用户名: 密码: 验证码:
丛枝菌根真菌对宝山堇菜吸收铅和镉的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复作为一项环境友好、成本节省的土壤重金属污染治理技术近年来广受关注,而利用土著AM真菌来提升超富集植物修复效率被认为是一种具有潜力的修复策略;因此阐明AM真菌对植物吸收重金属影响意义重大。宝山堇菜是在中国发现的为数不多的镉超富集植物之一,田间试验也证明宝山堇菜具有较强的从污染土壤中去除铅和镉的能力。本论文是首次对土著AM真菌在宝山堇菜吸收铅和镉中的作用进行了研究;研究了在不同土壤铅或镉浓度(实验一)、土壤磷水平(实验二)、时间进程(实验三)和株密度(实验四)下AM真菌对宝山堇菜铅和镉吸收的影响。本研究的主要结论如下:
     1.高土壤有效铅、镉和磷浓度显著抑制宝山堇菜AM真菌侵染。施铅浓度从500mg kg~(-1)起抑制了AM真菌侵染,这种作用随铅浓度增加而增强;施镉浓度在200mg kg~(-1)时和施磷水平在500mg kg~(-1)时均显著抑制了AM菌根侵染。AM真菌侵染率随时间而提高至第9周,随后相对稳定;而株密度对AM真菌侵染率无显著影响。
     2.影响AM真菌对宝山堇菜地上部磷浓度影响的主要因素是土壤磷水平,土壤有效铅镉浓度以及株密度有一定影响,而时间进程影响不显著。在矿区土中接种AM真菌均显著增加了宝山堇菜地上部磷浓度,且不受磷水平的影响。但在水稻土的施铅和施镉处理中,接种AM真菌对宝山堇菜地上部磷浓度的作用是不一致的:在实验一中无显著影响,而在实验三的Pb1000和Cd100处理中则是显著增加的。
     3.土壤磷水平是影响AM真菌对宝山堇菜地上部生长作用的主要因素。在土壤磷水平较低的矿区土中,AM真菌对地上部生长的作用从不施磷处理的正面到施磷为50mg kg~(-1)和250mg kg~(-1)时的中性,再到施磷为500mg kg~(-1)时的负面。而在土壤磷水平较高的水稻土中,磷不再是宝山堇菜生长的限制因素。在施铅处理中,有效铅浓度是影响AM真菌作用的主要因素:从施铅为500mg kg~(-1)时的负面到1000和1500mg kg~(-1)的中性或正面。在施镉处理中,株密度是影响AM真菌作用的主要因素。
     4.土壤中有效铅浓度是影响AM真菌对宝山堇菜地上部铅浓度作用的主要因素。在土壤DPTA提取态铅不超过221mg kg~(-1)时,AM真菌提高了宝山堇菜地上铅浓度,但在DPTA提取态铅大于或等于379mg kg~(-1)时,AM真菌降低了地上部铅浓度。未接种处理的宝山堇菜地上部铅浓度和TF值随着磷水平的提高而下降,但接种处理的所受影响不大。另外,株密度和时间进程对AM真菌的作用均无显著影响。
     5.从土壤DPTA提取态镉11.5mg kg~(-1)起, AM真菌降低了宝山堇菜地上部镉浓度;且这种作用不受土壤磷水平的影响。在有效镉浓度不超过23.0mg kg~(-1)时,这种抑制作用是通过降低TF值来实现的,而在较高有效镉浓度则是通过降低根部镉浓度来实现的。株密度对AM真菌的作用有一定的影响,而时间进程则无显著影响。
     本研究表明:在土壤有效铅浓度较低时AM真菌会提高宝山堇菜地上部铅浓度,但在有效铅浓度较高时则会降低地上部铅浓度。AM真菌降低了宝山堇菜地上部镉浓度,但其作用机制会因有效镉浓度高低而异。在土壤磷水平和有效铅镉浓度均较低时,AM真菌促进了宝山堇菜地上部对铅和镉的迁移总量;从而提高了对铅和镉的修复效率。在土壤有效铅或镉浓度较高时,AM真菌会降低宝山堇菜对铅和镉的吸收,这可能是AM真菌提高宝山堇菜对重金属耐性的主要机制。
Phytoextraction, as an environmentally friendly and cost-effective approach tocleaning up sites contaminated by heavy metals has received more attention in recentyears, and to employ the indigenous arbuscular mycorrhizal (AM) fungi ofhyperaccumulator species is considered as a potential strategy to enhance theefficiency of remediation. Therefore, it is of great importance to elucidate the effectsof AM fungi on plant HM uptake.
     V. baoshanensis is one of the rare cadmium (Cd) hyperaccumulators found inChina and field experiment showed that V. baoshanensis had a relatively strong abilityto remove Cd and lead (Pb) from the contaminated soil. To date, it is the first time tostudy the effect of AM colonization on Cd and Pb uptake by this hyperaccumulator.The present study aims to investigate the effect of indigenous AM fungi on Cd and Pbuptake by V. baoshanensis under varying soil Cd and Pb concentrations (Exp.1), Pavailability (Exp.2), time course (Exp.3) and species density (Exp.4). Major resultsare listed as follows:
     1. High availability of Pb, Cd and P significantly inhibited the AM colonization ofV. Baoshanensis. Applied Pb at500mg kg~(-1)inhibited AM colonization, and theinhibition increased with increasing soil Pb concentration, while both applied Cd at200mg kg~(-1)and applied P at500mg kg~(-1)significantly inhibited AM colonization.AM colonization increased with time till9weeks, and became relatively stablethereafter, while species density had no significant effect on AM colonization.
