用户名: 密码: 验证码:
菌根真菌与氮磷对针茅草原群落生产力变化的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(AMF)是陆地生态系统的重要组成部分,能够与约80%的陆地植物种类形成AMF-植物共生体。AMF为植物提供氮(N)磷(P)等土壤养分,植物为AMF提供光合产物。土壤NP水平及其平衡性(N:P),调节AMF与植物间的共生关系,影响AMF对植物生长的贡献。大量研究表明AMF影响植物养分吸收,调节物种间的相互作用关系和植被更新,作用于植物群落的生产力变化。然而,AMF与土壤NP水平及其平衡性互作对植物群落生产力变化的作用机制还知之甚少。
     本研究采用原位控制试验和室内盆栽试验相结合的方法探讨以下三个内容:(1)原位施用真菌抑制剂(苯菌灵)和P肥对克氏针茅(Stipa krylovii)草原植物群落生产力、多样性和稳定性的影响;(2)AMF与土壤NP水平及其平衡性互作对草原植物群落生产力和多样性的影响;(3)AMF和建立菌丝网络的成株植物对幼苗定植的影响。主要结果如下:
     (1)三年原位试验的结果表明:AMF对克氏针茅草原植物群落的物种多样性无显著影响,但有助于保持豆科植物的物种多样性。不添加P肥时,AMF对植物群落生产力无显著影响,添加P肥后,AMF降低了植物群落的生产力。较低P肥添加水平下,AMF对植物群落生产力的时间稳定性无显著影响,而较高P肥添加水平下,AMF增加了生产力的时间稳定性,也增加了群落中优势度较大的物种间的补偿性生长效应。
     (2)盆栽试验结果表明:土壤N与AMF的交互作用对克氏针茅草原植物群落的Shannon多样性无显著影响,而高P水平下,N与AMF的交互作用显著影响了植物群落的生产力。在高P低N水平下,AMF降低了生产力,而在高P高N水平下AMF对生产力无显著影响。在低P水平下,AMF显著增加了植物群落的生产力,与N水平无关。土壤P与AMF的交互作用显著影响了植物群落的Shannon多样性。在低P水平下,AMF降低了多样性,随着P水平升高,AMF对多样性的负效应降低。在低N:P下,AMF降低了植物群落的生产力,而在较高N:P下AMF增加了生产力。AMF仅在中等N:P下显著降低了植物群落的Shannon多样性,而在较高或较低N:P下对多样性无显著影响。AMF增加了植物群落水平化学计量学的内稳性和在不同N:P下生产力的稳定性,降低了物种间的互补性生长效应。
     (3)克氏针茅或羊草(Leymus chinensis)成株建立的菌丝网络更有利于其同种幼苗的P吸收。但是,冷蒿(Artemisia frigida)成株建立的菌丝网络更有利于克氏针茅和冰草(Agropyron cristatum)幼苗的P吸收。与其它植物成株建立的菌丝网络相比,冷蒿建植的菌丝网络更有利于冷蒿幼苗的生长。克氏针茅或羊草建立的菌丝网络显著抑制了冰草幼苗的生长,而冷蒿或冰草建立的菌丝网络抑制了羊草幼苗的生长。菌丝网络对植物幼苗P吸收的作用,与菌丝网络对其生长的作用不一致。
     综上所述,AMF与土壤NP水平及其平衡性互作影响了克氏针茅草原植物群落的多样性、生产力和稳定性。AMF增加了群落化学计量学的内稳性和物种间的补偿性生长效应,降低了物种间的互补性生长效应,有助于提高针茅草地生态系统的稳定性。不同种类成株植物建立菌丝网络对周围幼苗的定植影响不同。
Arbuscular mycorrhizal fungi (AMF) are important components of terrestrial ecosystems, and can form mycorrhizal symbioses with about80%of all terrestrial plant species. AMF provide soil resources such as nitrogen (N) and phosphorus (P) for plants and receive photosynthates in return. Soil available N and phosphorus P and their balance (ecological stoichiometry, N:P) mediate AMF-plant symbiosis along the mutualism-antagonism spectrum and affect the mycorrhizal contribution to plant growth. Numerous studies show that AMF impact plant community productivity through mediating plant nutrients acquisition, plant-plant interactions and vegetation regeneration. However, relatively little is known about how AMF interact with soil N and P availability and their balance to influence the productivity changes of plant communities.
