麦氮素营养诊断中的应用研究[J].中国农业科学,2004,37(11):1743-1748
    刘伟东,项月琴,郑兰芬等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析[J].遥感学报,2000,4:279-283
    刘伟彦,孙雁飞,张顺颐,刘斌.一种参数自适应的主动队列管理算法—自适应BLUE[J].电子与信息学报,2009,31(12):462-466
    刘炜,常庆瑞,郭曼,邢东兴,员永生.基于改进红边面积的夏玉米叶片氮素含量导数光谱监测[J].西北农林科技大学学报(自然科学版),2010,38(04):91-98
    刘晓为,潘慧艳,揣荣岩,王喜莲,李金锋.膜厚对多晶硅纳米薄膜压阻温度特性的影响[J].传感技术学报,2007(11):2422-2425
    楼佳,唐延林,蔡绍洪,黄敬峰.水稻透射光谱与氮含量的相关性研究[J].中国农学通报,2009,25(24):544-548
    芦永军,曲艳玲,宋敏.近红外相关光谱的多元散射校正处理研究[J].光谱学与光谱分析,2007,27(5):877-880
    陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2006
    马新明,张娟娟,席磊等.基于叶面积指数(LAI)的小麦变量施氮模型研究[J].农业工程学报,2008,24(02):22-25
    彭月,魏虹,朱韦等.作物氮素营养状况的高光谱遥感估测技术探析[J].云南民族大学学报:自然科学版,2006,15(1):45-49
    裘正军,宋海燕,何勇,方慧.应用SPAD和光谱技术研究油菜生长期间的氮素变化规律[J].农业工程学报,2007,23(7):150-154
    任红艳,潘剑君,张佳宝.不同施氮水平下的小麦冠层光谱特征及产量分析[J].土壤通报,2005,36(01):26-29
    唐延林,王人潮,王秀珍等.水稻叶面积指数和叶片生化成分的光谱法研究[J].华南农业大学学报(自然科学版),2003a,24(1):4-7
    唐延林,王人潮,张金恒,王珂.高光谱与叶绿素计快速测定大麦氮素营养状况研究[J].麦类作物学报.2003,23(01):63-66
    唐云建,石为人,易军,王燕霞.一种支持移动Sink的局部路由维护机制[J].计算机工程,2010,36(22):116-121
    田炜,杨震.基于传输半径倍数的无线传感器网络交替路由[J].应用科学学报,2010,28(4):342-346
    田亦陈,贾坤,吴炳方,李强子.大麻植物冠层光谱特征研究[J].光谱学与光谱分析,2010,30(12):3334-3337
    田永超,曹卫星,姜东,朱艳,薛利红.不同水氮条件下水稻冠层反射光谱与植株含水率的定量关系[J].植物生态学报,2005,29(2):318-323
    王方永,王克如,李少昆等.应用两种近地可见光成像传感器估测棉花冠层叶片氮素状况[J].作物学报,2011,37(6):1039-1048
    王福民 黄敬峰 徐俊锋基于光谱波段自相关的水稻信息提取波段选择[J].光谱学与光谱分析,2008.28(5):1098-1101
    王雷春,马传香.基于在线聚类和检测成本的移动自组网异常检测[J].计算机科学,2010,37(9):105-108
    王昕.节水灌溉预报专家系统的研究[D].北京交通大学,2004
    王秀,赵春江,周汉昌等.冬小麦生长便携式NDVI测量仪的研制与试验[J].农业工程学报,2004,20(4):95-98
    王渊.不同水平油菜氮素含量遥感信息提取方法研究[D].浙江大学,2008
    吴春明,姜明.SBlue:一种增强Blue稳定性的主动式队列管理算法[J].通信学报,2005,26(3):68-74
    吴燕萍,基于虚拟仪器的灌溉信息自动监控系统研究[D].浙江大学,2005
    薛利红,曹卫星,李映雪,周冬琴,李卫国.水稻冠层反射光谱特征与籽粒品质指标的相关性研究[J].中国水稻科学,2004b,18(5):431-436
    薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测[J].中国农业科学,2003,36(7):807-812
    薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报,2004a,28(01):47-52
    杨海清,姚建松,何勇.基于反射光谱技术的植物叶片SPAD值预测建模方法研究[J].光谱学与光谱分析,2009,29(6):1607-1610
    姚建松,杨海清,何勇.基于可见-近红外光谱技术的油菜叶片叶绿素含量无损检测研究[J].浙江大学学报(农业与生命科学版),2009,35(4):433-438
    姚霞,刘小军,王薇,倪军,曹卫星,朱艳.小麦氮素无损监测仪敏感波长的最佳波段宽度研究[J].农业机械学报,2011,42(02):162-167
    姚霞,刘小军,王薇,田永超,曹卫星,朱艳.基于减量精细采样法估算小麦叶片氮积累量的最佳归一化光谱指数[J].应用生态学报,2010,21(12):3175-3182
    叶亮.Ad hoc网络路由抗抖动算法[D].哈尔滨工业大学.2010
    易秋香,黄敬峰,王秀珍等.玉米全氮含量高光谱遥感估算模型研究[J].农业工程学报,2006,22(9):138-143
    鱼欢.施氮量、氮源及栽培模式对小麦、玉米生理特性及产量的影响[D].西北农林科技大学,2009
    张俊华,张佳宝,李立平.基于冬小麦植被指数的氮肥调控技术研究[J].土壤学报,2007,44(03):550-555
    张全法,冯绚,何金田.植物叶片面积测量系统的设计及应用[J].河南农业大学学报,2001,35(4):383-386
    张雪红,刘绍民,何蓓蓓.不同氮素水平下油菜高光谱特征分析[J].北京师范大学学报:自然科学版,2007,43(3):245-249
    张彦娥.基于计算机视觉技术温室作物长势诊断机理与方法研究[D].中国农业大学,2005
    赵瑞娇,李民赞,杨策,杨玮,孙红.温室番茄冠层和叶片光谱特征分析及营养诊断[J].光谱学与光谱分析,2010,30(11):3103-3106
    赵松年,熊小芸.子波变化与子波分析[M].北京:电子工业出版社,1997
    朱娟娟,梁银丽,TREMBLAY Nicolas不同水氮处理对玉米氮素诊断指标的影响[J].作物学报,2011,37(7):1258-1265
    朱新开,盛海君,顾晶,张容,李春燕.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究[J].麦类作物学报,2005,25(2):46-50
    左欣,韩斌,程嘉林.基于数字图像处理的植物叶面积测量方法[J].计算机工程与应用,2006,8(27):194-196
    张晓东,毛罕平.油菜氮素光谱定量分析中水分胁迫与光照影响及修正[J].农业机械学报,2009, 40(2):164-169
    朱艳,李映雪,周冬琴,田永超,姚霞,曹卫星.稻麦叶片氮含量与冠层反射光谱的定量关系[J].生态学报.2006,26(10):3463-3469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700