     2. Soil P availability was the main factor affecting the role of AM fungi in shoot Pconcentration of V. Baoshanensis. Available Pb and Cd,and species density also hadcertain effect, while time course had no significant effect. In mine soils, inoculationwith AM fungi significantly increased shoot P concentration regardless of P availability. In paddy soils with applied Pb or Cd, however, the effect of AM fungi onshoot P concentration of V. baoshanensis was inconsistent: no significant effect wasobserved in Exp.1while inoculation significantly increased shoot P concentration intreatments of Pb1000and Cd100in Exp.3.
     3. Soil P availability was the main factor affecting the role of AM fungi in shootgrowth of V. Baoshanensis. In mine soil with low P availability, the effect of AMfungi on shoot growth was positive without P addition, and became neutral with Paddition at50or250mg kg~(-1), and negative at applied P of500mg kg~(-1). However, inpaddy soil with high P availability, P was no longer the limiting factor of growth of V.baoshanensis. In the treatments with Pb addition, the main factor affecting the role ofAM fungi in shoot growth was available Pb: the effect was negative at Pb addition of500mg kg~(-1), and became neutral or positive at applied Pb of1000or1500mg kg~(-1). Inthe treatments with Cd addition, the main factor affecting the role of AM fungi inshoot growth was species density.
     4. Soil Pb availability was the main factor affecting the role of AM fungi in shootPb concentration of V. baoshanensis. When DPTA-extractble Pb was no more than221mg kg~(-1), AM fungi increased shoot Pb concentration, while AM fungi decreasedshoot Pb concentration at DPTA-extractrable Pb no less than379mg kg~(-1). Innon-inoculated treatments, shoot Pb concentrations and TF values of V. baoshanensisdecreased with increasing P availability, while in inoculated treatments no effect wasobserved with varing P availability. In addition, species density and time course hadno significant effect on the role of AM fungi in shoot Pb concentration of V.baoshanensis.
     5. AM fungi decreased shoot Cd concentration of V. baoshanensis whenDPTA-extractable Cd was no less than11.5mg kg~(-1), and the effect was regardless ofP availability. The inhibition on shoot Cd concentration was realised by decreased TFvalues at DPTA-extractable Cd no more than23.0mg kg~(-1), whereas the inhibition wasachieved via decreasing root Cd concentration at higher Cd availability. Speciesdensity had certain effect on the role of AM fungi in shoot Cd concentration while nosignificant effect was observed in time course.
     The results indicated at low available Pb, AM fungi increased shoot Pbconcentration of V. baoshanensis, while at high available Pb concentration AM fungidecreased shoot Pb concentration. AM fungi decreased shoot Cd concentration of V.baoshanensis, but the mechanism of inhibition depended on Cd availability. At low available P, Pb and Cd, AM fungi increased the removal of Pb or Cd in the shoots of V.baoshanensis. At high bioavailable Pb and Cd, AM fungi decreased shoot Pb or Cdconcentration of V. baoshanensis, and this was probably the main mechanisminvolved in enhancing HMs tolerance of V. baoshanensis by AM fungi.
引文
陈丽莉,俄胜哲.中国土壤重金属污染现状及生物修复技术研究进展.现代农业科学,2009,16:139-146
    冯海艳,冯固,王敬国,李晓林.植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控.菌物系统,22(4):589-598
    刘威,束文圣,蓝崇钮.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物.科学通报,2003,48(19):2046-2049
    肖艳萍,李涛,费洪运,赵之伟.云南金顶铅锌矿区丛枝菌根真菌多样性的研究.菌物学报,2008,27(5):652-662
    杨肖娥,龙新宪,倪吾钟等.东南景天(Sedum alfredii H.)——种新的锌超积累植物.科学通报,2002,47(13):1003-1006
    周启星,宋玉芳等.污染土壤修复原理与方法.科学出版社,2004, pp458
    Al Agely A, Sylvia D M, Ma L Q. Mycorrhizae increase arsenic uptake by the hyperaccumulatorChinese brake fern (Pteris vittata L.). J Environ Qual,2005,34:2181-2186
    Alford é R, Pilon-Smits EAH, Paschke MW. Metallophytes–a view from the rhizosphere. PlantSoil,2010,337:33-50
    Allen M F, Swenson W, Querejeta J I, et al. Ecology of mycorrhizae: a conceptual framework forcomplex interactions among plants and fungi. Annu Rev Phytopathol,2003,41:271-303
    Aloui A, Recorbet G, Robert F. Arbuscular mycorrhizal symbiosis elicits shoot proteome changesthat are modified during cadmium stress alleviation in Medicago truncatula. Plant Biol,2011,11:75-92
    Alves da Silva G, Trufem S F B, Saggin Júnior O J et al. Arbuscular mycorrhizal fungi in a
    semiarid copper mining area in Brazil. Mycorrhiza,2005,15:47-53
    Amir H, Jasper D A, Abbott L K. Tolerance and induction of tolerance to Ni of arbuscuarmycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza,2008,19:1-6
    Amir H, Perrier N, Rigault F, Jaffré T. Relationships between Ni-hyperaccumulation andmycorrhizal status of different endemic plant species from New Caledonian ultramafic soils.Plant Soil,2007,293:23-35
    Andra S S, Datta R, Sarkar D et al. Synthesis of phytochelatins vetiver grass upon lead exposurein the presence of phosphorus. Plant Soil,2010,326:171-185
    Andrade S A L, Abreu C A, de Abreu M F, et al. Influence of lead additions on arbuscularmycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol,2004,26:123-131
    Andrade S A L, Silveira A P D, Jorge R A, et al. Cadmium accumulation in sunflower plantsinfluenced by arbuscular mycorrhiza. Int J Phytoremediat,2008.10:1-13
    Arriagada C A, Herrera M A, Ocampo J A. Beneficial effect of saprobe and arbuscularmycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soilcontaminated with heavy metals. J Environ Manage,2007,84:93-99
    Arriagada C A, Herrera M A, Ocampo J A. Contribution of arbuscular mycorrhizal and saprobefungi to the tolerance of Eucalyptus globosus to Pb. Water Air Soil Poll,2005,166:31-47
    Assun áo A G L, Martins P D, De Folter S, et al. Elevated expression of metal transporter genes inthree accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ,2001,24:217-226
    Audet P, Charest C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metalphytoremediation: metal-analytical and conceptual perspectives. Environ Pollut,2007,147:609-614
    Azcón R, Medina A, Roldán B, et al. Significance of treated agrowaste residue and autochthonousinoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structureand phytoextraction to remediate soils contaminated with heavy metal. Chemosphere,2009,75:327-334
    Baker A J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants: a review of theecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils.In Phytoremediation of Contaminated Soil and Water. Eds. N Terry, G Ba uelos and JVangronsveld.2000, pp85-107. Lewis Publishers, Boca Raton, FL, USA.
