用户名: 密码: 验证码:
作物缺磷和菌根信号转导途径中调控基因的鉴定与功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷(Phosphorus, P)是植物生长发育必需的大量营养元素之一,广泛地参与到植物体内的能量转移、信号转导、光合作用等过程。它还是许多生物大分子如核酸、磷脂和含磷蛋白酶类的重要组成部分。然而,由于P在土壤中容易被固定和沉淀,且植物从土壤中吸收的主要是无机态正磷酸盐(Phosphate, Pi),故相对于其他营养元素,P在土壤中的移动性和有效性均很低,其也因此常常成为农田及自然生态系统中植物生长的主要限制因子之一。植物在漫长的进化过程中发展出了一套适应缺磷环境的形态变化及生理生化方面的机制,包括根系构型的改变、酸性磷酸酶、RNA酶及有机酸的分泌、与丛枝菌根真菌(AMF, Arbuscular Mycorrhizal Fungi)形成共生体系等等。
     植物对缺磷环境的这些适应性机制都是由其背后一系列精巧的分子机制作为支撑的。近年来,该研究领域科学家们针对这些分子机制做了大量的研究,初步构建了植物缺磷和菌根共生信号转导途径的分子调控网络。这个网络中的“节点”,即基因之间在不同水平存在着复杂的调控或被调控的关系。一个基因在表达丰度或时间空间上的变化可能会造成整个网络的重新调整。虽然我们对植物缺磷和菌根共生信号转导途径这两个分子调控网络的认识正不断深入,发现了在前者中起中心调控作用并可能连接两个网络的关键调控因子PHR (PHosphate Starvation Response),但根据近年来该领域的研究进展来看,欲全面揭开其神秘的面纱仍有诸多工作要做。为了对这两个网络进行进一步的补充完善,本研究以鉴定植物中参与到缺磷和菌根共生信号途径中的微小RNA (microRNA, miRNA)和转录因子基因两方面作为切入点,取得了以下的主要结果:
     1.根据已知植物中所有miRNA的成熟片段序列,与茄科植物烟草的GSS(Genome Survey Sequence)和EST (Expressed Sequence Tag)序列进行比对,继而由生物信息学技术从烟草中预测到分属于84个家族共计276个miRNA基因,并分析了全部276个基因的一系列特征参数。发现烟草miRNA也是以多基因家族的方式出现;其成熟片段和前体结构的长度分别集中在21个碱基和75-114个碱基左右;90%以上niRNA前体的A和U含量之和在50%-70%之间;在不同物种中非常保守的缺磷诱导表达的miR399和miR827在缺磷条件下的烟草中表达也发生上调。
     2.通过miRNA基因芯片结合实验验证的方法在茄科植物番茄中鉴定出23个保守的]miRNA,发现其中16个受到磷素营养或菌根共生信号或二者共同的调控。证明了miRNA基因表达的变化也是植物缺磷和菌根共生信号转导途径中重要的组成部分,且植物缺磷和菌根共生信号转导途径存在部分重叠。
     3.采用RT-PCR方法结合生物信息学及组织化学分析研究了水稻中缺磷诱导表达的miRNA基因,osa-miR827a (OsmiR827a)及其靶基因。发现OsmiR827a受缺磷信号专一性诱导表达,且其成熟片段可能作为长距离运输信号分子通过韧皮部从地上部转运到地下部。此外,结果表明虽然miRNA827在不同物种中非常保守,但其对靶基因的调控机制可能在单子叶和双子叶植物物种分化的过程中发生了变异。不同于拟南芥AtmiR827的靶基因AtNLA (Nitrogen Limitation Adaptation;属于SPX家族中的SPX-RING亚家族),水稻OsmiR827a的靶基因属于SPX家族中的SPX-MFS_1亚家族,且其靶基因有两个,OsSPX7和OsSPX8。虽然二者的氨基酸序列一致性大于80%、结构高度相似且都定位于细胞质膜上,但对缺磷信号的响应却完全相反。