     In this study, we combined field and pot experiments to address the following three contents:(1) the effects of fungicide (benomyl) application and P addition on diversity, productivity and temporal stability of the Stipa krylovii Steppe community in a field experiment;(2) the interaction effects of AMF and soil N and P availability and their balance on plant community diversity and productivity;(3) the effects of AMF and the adult plant species establishing the mycorrhizal networks on seedling recruitment. The main results are as follows:
     (1) In the three-year field experiment, AMF did not influence the species diversity of the plant communities, but AMF are essential for maintaining species richness of legumes. At the zero-P addition rate, AMF did not affect plant community productivity, but increased productivity under P addition treatments. At low P addition rates, AMF did not affect the temporal stability, but increased the temporal stability of plant community productivity and the compensatory effects between plants of high abundance under high P addition rates.
     (2) In the pot experiment, the interaction between N addition and AMF inoculation did not significantly affect Shannon diversity of plant community, while there was a significant interaction between AMF inoculation and N addition found for community productivity at the highest P level. At high P and low N levels, AMF inoculation decreased plant community productivity, but did not affect the productivity at the highest P and N level. At low P levels, AMF inoculation increased plant community productivity independent of N addition. The interaction between P addition and AMF inoculation significantly affect Shannon diversity of plant community. AMF inoculation suppressed plant community diversity at low P levels, and P addition reduced the negative effect of AMF on the diversity. AMF inoculation decreased the community productivity at low N:P ratios, but increased it at high N:P ratios. Shannon diversity was reduced by AMF inoculation at the intermediate N:P ratios, while did not show significant response to AMF at low and high N:P ratios. AMF inoculation increased the stoichiometric homoeostasis of the plant community and the stability of plant community productivity at different N:P ratios, but reduced the complementary effects between plants.
     (3) The mycorrhizal networks established by the adult plants of S. krylovii or Leymus chinensis provide more P benefit for the seedlings of the same species with the adult plants than the other species. However, the mycorrhizal networks established by the adult plants of Artemisia frigida provide more P benefit for S. krylovii and Agropyron cristatum seedlings. The mycorrhizal networks established by the adult plants of A. frigida showed more positive effects on the seedling growth of A. frigida than other species. The mycorrhizal networks established by the adult plants of S. krylovii or L. chinensis suppressed the seedling growth of A. cristatum, while the mycorrhizal networks established by the adult plants of A. cristatum or A. frigida suppressed the seedling growth of L. chinensis. The P benefit from AMF did not confirm the mycorrhizal growth response of both the seedlings plants.
     In conclusion, AMF interact with soil N and P availablility and their balance to influence plant community productivity, diversity and ecosystem stability in the Stipa krylovii Steppe. AMF increased the stoichiometric homoeostasis of the plant community and compensatory effects between plants, and reduced the complementary effects between plants, which may contribute to the increase in stability of the Stipa Steppe ecosystem. Mycorrhizal networks established by various adult plant species differently affected the recruitment of surrounding seedling.
引文
Allen M F, Clouse S D, Weinbaum B S, et al. (1992). Mycorrhizae and the integration of scales:from molecules to ecosystems. In:Mycorrhizal Functioning (ed. Allen M F). Chapman & Hall London, pp.488-515.
    Allsopp N and Stock W D. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia,1992,91(2):281-287.
    Allsopp N and Stock W D. Mycorrhizal status of plants growing in the cape floristic region, South-Africa. Bothalia,1993,23(1):91-104.
    Ba L, Ning J, Wang D, et al. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil,2012,352(1):143-156.
    Babikova Z, Gilbert L, Bruce T J A, et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters,2013,16(7):835-843.
    Babikova Z, Johnson D, Bruce T, et al. Underground allies:how and why do mycelial networks help plants defend themselves? Bioessays,2014,36(1):21-26.
    Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature,2004,431(7005):181-184.
    Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from Inner Mongolia grasslands. Global Change Biology,2010,16(1):358-372.
    Balser T C, Treseder K K and Ekenler M. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biology and Biochemistry, 2005,37(3):601-604.
    Bastolla U, Fortuna M A, Pascual-Garcia A, et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature,2009,458(7241):1018-U91.
    Bennett A E and Bever J D. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology,2007,88(1):210-218.
    Bernard N. Sur la germination du Neottia nidusavis. Comptes Rendus de l'Academie des Sciences, 1899,128:1253-1255.
    Bever J D, Morton J B, Antonovics J, et al. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology,1996,84(1):71-82.
    Bever J D, Schultz P A, Pringle A, et al. Arbuscular mycorrhizal fungi:more diverse than meets the eye, and the ecological tale of why. Bioscience,2001,51(11):923-931.
    Birhane E, Sterck F, Fetene M, et al. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia,2012,169(4):895-904.
    Bonneau L, Huguet S, Wipf D, et al. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist,2013,199(1):188-202.