    Bernal M P, McGrath S P. Effects of pH and heavy metal concentrations in solution culture on theproton release, growth and elemental composition of Alyssum murale and Raphanus sativus L.Plant Soil,1994,166:83-92
    Bissonette L, St-Arnaud M, Labrecque M. Phytoextraction of heavy metals by two Salicaceaeclones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial.Plant Soil,2010,332:55-67
    Bi Y L, Li X L, Christie P. Influence of early stages of arbuscular mycorrhiza on uptake of zincand phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus.Chemosphere,2003,50:831-837
    Bradley R, Burt A J, Read D J. Mycorrhizal infection and resistence to heavy-metal toxicity inCalluna vulgaris. Nature,1981,292:335-337
    Bray R H, Kurtz L T. Determination of total, organic and available forms of phosphorus in soil.Soil Science,1945,59:39-45
    Bremndner J M, Mulvaney C S. Total nitrogen. In: Page A. L.(Ed.), Methods of Soil Analysis, Part2,2Edition, Agronomy Monograph9. ASA and SSSA, Madison, W I,1982, pp.595-624
    Brooks R R. Geobotany and hyperaccumulators. In Plants that Hyperaccumulate Heavy Metals.Wallingford, UK: CAB intentional,1998,55-94
    Brooks R R, Lee J, Reeves R D. Detection of nickeliferous rocks by Alyssum of herbarium speciesof indicator plants. J Geochem Explor,1977,7:49-57
    Brown S L, Chaney R L, Angle J S, et al. Phytoremediation potential of Thlaspi caerulescens andbladder campion for zinc-and cadmium-contaminated soil. J Environ Qual,1994,23:1151-1157
    Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspicaerulescens grown in nutrient solution. Soil Sci Soc Am J,1995,59:125-133
    Brundrett M C. Coevolution of roots and mycorrhizas of land plants. New Phytol,2002,154:275-304
    Buchan D, Moeskops B, Ameloot N, et al. Selective sterilization of undisturbed soil cores bygamma irradiation: effects on free-living nematodes, microbial community and nitrogendynamics. Soil Biol Biochem,2012,47:10-13
    Carvalho L M,Cac ador I,Martins-Lou o M A. Arbuscular mycorrhizal fungi enhance rootcadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. PlantSoil,2006,285:161-169
    Cavagnaro T R. The role of arbuscular mycorrhizas in improving plant zinc nutrition under lowsoil zinc concentrations: A review. Plant Soil,2008,304:315–325
    Cavagnaro T R, Jackson L E, Scow K M, et al. Effects of arbuscular mycorrhizas on ammoniaoxidizing bacteria in an organic farm soil. Microb Ecol,2007,54:618–626
    Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals. Curr Opin Biotech,1997,8:279-284
    Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminatedcalcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza,2004,14:347-354
    Chen B D, Zhu Y G, Duan J. Effects of the arbuscular mycorrhizal fungus Glomus mosseae ongrowth and metal uptake by four plant species in copper mine tailings. Environ Pollut,2007,147:374-380
    Chen B D, Zhu Y G, Smith F A. Effects of arbuscular mycorrhizal innoculation on uranium andarsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uraniumminging-impacted soil. Chemosphere,2006,62:1464-1473
    Chen X, Wu C H, Tang J J, et al. Arbuscular mycorrhizae enhance metal lead uptake and growthof host plants under a sand culture experiment. Chemosphere,2005,60:665-671
    Christie P, Li X L, Chen B D. Arbuscular mycorrhizas can depress translocation of zinc toshoots of host plants in soils moderately polluted with zinc. Plant Soil,2004,261:209–217
    Citterio S, Prato N, Fumugalli P, et al. The arbuscular mycorrhizal fungus Glomus mosseaeinduces growth and metal accumulation changes in Cannabis sativa L.Chemosphere,2005,59:21-29
    Cobbett C, Goldsbrough P. Phyto chelatins and metallothioneins: roles in heavy metaldetoxification and homestasis. Annu Rev Plant Biol,2002,53:159-182
    Connolly E L, Fett J P, Guerionot M L. Expression of the IRT1metal transporter is controlled bymetals at the levels of transcript and protein accumulation. Plant Cell,2002,14:1347-1357
    Cowen LE, Lindquist S. Hsp90potentiates the rapid evolution of new traits: drug resistance indiverse fungi. Science,2005,309:2185-2189
    Cunningham S C, Berti W R, Huang J W. Phytoremediation of contaminated soils. TrendsBiotechnol,1995,13:393-37
    Cunningham S D, Berti W R. Phytoextraction and phytostabilization: technical, economic, andregulatory considerations of the soil-lead issue. In Phytoremediation of Contaminated Soil andWater. Eds. N Terry and G Ba uelos.2000,359-375. Lewis Publishers, Boca Raton, FL, USA
    Cunningham S D, Ow D W. Promises and prospects of phytoremediation. Plant Physiol,1996,110:715-719
    Daniell T J, Husband R, Fitter A H, et al. Molecular diversity of arbuscualr mycorrhizal fungicolonising arable crops. FEMS Microbiol Ecol,2001,36:203-209
    Del Val C, Barea J M, Azcón-aguilar C. Diversity of Arbuscular Mycorrhizal Fungus Populationsin Heavy-Metal-Contaminated Soils. Appl and Environ Microb,1999a,65:718-723
    Del Val C, Barea J M, Azcón-aguilar C. Assessing the tolerance to heavy metals of arbuscularmycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol,1999b,11:261-269
    Deram A, Languereau F, Van Haluwyn C. Mycorrhizal and endophytic fungal colonization inArrhenatherum elatius L. roots according to the soil contamination in heavy metals. SoilSediment Contam,2011,20:114-127
    Diaz G, Azcon-Aguilar C, Honrubia M. Influence of arbuscular mycorrhizae on heavy metal (Znand Pb) uptake and growth of Lygeum spartum and Anthillis cystisoides. Plant Soil,1996,180:241-249