     4.对OsSXP7和OsSPX8两个基因各两个株系的Tos17转座子插入突变体(osspx7-1、osspx7-2和osspx8-1、osspx8-2)在不同供磷条件下的表型、有效磷含量等生理指标进行测定后发现,osspx7-2在高磷和全铵营养且高磷处理下表现出磷中毒的症状,其叶片中有效磷浓度在两种处理下分别为野生型植株的6.2倍和3.8倍,在低磷条件下其叶片中有效磷浓度与野生型植株相比提高了1倍;对于OsSPX8两个株系的突变体osspx8-1和osspx8-2,只有在高磷和全铵营养且高磷两种条件下,其叶片中的有效磷含量比野生型植株提高40%左右。此外,通过对突变体中磷酸盐转运蛋白(PT, Phosphate Transporter)基因及其它缺磷信号转导途径中基因表达的检测及与其它在正常供磷条件下表现出磷中毒症状的突变体或转基因植株的情况相比较,我们推测OsSXP7和OsSPX8至少部分是通过抑制PT基因表达来实现其在植物体内磷的动态平衡过程中的作用。
     5.在水稻缺磷信号转导途径中心调控因子基因OsPHR2(PHosphate Starvation Response2)的过量表达植株中对OsmiR827a的表达丰度进行了检测,结果表明OsmiR827a可能是新发现的由OsPHR2直接调控的下游基因。
     6.通过将番茄中菌根特异表达PT基因LePT4的启动子进行分割和定点突变、融合GUS报告基因继而由根癌农杆菌介导的转基因方法转入烟草中检测分析,证明了缺磷信号转导途径中的关键顺式调控元件P1BS (PHR1Binding Sequence)对茄科植物中菌根诱导或特异表达的PT基因的转录激活是必不可少的。而此转录激活过程不需要调控豆科植物血红蛋白基因在根瘤和菌根组织特异性表达相关的NODCON2GM和参与植物的防御反应的WRKY710S这两个顺式调控元件的参与。
     7.根据拟南芥和水稻中PHR基因的保守序列设计简并引物,以烟草cDNA为模板进行PCR扩增、测序获得其保守区序列后通过RLM-RACE方法获得了烟草PHR同源基因NtPHR2的cDNA全长序列。氨基酸序列比对和进化树分析结果表明,NtPHR2与拟南芥AtPHR1和水稻OsPHR2一样属于MYB转录因子家族中的MYB-CC (Coiled-Coil)亚家族,且与AtPHRl的亲缘关系最近。
     8.通过基因枪轰击洋葱表皮、RT-PCR和酵母双杂交系统对与烟草中菌根相关候选转录因子基因NtMYCF1和NtPHR2的亚细胞定位、表达模式及其蛋白水平的相互作用作了分析。结果表明,NtMYCF1和NtPHR2均定位在细胞核;NtMYCFl在根部受菌根诱导表达,NtPHR2在根部和叶片中均为组成型表达;NtMYCF1和NtPHR2在蛋白水平可能不发生互作。
Phosphorus (P) is one of the essential macro-nutrients for plant growth and development, and plays important roles in energy transfer, signal transduction, and photosynthesis processes. It is also a structural component of many biologically important macro-molecules, such as nucleic acids, phospholipids and P-containing enzymes. However, since P is readily chelated by cations and precipitated in the soil and the only form of P available for plant uptake is inorganic ortho-phosphate (Pi), the mobility and availability of P is poor. Plants have evolved a suite of responses to adapt to P-deprived environment, including modification of root architecture, release of acid phosphatase, RNase and organic acids, as well as forming mutualistic symbiotic associations with arbuscular mycorrhizal (AM) fungi.