    Duponnois R, Plenchette C, Thioulouse J, Cadet P. The mycorrhizal soil infectivity and arbuscularmycorrizal fungal spore communities in soils of different aged fallows in Senegal. Appl SoilEcol,2001,17:239-251
    Ebbs S D, Lau I, Ahner B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in theZn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl). Planta,2002,214:635-640
    Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation. Biomaterials,2001,14:251-270
    Garg N, Aggarwal N. Effects of interactions between cadmium and lead on growth, nitrogenfixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. JPlant Growth Regul,2011,30:286-300
    Gerdemann J W, Nicolson T H. Spore of mycorrhizal Endogone species from soil by wet sievingand decanting. Trans Br Mycol Soc,1963,46:235-244
    G hre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metalphytoremediation. Planta,2006,223:1115-1122
    Gonzalez-Chavez C, D’Haen J, Vangronsveld J, et al. Copper sorption and accumulation by theextraradical mycelium of different Glomus spp.(arbuscular mycorrhizal fungi) isolated from thesame polluted soil. Plant Soil,2002,240:287-297
    González-Chavez M C, Carrillo-González R, Gutiérrez-Castorena M C. Natural attenution in aslag heap contaminated with cadmium: The role of plants and arbuscular fungi. J HazardMater,2009,161:1288-1298
    González-Chavez M C, Carrillo-González R, Wright S F, et al. The role of glomalin, a proteinproduced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. EnvironPollut,2004,130:317-323
    González-Guerrero M, Azcón-Aguilar C, Mooney M, et al. Characterization of a Glomusintraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family.Fungal Genet Biol,2005,42:130-140
    Gregory P J. Plant roots growth, activity and interaction with soils.2006, Blackwell, Oxford.
    Griffioen W A J, Ietswaart J H, Ernst W H O. Mycorrhizal infection of Agrostis capillarispopulation on a Copper-contaminated soil. Plant Soil,1994,158:83-89
    Guillemin J P, Orozco M O, Gianinazzi-Pearson V, et al. Infuence of phosphate fertilization onfungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza ofsoybean and pineapple. Agr Ecosyst Environ,1995,53:63-69
    Hajiboland R, Aliasgharzadeh N, Laiegh S F, et al. Colonization with arbuscular mycorrhizal fungiimproves salinty tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil,2010,331:313-327
    Hartley J, Cairney J W G, Meharg A A. Do ectomycorrhizal fungi exhibit adaptive tolerance totoxic metals in the environment? Plant Soil,1997,189:303-319
    Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance.Phytochemistry,2007,68:139-146
    Hovsepyan A, Greipsson S. Effect of Arbuscular Mycorrhizal Fungi on Phytoextraction by Corn(Zea mays) of Lead-Cotaminated Soil. Int J Phytoremediat,2004,6:305-321
    Jackson L E, Burger M, Cavagnaro T R. Roots, nitrogen transformations, and ecosystem services.Annu Rev Plant Biol,2008,59:341–363
    Jacobsen I, Smith F A. Function and diversity of arbuscular mycorrhizae in carbon and mineralnutrition: In: van de Heijden M G.A, Sanders I R (Eds.), Mycorrhizal Ecology,2nd ed.Springer-Veerlag Berlin, Heidelberg, New York,2002
    Jankong P, Visoottiviseth P, Khokiattiwong S. Enhanced phytoremediation of arseniccontaminated land. Chemosphere,2007,68:1906-1912
    Jaffré H. Sebertia acuminate: a hyperaccumulator of nickel from New Caledonia. Science,1976,193:579-580
    Jakobsen I, Joner E J, Larsen J. Hyphal phosphorus transport, a keystone to mycorrhizalenhancement of plant growth. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscularmycorrhizas on sustainable agriculture and natural ecosystems. Birkh user, Basel,1994,pp133–146
    Janou ková M, Pavlíková D. Cadmium immobilization in the rhizosphere of arbuscularmycorrhizal plants by the fungal extraradical mycelium. Plant Soil,2010,332:511-520
    Janou ková M, Pavlíková D, Macek T, et al. Influence of arbuscular mycorrhiza on the growth andcadmium uptake of tobacco with inserted metallothionein gene. Appl Soil Ecol,2005,29:209-214
    Janou ková M, Pavlíková D, Vosátka M. Potential contribution of arbuscular mycorrhizal tocadmium immobilisation in soil. Chemosphere,2006,65:1959-1965
    Janou ková M, Vosátka M, Rossi L, et al. Effects of arbuscular mycorrhizal inoculation oncadmium accumulation by different tobacco (Nicotiana tabacum L.) types. Appl Soil Ecol,2007,35:502-510
    Joner E J, Briones R, Leyval C. Metal-binding capacity of arbuscular mycorrhizal mycelium.Plant Soil,2000,226:227-234
    Joner E J, Levyal C. Time-course of heavy metal uptake and clover as affected by root density anddifferent mycorrhizal inoculation regimes. Biol Fert Soils,2001,33:351-357
    Kaldorf M, Kuhun A J, Schroder W H, et al. Selective element deposits in maize colonized by aheavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol,1999,154:718-728
    Kapoor R, Bhatnagar AK. Attenuation of cadmium toxicity in mycorrhizal celery (Apiumgraveolens L.). World J Microbiol Biotechnol,2007,23:1083–1089
    Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends PlantSci,2005,10:22-29
    Khade S W, Adholeya A. Arbuscular Mycorrhizal Association in Plants Growing onMetal-Contaminated and Nontaminated Soils Adjoining Kanpur Tanneries, Uttar Pradesh, India.Water, Air Soil Pollut,2009,202:45-56
    Khade S W, Adholeya A. Feasible bioremediation through Arbuscular mycorrhizal fungiinparting heavy metal tolerance: a retrospective. Bioremediat J,2007,11:33-43
    Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metalcontaminated soils in phytoremediation. J Trace Elem Med and Bio,2005,18:355-364
    Knight K, Zhao F J, McGrath S P and Shen Z G,1997. Zinc and cadmium uptake by thehyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on theconcentration and chemical speciation of metals in soil solution. Plant Soil,1997,197:71-78
    Koide R T, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza,2004,14:145-163
    Koske R E, Gemma J N. A modified procedure for staining roots to detect VA mycorrhizas. MycolRes,1989,92:486-505
    Kothari S K, Marschner H, George E. Effect of VA mycorrhizal fungi and rhizospheremicroorganisms on root and shoot morphology growth and water relations in maize. NewPhytol,1990,116:303-311
    Kr mer U, Cotter-Howells J D, Charnock J M, et al. Free histidine as a metal chelator in plantsthat accumulate nickel. Nature,1996,379:635-638
    Kr mer U. Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech,2005,16:16:133-141
    Kr mer U, Pickering I J, Prince R C, et al. Subcellular localization and speciation of nickel inhyperaccumulator and non-accumulator Thlaspi species. Plant Physiol,2000,122:1343-1353
    Kr mer U, Smith R D, Wenzel W W, et al. The role of metal transport and tolerance in nickelhyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol,1997,115:1641-1650
    Kumar PBAN, Dushenkov V, Motto H, et al. Phytoextraction: The use of plants to remove heavymetals from soil. Environ Sciand Technol,1995,29:1232-1238
    Küpper H, Lombi E, Zhao F J, et al. Cellular compartmentation of nickel in thehyperaccumulators Alyssum lesbiacum, Alyssum Bertolonii and Thlaspi goesingense. J Exp Bot,2001,52:229-2300
    Küpper H, Zhao F J, McGrath S P. Cellular compartmentation of zinc in leaves of thehyperaccumulator Thlaspi caerulescens. Plant Physiol,1999,119:305-311
    Lanfranco L, Bolchi A, RosEC, Ottonello S, Bonfante P. Differential expression of ametallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscularmycorrhizal fungus. Plant Physiol,2002,130:58-67
    Lasat MM. Phytoextraction of heavy metals: a review of biological mechanisms. J Environ Qual,2002,31:109-120
    Lasat M M, Baker A J M, Kochian L V. Altered zinc compartmentation in the root symplasm andstimulated Zn2+absorption into the leaf as mechanisms involved in zinc hyperaccumulation inThlaspi caerulescens. Physiology,1998,118:875-883
    Lasat M M, Baker A J M, Kochian L V. Physiological Characterisation of root Zn2+absorption andtranslocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. PlantPhysiol,1996,112:1715-1722
    Lasat M M, Pence N S, Garvin D F, et al. Molecular physiology of zinc transport in the Znhyperaccumulator Thlaspi caerulescens. J Exp Bot,2000,51:71-79
    Lee Y J, George E. Contribution of mycorrhizal hyphae to the uptake of metal cations bycucumber plants at two levels of phosphorus supply. Plant Soil,2005,278:361-370
    Leung H M, Ye Z H, Wong M H. Interactions of the arbuscular mycorrhizal fungi with Pterisvittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut,2006,139:1-8
    Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: GobranGR,WenzelW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, pp165–185
    Leyval C, Singh B R, Joner E J. Occurrence and infectivity of arbuscular mycorrhizal fungi insome Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Pollut,1995,84:203-216
    Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonizationand function: physiological, ecological and applied aspects. Mycorrhiza,1997,7:139-153
    Likar M, Regvar M. Application of temporal temperature gradient gel electrophoresis forcharacterisation of fungal endophyte communities of Salix caprea L. in a heavy metal pollutedsoil. Sci Total Environ,2009,407:6179-6187
    Lin A J, Zhang X H, Wong M H, et al. Increase of multi-metal tolerance of three leguminousplants by arbuscular mycorrhizal fungi colonization. Environ Geochem Hlth,2007,29:473-481
    Liu W, Shu WS, Lan CY. Viola baoshanensis, a plant that hyperaccumulates cadmium. ChineseSci Bull,2004,49:29-32
    Liu Y, Zhu Y G, Chen B D, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseaeon uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza,2005,15:187-192
    Liu Y, Christie P, Zhang J L, et al. Growth and arsenic uptake by Chinese brake fern inoculatedwith an arbuscular mycorrhizal fungus. Environ Exp Bot,2009,66:435-441
    Lombi E, Tearall K L, Howarth J R, et al. Influence of iron status on cadmium and zinc uptake bydifferent ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol,2002,128:1359-1367
    Lombi E, Zhao F J, McGrath S P, et al. Physiological evidence for a high-affinity cadmiumtransporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol,2001,149:53-60
    Ma J F, Ueno D, Zhao F J, McGrath S P. Subcellular localization of Cd and Zn in the leaves of aCd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta,2005,220:731-736
    Macnair M R, Bert V, Huitson S B, et al. Zinc tolerance and hyperaccumulation are geneticallyindependent characters. Proc R Soc Lond Ser B,1999,266:2175-2179
    Malcová R, Rydlová J, Vosátka M. Metal-free cultivation of Glomus sp. BEG140isolated fromMn-contaminated soil reduces tolerance to Mn. Mycorriza,2003,13:151-157
    Malcová R, Vosátka M, Gryndler. Effects of inoculation with Glomus intraradices on lead uptakeby Zea mays L. and Agrostis capillaris L. Appl Soil Ecol,2003,23:55-67
    Martin F, Perotto S, Bonfante P. Mycorrhizal fungi: A fungal community at the interface betweensoil and roots, pp.201–236. In R. Pinton, Z. Varanini, and P. Nannipieri (Eds.), The rhizosphere:Biochemistry and organic substances at the soil-plant interface.Marcel Dekker, New York,2007.