     In the past decades, a series of elaborate molecular mechanisms underlying these adaptive responses have been intensively studied, and a molecular regulatory network with regarding to Pi starvation and AM symbiosis has been generated. The nodes in this network, namely the genes involved, are closely related. The alteration in abundance, temporal or spatial expression of one gene may lead to a re-orchestration of the entire network. Although an increasing number of genes involved in Pi starvation and AM symbiosis signaling pathways have been and will be identified in diverse plant species, and the function of the conserved central regulator PHR (PHosphate Starvation Response) that might connect the two signalings have been well elucidated, a lot of work should be done to unravel the complex regulatory mechanism of these signalings. In an attempt to get a better understanding of the Pi starvation and AM symbiosis signaling pathways, we tried to isolate and/or functionally characterize the microRNA (miRNA) and transcription factor encoding genes in the present work. The main results acquired are listed as follows:
     1. Based on all the mature miRNA sequences in plants, we identified276miRNA genes, which belonging to84families, in tobacco by using its GSS (Genome Survey Sequence) and EST (Expressed Sequence Tag) sequences. We analyzed a series of characteristic parameters of miRNA genes, and found that half of the miRNA families have more than one member; the lengths of the mature miRNAs and precursors are~21and75-114nucleotides, respectively; Ninety percent of the miRNA precursors have a Adnine plus Uridine content ranging from50%-70%; the conserved Pi starvation-induced miR399and miR827are also up-regulated by Pi deprivation.
     2. Twenty three conserved miRNAs were identified in tomato by miRNA microarray, among which sixteen were responsive to Pi starvation or AM symbiosis or both. The data demonstrated that altered expression of distinct groups of miRNA is an essential component of Pi starvation-induced responses and AM symbiosis, and there are common and specific signalings of the P nutrition and AM symbiosis processes.
     3. The expression of osa-miR827a (OsmiR827a) as well as its target genes was detected by RT-PCR and histochemical analysis. The results suggest that OsmiR827a is specifically induced by Pi starvation, and its mature fragment might act as a long-distance signal molecule transported from shoot to root through phloem. In addition, we concluded that the mechanism of the negative regulation of miR827on its target(s) might have altered during the divergence of monocots and dicots. Unlike Arabidopsis miR827, which targets AtNLA (Nitrogen Limitation Adaptation; a member of the SPX-RING subfamily), rice miR827a targets two genes from the SPX-MFS_1subfamily, namely OsSPX7and OsSPX8. Although the amino acid sequence identity of the two plasma membrane located genes is82.35%, and their structures are highly similar, their responses to Pi starvation are opposite.
     4. The phenotype, Pi concentration and some regular physiological parameters were detected in the Tosl7insertion mutants of OsSPX7and OsSPX8(osspx7-1, osspx7-2and osspx8-1, osspx8-2) under varied Pi supply. Pi toxicity symptoms were observed in osspx7-2under both high Pi (HP) and ammonium nutrition (NH4+) conditions, and the Pi concentration in leaves is6.2and3.8folds as high as that of WT plants, respectively. Under low Pi (LP) condition, the Pi concentration in osspx7-2leaves increased1fold as compared to that in WT. In osspx8-1and osspx8-2, the Pi concentration in leaves showed an increase of40%as compared with that of WT plants under HP and NH4+conditions. Moreover, through detection of the expression of some OsPT (Phosphate Transporter) and Pi responsive genes, as well as comparing with other Pi-overaccumulator, we predicted that OsSPX7and OsSPX8regulate in planta Pi homeostasis partially by repression of OsPT expression.
     5. The expression of OsmiR827a was also detected in OsPHR2(PHosphate Starvation Response2) overexpressing plants. The result suggests that OsmiR827a might be a novel target directly regulated by OsPHR2.
     6. Through succession truncation and targeted point mutation of LePT4promoter, we demonstrated that P1BS (PHR1Binding Sequence) is indispensable for the transcriptional activation of LePT4in response to AM symbiosis. Whereas cis-acting elements, NODCON2GM (responsible for the nodule-and mycorrhiza-specific expression of soybean leghemoglobin lbc3and N23gene) and WRKY710S (responsible for plant defense response), are not involved.