    Maser P, Thomine S, Schroeder J I, et al. Phylogenetic relationships within cation transporterfamilies of Arabidopsis. Plant Physiol,2001,126:1646-1667
    McCutcheon SC, Schnoor JL. Phytoremediation: Transformation and Control of Contaminatinants.John Wiley and Sons. Inc. Hoboken NJ,2003
    McGonigle TP, Miller MH, Evans DG, et al. A new method which gives an objective measure ofcolonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol,1990,115:495-501
    McGrath SP,1998. Phytoextraction for soil remediation. In Plants that Hyperaccumulate HeavyMetals. Ed. RR Brook,1998,261-287. CAB International, Wallingford, UK
    McGrath S P, Zhao F J, Lombi E. Plant and rhizoshpere processes involved in phytoremediation ofmetal-contaminated soils. Plant Soil,2001,232:207-214
    McGrath SP, Zhao FJ, Lombi E. Phytoremediation of metals, metalloids, and radionuclides. AdvAgron,2002,75:1-56
    McGrath S P, Zhao F J. Phytoremediation of metals and metalloids from contaminated soils. CurrOpin Biotechnol,2003,14:277-282
    McNamara N P, Black H I J, Beresford N A et al. Effects of acute gamma irradiation on chemical,physical and biological properties of soils. Appl Soil Ecol,2003,24:117-132
    Meharg A A. The mechanistic basis of interactions between mycorrhizal associations and toxicmetal cations. Mycol Res,2003,107:1253-1265
    Miransari M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under differenttypes of soil stress. Plant Biology,2010,12:563-569
    Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidative response oftwo mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected tocadmium stress. J Plant Physiol,2007,164:601-610
    Monni A T, Salemaa M, White C, et al. Copper resistance of Calluna vulgaris originatingfrom the polution gradient of a Cu-Ni smelter, in south-west Finland. Environ Pollut,2000,109:211-219
    Moons A. Osgtyu3and Osgstu4, encoding tau class glutathione S-transferases, are heavy metal-and hypoxic stresses-induced and differentially salt stress-responsive in rice roots. FEBS Lett,2003,553:427-432
    Morton J B, Redecker D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae,with two new genera Archaeospora and Paraglomus, based on concordant molecular andmorphological characters. Mycologia,2001,93:181-195
    Moyukh G, Singh S P. A comparative study of cadmium phytoextraction by accumulator andweed species. Environ Pollut,2005,133:365-371
    Mozarfar A, Ruh R, Klingel P, et al. Effect of heavy metal contaminated shooting range soils onmycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess,2002,79:177-191
    Nelson, D W, Sommers L E,1982. Total carbon, organic carbon and organic matter. In: Page, A. L.(Ed.) Methods of Soil Analysis, Part2,2ndEdition, Agronomy Monograph9. ASA and SSSA,Madison, W I,1982,539-579
    Orlowska E, Przybylowicz W, Orlowski D, et al. The effect of mycorrhiza on the growth andelemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler, Environ Pollut,2011,159:3730-3738
    Ortega-Larrocea M D, Xoconostle-Cázares B, Maldonado-Mendoza I E, et al. Plant and fungaldiversity from metal mine wastes under remediation at Zimapan, Hidalgo Mexico. EnvironPollut,2010,158:1922-1931.
    Ouziad F, Hildebrandt U, Schmelzer E, et al. Differential gene expressions in arbuscularmycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol,2005,162:634-649
    Pawlowska T E, Blaszkowski J, Rühling. The mycorrhizal status of plants colonizing acalamine spoil mound in southern Poland. Mycorrhiza,1996,6:499-505.
    Pawlowska T E, Chaney R L, Chin M, et al. Effects of metal phytoextraction practices on theindigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. ApplEnviron Microbiol,2000,66:2526-2530
    Pawlowska T E, Charvat I. Heavy-metal stress and developmental patterns of arbuscularmycorrhizal fungi. Appl Environ Microb,2004,70:6643-6649
    Perrier N, Amir H, Colin F. Occurrence of Mycorrhizal symbioses in the metal-rich lateritic soilsof the Koniambo Massif, New Caledonia. Mycorrhiza,2006,16:449-458.
    Persans M W, Nieman K, Salt D E. Functional activity and role of cation-efflux family membersin Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA,2001,98:9995-10000
    Persans M W, Yan XG, Patnoe J, et al. Molecular dissection of the role of histidine in nickelhyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physiol,1999,121:117-1126
    Piotrowski J S, Denich T, Klironomos J N, et al. The effects of arbuscular mycorrhizas on soilaggregation depend on the interaction between plant and fungal species. New Phytol,2004,164:365-373
    Plaza S, Tearall K L, Zhao F J, Buchner P, et al. Expression and functional analysis of metaltransporter genes in two contrasting ecotypes of the hyperaccumultor Thlaspi caerulescens. JExp Bot,2007,58:1717-1728
    Pongrac P, Vogel-Miku K, Kump P, et al. Changes in elemental uptake and arbuscularmycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere,2007,69:1602-1609
    Redecker D, Morton J B, Bruns T D. Ancestral lineages of arbuscular mycorrhizal fungi(Glomales). Mol Phylogen Evol,2000,14:276-284
    Redon P, Béguiristain T, Leyval C. Differential effects of AM fungal isolates on Medicagotruncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agriculturalsoil. Mycorrhiza,2009,19:187-195
    Redon P, Béguiristain T, Leyval C. Influence of Glomus intraradices on Cd partitioning in a pot
    experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem,2008,40:2710-2712
    Reeves RD. Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G,Goncharova N, editors. Phytoremediation of Metal-contaminated Soils. Nato Science Series:IV:Earth and Environmental Science. Heidelberg: Springer.,2006, p.25–52
    Reeves R D, Baker A J M, Brooks R R. Abnormal accumulation of trace metals by plants mining.Environ Manage,1995,9:4-8
    Reeves R D, Baker A J M. Metal-accumulating plants. In Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. Eds. Raskin I, Ensley BD, John Wiley&Sons;2000,85-107
    Regvar M, Likar M, Piltaver A et al. Fungal community structure under goat willows (Salix capreaL.) growing at metal polluted site: the potential of screening in a model phytostabilisation study.Plant Soil,2010,330:345-356
    Repetto O, Bestel-Corre G, Dumas-Gaudot E, et al. Targeted proteomics to identifycadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol,2003,157:555-567
    Rivera-Becerril F, van Tuinen D, Martin-Laurent F, et al. Molecular changes in Pisum sativum L.roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza,2005,16:51-60
    Salt D E, Prince R C, Baker A J M, et al. Zinc ligands in the metal hyperaccumulator Thlaspicaerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol,1999,33:713-717
    Sarret G, Saumitou-Laprade P, Bert V, Proux O, et al. Forms of zinc accumulated in thehyperaccumulator Arabidopsis halleri. Plant Physiol,2002,130:1815-1826.
    Schat H, Llugany M, Vooijs R, et al. The role of phytochelatins in constitutive and adaptive heavymetal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot,2002,53:2381-2392.
    Schroeder M S, Janos D P. Phosphorus and intraspecific density alter plant responses to arbuscularmycorrhizas. Plant Soil,2004,264:335-348.
    Schroeder MS, Janos D P. Plant growth, phosphorus nutrition, and root morphological responsesto arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. Mycorrhiza,2005,15:203-216
    Schüβler A, Schwarzott D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny andevolution. Mycol Res,2001,105:1413-1421
    Shen H, Christie P, Li Xiaolin. Uptake of zinc, cadmium and phosphorus by arbuscularmycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked withzinc and cadmium. Environ Geochem Hlth,2006,28:111-119
    Shen Z G, Zhao F J, McGrath S P. Uptake and transport of zinc in the hyperaccumulator Thlaspicaerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ,1997,20:898-906
    Siddiqui Z A, Pichtel J. Mycorrhizae: an overview. In: Z.A. Siddiqui et al.(eds), Mycorrhize: SustainableAgriculture and Forestry, Springer Science+Business Media B.V.,2008,1-35
    Smith F A. Measuring the influence of mycorrhizas. New Phytol,2000,148:4-6
    Smith J A C, Harper F A, Leighton R S, et al. Comparative analysis of metal uptake, transport andsequestration in hyperaccumulator plants. In Proceedings of the5thInter. Conf. On theBiogeochemistry of Trace Elements,1999,22-23. Vienna, Austria.
    Smith S E, Facelli E, Pope S, et al. Plant performance in stressful environments: interpreting newand established knowledge of the roles of arbuscular mycorrhizas. Plant Soil,2010,326:3-20
    Smith S E, Read D J. Mycorrhizal Symbiosis,2nd. Academic Press, San Diego, London,1997,11-160
    Soares C R F S, Siqueira J O. Mycorrhiza and phosphate protection of tropical grass speciesagainst heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils,2008,44:833-841
    Sudová R, Vosátka M. Differences in the effects of three arbuscular mycorrhizal fungal strains onP and Pb accumulation by maize plants. Plant Soil,2007,296:77-83
    Sun R L, Zhou Q X, Sun F H et al. Antioxidative defense and proline/phytochelatin accumulationin a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot,2007,60:468-476
    Tonin C, Vandenkoornhuyse P, Joner E J, et al. Assessment of arbuscular mycorrhizal fungidiversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metaluptake by clover. Mycorriza,2001,10:161-168
    Trotta A, Falaschi P, Cornara L, et al. Arbuscular mycorrhizae increase the arsenic translocationfactor in the As hyperaccumulating fern Pteris vittata L. Chemosphere,2006,65:74-81
    Trouvelot A, Kough JL, Gianinazzi-Pearson V. Mesure du taux de mycorhization VA dun systemeradiculaire. Recherche de methodes destimation ayant une significtion fonctionnelleMycorrhizae, physiology and genetic,1986,216-222. Available from: http://www.inra.fr/
    Tullio M, Perandrei F, Salerno A, et al. Tolerance to cadmium of vesicular arbuscular mycorrhizaespores isolated from a cadmium-polluted and unpolluted soil. Biol Fert Soils,2003,37:211-214.