     7. Based on the conserved region of Arabidopsis and rice PHR genes, we isolated the full cDNA sequence of the homologous gene in tobacco, NtPHR2, by using RLM-RACE technology. The amino acid sequence alignment and phylogenetic tree analyzes showed that NtPHR2is a novel member of the MYB-CC (Coiled-Coil) transcription factor subfamily, and shares the highest sequence identity with AtPHRl.
     8. The subcellular localization, expression pattern and the potential protein interaction of NtMYCF1and NtPHR2were analyzed by onion epidermal bombardment experiment, RT-PCR and yeast two hybrid system, respectively. The results suggest that NtMYCF1and NtPHR2localize to the nucleus; the transcript abundance of NtMYCFl in root is increased upon AM symbiosis, while NtPHR2is constitutively expressed in both root and leaf; there might be no interaction between NtMYCF1and NtPHR2protein.
引文
陈爱群(2009)三种茄科作物Phtl家族磷转运蛋白基因的克隆及表达调控分析.南京农业大学博士学位论文
    肖景华,吴昌银,韩斌,薛勇彪,邓兴旺,张启发(2009)中国水稻功能基因组研究进展.中国科学39(10):909-924
    Ai PH, Sun SB, Zhao JN, Fan XR, Xin WJ, Guo Q, Yu L, Shen QR, Wu P, Miller AJ, et al (2009) Two rice phosphate transporters, OsPhtl;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal 57:798-809
    Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Plhysiology 141:1000-1011
    Bajwa W, Meyhack B, Rudolph H, Schweingruber AM, Hinnen A (1984) Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Research 12:7721-7739
    Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae:a special type of plant cell wall? Plant Biosystems 139:8-15
    Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions 20(9):1055-1062
    Balzergue C, Puech-Pages V, Becard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. Journal of Experimental Botany 62:1049-1060
    Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in Plants. Plant Physiology 141:988-999
    Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of miR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Molecular Plant-Microbe Interactions 23: 915-926
    Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E et al. (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64:1002-1017
    Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr Julia (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. The Plant Journal 53:739-749
    Burleigh SH, Harrison MJ (1997) A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Molecular Biology 34:199-208
    Burleigh SM, Harrison MJ (1998) Characterization of the Mt4 gene from Medicago truncatula. Gene 216:47-53
    Burleigh SM, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiology 119: 241-248
    Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics 6(9):e1001102
    Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter Phtl;1 displays enhanced arsenic accumulation. The Plant Cell 19:1123-1133
    Chen AQ, Gu M, Sun SB, Zhu LL, Hong S, Xu GH (2011a) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytologist 189:1157-1169
    Chen AQ, Hu J, Sun SB,Xu GH (2007a) Conservation and divergence of both phosphate-and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist 173:817-831
    Chen CC, Chen YY, Tang IC, Liang HM, Lai CC, Chiou JM, Yeh KC (2011b) Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiology 156:2225-2234
    Chen CY, Gao MQ, Liu JY, Zhu HY (2007b) Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/Calmodulin-dependent protein kinase. Plant Physiology 145:1619-1628
    Chen CY, Ane JM, Zhu HY (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytologist 180:311-315
    Chen CY, Fan C, Gao MQ, Zhu HY (2009b) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiology 149:306-317
    Chen JY, Liu Y, Ni J, Wang YF, Bai YH, Shi J, Gan J, Wu ZC, Wu P (2011c) OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiology 157:269-278
    Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009a) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. The Plant Cell 21: 3554-3566
    Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007c) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochemical Journal 405: 191-198
    Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis caxl mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. The Plant Cell 15:347-364
    Cheng NH, Pittman JK, Shigaki T, Lachmansingh J, LeCIere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiology 138:2048-2060
    Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell 18:412-421
    Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant, Cell and Environment 30: 323-332
    Chuck G, Candela H, Hake S (2008) Big impacts by small RNAs in plant development. Current Opinion in Plant Biology 12:1-6
    Creasy CL, Madden SL, Bergman LW (1993) Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Research 21:1975-1982
    Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proceedings of National Academy of Sciences, USA 103(17):6765-6770
    David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization:plant resistance to infection by fungal spores but not extra-radical hyphae. The Plant Journal 27:561-569
    Delhaize E, Randall PJ (1995) Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology 107:207-213
    Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and Symbiosis:microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiology 156:1990-2010
    Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789-1801
    Devaiah BN, Nagarajan VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology 145: 147-159
    Devaiah BN, Mdahuvanthi R, Karthikeyan AS, Raghothama KG (2009) Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant 2(1):43-58
    Duan K, Yi KK, Dang L, Huang HJ, Wu W, Wu P (2008) Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. The Plant Journal 54:965-975
    Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, Santos BDL, Romero F, Pliego-AIfao F, Munoz-Blanco J, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) FaWRKY1 and Arabidopsis AtWRKY75 proteins in resistance. Journal of Experimental Botany 60(11):3043-3065
    Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling:rapid gene activation by WRKY transcription factors. EMBO Journal 18: 4689-4699
    Feddermann N, Muni RRD, Zeier T, Stuurman J, Ercolin F, Schorderet M, Reinhardt D (2010) The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. The Plant Journal 64:470-481
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia A, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39(8):1033-1037
    Frenzel A, Tiller N, Hause B, Krajinski F (2006) The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites. Planta 224:792-800
    Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19:92-105
    Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Letters 579:3849-3854
    Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology 15:2038-2043
    Gao N, Su YH, Min J, Shen WS, Shi WM (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant and Soil 334:123-136
    Gaude N, Nakamura Y, Scheible W, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. The Plant Journal 56:28-39
    Gilliquet V, Legrain M, Berben G, Hilger F (1990) Negative regulatory elements of the Saccharomyces cerevisiae PHO system:Interaction between PHO80 and PHO85 proteins. Gene 96:181-188
    Glassop D, Smith SE, Smith F (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688-698
    Glassop D, Godwin RM, Smith SE, Smith FW (2007) Rice phosphate transporters associated with phosphate uptake in rice colonized with arbuscular mycorrhizal fungi. Canadian Journal of Botany 85:644-651
    Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17: 3500-3512
    Groth M, Takeda N, Perry J, Uchida H, Draxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL et al. (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. The Plant Cell 22:2509-2526
    Gu M, Chen AQ, Dai XL, Liu W, Xu GH (2011) How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signaling & Behavior 6(9):1300-1304
    Gu M, Xu K, Chen AQ, Zhu YY, Tang GL, Xu GH (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiologia Plantarum 138:226-237
    Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux r C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P et al. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of National Academy of Sciences, USA 102(22): 8066-8070
    Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mucorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. The Plant Cell 20:2989-3005
    Hamburger D, Rezzonico E, Petetot MC, Somerville C, Poirier Y (2002) Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Physiology 14:889-902
    Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology 132:578-596
    Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14: 2413-2429
    Harrison MJ (2006) Signaling in the arbuscular mycorrhizal symbiosis. Annual Review of Microbiology 59:19-42
    Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiology 137:1283-1301
    Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signaling and hormones. Plant, Cell and Environment 28:353-364
    Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by Deep Sequencing. Plant Physiology 151:2120-2132
    Hu B, Zhu CG, Li F, Tang JY, Wang YQ, Lin AH, Liu LC, Che RH, Chu CC (2011) LEAF TIP NECROSISI plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiology 156:1101-1115
    Huang CY, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley Roots. Plant Physiology 124:415-422
    Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of National Academy of Sciences, USA 104:1720-1725
    Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis:transport properties and regulatory roles. Plant, Cell and Environment 30:310-322
    Jia HF, Ren HY, Gu M, Zhao JN, Sun SB, Zhang X, Chen JY, Wu P, Xu GH (2011) The phosphate transporter gene OsPhtl;8 is involved in phosphate homeostasis in Rice. Plant Physiolgy 156: 1164-1175
    Jia XY, Wang WX, Ren LG, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang XQ, Tang GL (2009) Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Molecular Biology 71:51-59
    Jiang CF, Gao XH, Liao LL, Harberd NP, Fu XD (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology 145:1460-1470
    Jin JB, Hasegawa PM (2008) Flowering time regulation by the SUMO E3 ligase SIZ1. Plant Signaling & Behavior 3(10):891-892
    Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology 57:19-53
    Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie A, James EK, Felle HH, Haaning LL et al. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of National Academy of Sciences, USA 103(2):359-364
    Kant S, Peng MS, Rothstein SJ (2011) Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genetics 7(3):e1002021
    Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proceedings of National Academy of Sciences, USA 101(16):6285-6290
    Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA395 and one of its target genes but in different cell types. The Plant Journal 57:313-321
    Kim WH, Ahn HJ, Chiou TJ, Ahn JH (2011) The roles of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Molecules and Cells 32:83-88
    Kohorn BD (2001) WAKs:cell wall associated kinases. Current Opinion in Cell Biology 13:529-533
    Lacombe S, Nagasaki H, Santi C, Duval D, Piegu B, Bangratz, M, Breitler JC, Guiderdoni E, Brugidou C, Hirsch J et al. (2008) Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biology 8:123
    Lambais MR, Mebdy MC (1995) Differential expression of defense-related gene in arbuscular mycorrhizal. Canadian Journal of Botany 73:533-540
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854
    Legrain M., De Wilde M., Hilger F (1986) Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4. Nucleic Acids Research 14: 3059-3073
    Lei MG, Liu YD, Zhang BC, Zhao YT, Wang XJ, Zhou YH, Raghothama KG, Liu D (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiology 156:1116-1130
    Li MY, Qin CB, Welti R, Wang XM (2006a) Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiology 140:761-770
    Li MY, Welti R, Wang XM (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phophatidylcholine hydrolysis and digalactosyldiacylglycerol. Plant Physiology 142:750-761
    Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, and Chiou TJ (2008) Regulatory network of microRNA399 and PH02 by systemic signaling. Plant Physiology 147:732-746
    Lin SI, Santi C, Jobet E, Lacut E, Kholti NE, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS et al (2010) Complex regulation of two target genes encoding SPX-MFS protein by rice miR827 in response to phosphate starvation. Plant & Cell Physiology 51(12):2119-2131
    Liu CM, Muchhal US, Raghothama KG (1997) Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Molecular Biology 33:867-874
    Liu CM, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology 116: 91-99
    Liu F, Wang ZY, Ren HY, Shen C, Li Y, Ling HQ,Wu CY, Lian XM, Wu P (2010) OsSPXl suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. The Plant Journal 62:508-517
    Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:1-8
    Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Molecular Plant 3:428-437
    Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in Ddistinct developmental stages of an arbuscular mycorrhizal symbiosis. The Plant Cell 15:2106-2123
    Liu TY, Aung K, Tseng CY, Chang TY, Chen YS, Chiou TJ (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiology 156:1176-1189
    Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. Journal of Experimental Botany 55(400):1221-1230
    Madden SL, Creasy CL, Srinivas V, Fawcett W, Bergman LW (1988) Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Nucleic Acids Research 16:2625-2637
    Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant & Cell Physiology 47:807-817
    Martin AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, De La Pena A, Leyva A, Paz-Ares J (2000) Influence of cytokinin on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal 24(5):559-567
    McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495-501
    Messinese E, Mun JH, Yeun LH, Jayaraman D, Rouge P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR et al. (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Molecular Plant-Microbe Interactions 20:912-921.