    Turnau K, Mesjasz-Przybylowicz J. Arbuscular mycorrhiza of Berkheya coddii and otherNi-hyperaccumulating members of Asteraceae from ultraamafic soils in South Africa.Mycorrhiza,2003,13:185-190
    Turnau K, Ryszka P, Gianninazzi-Pearson et al. Identification of arbuscular mycorrizal fungi insoils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza,2001,10:169-174
    Vallino M, Massa N, Lumini E et al. Assessment of arbuscular mycorrhizal fungal diversity inroots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microb,2006,8:971-983
    van der Hejiden M G A, Klironomos J N, Ursic M. Mycorrhizal fungal diversity determines plantdiversity, ecosystem variability and productivity. Nature,1998,396:69-72
    Van Steveninck R F M, Babare A, Fernando D R, et al. The binding of zinc, but not cadmium, byphytic acid in roots of crop plants. Plant Soil,1994,167:157-164
    Vivas A, V r s A, Biró B, et al. Beneficial effects of indigenous Cd-tolerant and Cd-sensitiveGlomus mosseae associated with a Cd-adapted strain of Brevibacillus sp. in improving planttolerance to Cd contamination. Appl Soil Ecol,2003,24:177-186
    Vazquez M D, Poschenrieder C, Barcelo J, et al. Compartmentation of zinc in roots and leaves ofthe zinc hyperaccumulator Thlaspi caerulescens J and C Presl. Botanica Acta,1994,107:243-250
    Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptakefrom the soil and for plant growth. Plant Cell,2002,14:1223-1233
    Vogel-Miku K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizalcolonisation of pennycress Thlaspi praecox Wulf.(Brassicaceae) from the vicinity of a leadmine and smelter in Slovenia. Environ Pollut,2005,133:233-242
    Vogel-Miku K, Pongrac P, Kump P, et al. Colonisation of a Zn, Cd and Pb hyperaccumulatorThlaspi praecox Wulf with indigenous arbuscular mycorrhizal fungal mixture induces changesin heavy metal and nutrient uptake. Environ Pollut,2006,139:362-371
    Wang F Y, Lin X G, Yin R. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendensand the potential for phytoremediation of contaminated soil, Plant Soil,2005,269:225-232
    Wang Z, Zhang Y X, Huang Z B, et al. Antioxidative response of metal-accumulator andnon-accumulator plants under cadmium stress. Plant Soil,2008,310:137-149
    Wei S H, Zhou Q X, Wang X. A newly-discovered Cd-hyperaccumulatior Solanum nigrum L.Chinese Sci Bull,2004,49:2568-2573
    Weissenhorn I, Leyval C, Belgy G, et al. Arbuscular mycorrhizal contribution to heavy metaluptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza,1995,5:245-251
    Weissenhorn I, Leyval C. Differential tolerance to Cd and Zn of arbuscular mycorrhizal fungalspores isolated from heavy metal-polluted and unpolluted soils. Plant Soil,1994,167:189-196.
    Wenzel W W. Rhizosphere processes and management in plant-assisted (phytoremediation) ofsoils. Plant Soil,2009,321:385-408
    Whitfield L, Richards A J, Rimmer D L. Relationships between soil heavy metal concentrationand mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza,2004,14:55-62
    Wong C C, Wu S C, Kuek C, et al. The role of mycorrhizae associated with vetiver grown inPb-/Zn-contaminated soils: greenhouse study. Restor Ecol,2007,15:60-67
    Wu C, Liao B, Wang S L, et al. Pb and Zn accumulation in a Cd-hyperaccumulator (ViolaBaoshanensis). Int J Phytoremediat,2010,12:574-585
    Wu F Y, Ye Z H, Wu S C, et al. Metal accumulation and arbuscular mycorrhizal status inmetallicolous and nonmetallicolous populationsof Pteris vittata L. and Sedum alfredii Hance.Planta,2007,226:1363-1378
    Wu J, Zhao F J, Ghandilyan A, et al. Identification and functional analysis of two ZIP metaltransporters of the hyperaccumulator Thlaspi caerulescens. Plant Soil,2009,325:79-95
    Zak J C, Danielson R M, Parkinson D. Mycorrhizal fungal spore numbers and speices occurrencein two amended mine spoils in Alberta, Canada. Mycologia,1982,74:785-792
    Zarei M, Hempel S, Wubet T, et al. Molecular diversity of arbuscular mycorrhizal fungi in relationto soil chemical properties and heavy metal contamination. Environ Pollut,2010,158:2757-2765
    Zarei M, K nig S, Hempel S, et al. Community structure of arbuscular mycorrhizal fungiassociated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut,2008,156:1277-1283
    Zhang H H, Tang M, Chen H, et al. Effect of inoculation with AM fungi on lead uptake,translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasinglead concentrations. Eur J Soil Biol,2010,46:306-311
    Zhang X H, Zhu Y G, Chen B D, et al. Arbuscular mycorrhizal fungi contribute to resistance ofupland rice to combined metal contamination of soil. J Plant Nutr,2005,28:2065-2077
    Zhao B, Trouvelot A, Gianinazzi S. Influence of two legume species on hyphal production andactivity of two arbuscular mycorrhizal fungi. Mycorrhiza,1997,7:179-185
    Zhao F J, Hamon R E, Lombi E, et al. Characteristics of cadmium uptake in two contrastingecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot,2002,53:535-543
    Zhao F J, Lombi E, McGrath S P. Assessing the potential for zinc and cadmium phytoremediationwith the hyperaccumulator Thlaspi caerulescens. Plant Soil,2003,249:37-43.
    Zhuang P, Yang Q W, Wang H B, et al. Phytoextraction of heavy metals by eight plant species inthe field. Water Air Soil Pollut,2007,184:235-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700