    Mi S, Cai T, Hu YG, Chen YM, Hodges E, Ni FR, Wu L, Li S, Zhou HY, Long CZ, et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133:116-127
    Misson J, Thibaud MC, Bechtold N, Raghothama KG, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Phtl;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology 55:727-741
    Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of National Academy of Sciences, USA 102(33):11934-11939
    Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA et al. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of National Academy of Sciences, USA 102(21):7760-7765
    Miura K, Lee J, Gong QQ, Ma SS, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011) SIZ1 regulation of phosphate starvation-induced root auchitecture remodeling involveds the control of auxin accumulation. Plant Physiology 155:1000-1012
    Mukatira UT, Liu CM, Varadarajan DK, Raghothama KG (2001) Negative regulation of phosphate starvation-induced genes. Plant Physiolgy 127:1854-1862
    Murray J, Muni RRD, Torres-Jerez I, Tang YH, Allen S, Andriankaja M, Li GM, Laxmi A, Cheng XF, Wen JQ et al. (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. The Plant Journal 65:244-252
    Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht MB, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal 42:236-250
    Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M (2006) Differential regulation of five Phtl phosphate transporters from Maize (Zea mays L.). Plant Biology 8:186-197
    Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 181:950-959
    Nilsson L, Muller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell and Physiology 30: 1499-1512
    Nilsson L, Muller R, Nielsen TH (2010) Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiologia Plantarum 139:129-143
    Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal 53:731-738
    Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiology 150: 1541-1555
    Pao SS, Paulsen IT, Saier MH (1990) Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62(1):1-34
    Park HC, Kim H, Koo SC, Park HJ, Cheong MS, Hong H, Baek D, Chung WS, Kim DH, Bressan RA (2010) Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant, Cell and Environment 33:1923-1934
    Parniske M (2008) Arbuscular mycorrhiza:the mother of plant root endosymbioses. Nature Reviews 6: 763-775
    Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of National Academy of Sciences, USA 99:13324-13329
    Peng MS, Hannam C, Gu HL, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. The Plant Journal 50:320-337
    Peng MS, Hudson D, Schofield A, Tsao R, Yang R, Gu HL, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. Journal of Experimental Botany 59(11):2933-2944
    Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology 97:1087-1093
    Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. The Plant Journal 61: 482-494
    Raghothama KG (1999) Phosphate acquisition. Annu Review of Plant Physiology and Plant Molecular Biology 50:665-693
    Raghothama KG (2000) Phosphate transport and signaling. Current Opinion in Plant Biology 3:182-187
    Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462-466
    Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23-37
    Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant, Cell and Environment 29:115-125
    Ribot C, Wang Y, Poirier Y (2008) Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate defficiency and the responses to auxin, cytokinin, and abscisic acid. Planta 227:1025-1036
    Rouached H, Secco D, Arpat B, Poirier Y (2011 a) The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biology 11:19
    Rouached H, Stefanovic A, Secco D, Arpat AB, Gout E, Bligny R, Poirier Y (2011b) Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. The Plant Journal 65:557-570
    Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development 15:2122-2133
    Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y et al. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. The Plant Cell 19: 610-624
    Scbachtman DP, Shin R (2007) Nutrient sensing and signaling:NPKS. Annual Review of Plant Biology 58:47-69
    Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. The Plant Cell 18:1121-1133
    Secco D, Baumann A, Poirier Y (2010) Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiology 152:1693-1704
    Sengstag C, Hinnen A (1987) The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual amino acid composition. Nucleic Acids Research 15:233-246
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nature Biotechnology 26:1135-1145
    Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis:Phtl;1 and Phtl;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. The Plant Journal 39:629-642
    Shin H, Shin HS, Chen RJ, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant Journal 45:712-726
    Smith AP, Jain A, Deal RB, Nagarajan VK, Poling MD, Raghothama KG, Meagher RB (2010) Histone H2A.Z regulates the expression of several classes of phosphate starvation reponses genes but not as a transcriptional activator. Plant Physiology 152:217-225
    Smith SE, Jakobsen I, Gronlund M, Smith A (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156:1050-1057
    Smith SE, Read DJ (1997) Mycorrhizal symbiosis. San Diego, CA:Academic Press
    Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiology 148:200-211
    Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. The Plant Journal 50: 982-994
    Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proceedings of National Academy of Sciences, USA 102(35):12612-12617
    Stougaard J, Jorgensen JE, Christensen T, Kuhle A, Marcker KA (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Molecular Gene Genetics 220:353-360
    Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16:2001-2019
    Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell 18:2051-2065
    Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nature Genetics 39(6):792-796
    Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicas. The Plant Journal 58:766-777
    Thangasamy S, Guo CL, Chuang MH, Lai MH, Chen JC, Jauh GY (2010) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist 189: 869-882
    Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. The Plant Journal 37:801-814
    Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of National Academy of Sciences, USA 106(33): 14174-14179
    Tsay YF, Ho CH, Chen HY, Lin SH (2011) Integration of nitrogen and potassium signaling. Annual Review of Plant Biology 62:207-226
    Ulker B, Somssich IE (2004) WRKY transcription factors:from DNA binding towards biological function. Current Opinion in Plant Biology 7:491-498
    Valdes-lopez O, Arenas-Huertero A, Ramirez M, Girard L, Sanchez F, Vance CP, Reyes JL, Hernandez G (2008) Essential role of MYB transcription factor:PvPHRl and microRNA: PvmiR399 in phosphorus-deficiency signaling in common bean roots. Plant, Cell and Environment 31:1834-1843
    Van-Buuren ML, Maldonado-Mendoza IE, Trieu AT (1992) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus vesiforme. Molecular Plant-Microbe Interactions 12:171-181
    Vasudevan S, Tong YC, Steitz JA (2007) Switching from repression to activation:microRNAs can up-regulate translation. Science 318:1931-1934
    Wang C, Ying S, Huang H, Li K, Wu P, Shou HX (2009a) Involvement of OsSPXl in phosphate homeostasis in rice. The Plant Journal 57:895-904
    Wang XM, Du GK, Wang XM, Meng YJ, Li YY, Wu P, Yi KK (2010) The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana. Plant & Cell Physiology 51(3):380-394
    Wang Y, Ribot C, Rezzonico E, Poirier Y (2004a) Structure and expression profile fo the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiology 135: 400-411
    Wang Y, Secco D, Poirier Y (2008) Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiology 146:646-656
    Wang Z, Chen CB, Xu YY, Jiang RX, Han Y, Xu ZH, Chong K (2004b) A practical vector for efficient knockdown of gene expression in rice (Oryza sativa L.). Plant Molecular Biology Reporter 22: 409-417
    Wang ZY, Hu H, Huang HJ, Duan K, W ZC, Wu P (2009b) Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice. Journal of Integrative Plant Biology 51 (7):663-674
    Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology 147:1181-1191
    Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M (2003) Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytologist 158: 239-248
    Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psrl, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proceedings of National Academy of Sciences, USA 96(26):15336-15341
    Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4:a phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany 58 (10):2491-2501
    Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. Journal of Biological Chemistry 282: 16369-16378
    Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell 21: 347-361
    Yi KK, Wu ZC, Zhou J, Du L, Guo LB, Wu YR, Wu P (2005) OsPTFl, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138:2087-2096
    Yin ZJ, Li CL, Han XL, Shen FF (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60-66
    Yoshida S, Forno, DA, Cock JH, Ka G (1976) Laboratory manual for physiological studies of rice,3rd edition. Manila:International Rice Research Institute
    Yu B, Xu CC, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proceedings of National Academy of Sciences, USA 99(8): 5732-5737
    Yuan YX, Wu HL, Wang N, Li J, Zhao WN, Du J, Wang DW, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research 18:385-397
    Zakhleniuk OV, Raines CA, Lloyd JC (2001) pho3, a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529-534
    Zhang BH, Pan XP, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Letters 580:3753-3762
    Zhang Q, Blaylock LA, Harrison M (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. The Plant Cell 22: 1483-1497
    Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschhi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, H+ sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227:659-669
    Zhao LN, Liu FX, Xu WY, Di C, Zhou SX, Xue YB, Yu JJ, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnology Journal 7:550-561
    Zheng LQ, Huang FL, Narsai R, Wu JJ, Giraud E, He F, Cheng LJ, Wang F, Wu P, Whelan J, Shou HX (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology 151:262-274
    Zhou J, Jiao FC, Wu ZC, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiology 146:1673-1686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700