    Borowicz V A. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory:A search for pattern. Acta Oecologica,2013,52(0):1-9.
    Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants:understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil,2009,320(1-2):37-77.
    Burgeff H. Die wurzelpiltze der orchideen. Jena, Germany:Gustav Fischer,1909.
    Carter M R and Gregorich E G. Soil sampling and methods of analysis 2nd edition. Boca Raton:CRC Press,2008.
    Cavagnaro T R, Dickson S and Smith F A. Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil,2010,329(1-2):307-313.
    Chaudhary V B, Bowker M A, O'Dell T E, et al. Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications,2009,19(1):110-122.
    Chen Y L, Zhang X, Ye J S, et al. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biology and Biochemistry, 2014,69(0):371-381.
    Clark C M and Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature,2008,451(7179):712-715.
    Collins C D and Foster B L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology,2009,90(9):2567-2576.
    Corkidi L, Rowland D L, Johnson N C, et al. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil,2002,240(2):299-310.
    Danieli-Silva A, Uhlmann A, Vicente-Silva J, et al. How mycorrhizal associations and plant density influence intra-and inter-specific competition in two tropical tree species:Cabralea canjerana (Veil.) Mart. and Lafoensia pacari A.St.-Hil. Plant and Soil,2010,330(1-2):185-193.
    de Bary A. Comparative morphology and biology of the fungi, mycetozoa and bacteria (English translation). Oxford, UK:Clarendon Press,1887.
    Diouf D, Duponnois R, Ba A T, et al. Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Functional plant biology,2005,32(12):1143-1152.
    Duhamel M, Pel R, Ooms A, et al. Do fungi vores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae? Ecology,2013,94(9):2019-2029.
    Egerton-Warburton L M, Querejeta J I and Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany,2007,58(6):1473-1483.
    ElGhandour I A, ElSharawy M A O and AbdelMoniem E M. Impact of vesicular arbuscular mycorrhizal fungi and Rhizobium on the growth and P, N and Fe uptake by faba-bean. Fertilizer Research, 1996,43(1-3):43-48.
    Elsharkawy M, Shimizu M, Takahashi H, et al. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant and Soil,2012,361(1-2):397-409.
    Estrada B, Barea J, Aroca R, et al. A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil,2013,366(1-2):333-349.
    Farahani A, Lebaschi H, Hussein M, et al. Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander(Coriandrum sativum L.). Journal of Medicinal Plants Research, 2008,2(6):125-131.
    Fitter A H. Effect of benomyl on leaf phosphorus concentration in alpine grasslands-a test of mycorrhizal benefit. New Phytologist,1986,103(4):767-776.
    Fitter A H. Costs and benefits of mycorrhizas:Implications for functioning under natural conditions. Experientia,1991,47(4):350-355.
    Fitter A H and Nichols R. The use of benomyl to control infection by vesicular arbuscular mycorrhizal fungi. New Phytologist,1988,110(2):201-206.
    Francis R and Read D J. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature,1984,307(5946):53-56.
    Francis R and Read D J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany,1995,73(S1): 1301-1309.
    Frank A. Uber die biologishen verhaltnisse des thalles einiger krustenfl echten. Beitrage zur biologie der Pflanzen,1877,2:123-200.
    Frank A B. Uber die auf wurzelsymbiose berhende ernahrung gewiser baume durch unterirdische pilze. Berichte der Deutschen Botanishen Gesellschaft,1985,3:128-145.
    Frostegard A, Tunlid A and Baath E. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods,1991,14(3):151-163.
    Fukami T. Assembly history interacts with ecosystem size to influence species diversity. Ecology,2004, 85(12):3234-3242.
    Garg N and Chandel S. Arbuscular mycorrhizal networks:process and functions. A review. Agronomy for Sustainable Development,2010.
    Gehring C A and Connell J H. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests:occurrence, colonization, and relationships with plant performance. Mycorrhiza,2006, 16(2):89-98.
    Genney D R, Hartley S E and Alexander I J. Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytologist,2001,152(2):355-363.
    Giri B and Mukerji K. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions:evidence for reduced sodium and improved magnesium uptake. Mycorrhiza,2004,14(5):307-312.
    Gong X, Chen Q, Dittert K, et al. Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant and Soil,2011,340(1):265-278.
    Grime J P, Mackey J M L, Hillier S H, et al. Floristic diversity in a model system using experimental microcosms. Nature,1987,328(6129):420-422.
    Grman E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology,2012,93(4):711-718.
    Grman E and Robinson T M P. Resource availability and imbalance affect plant-mycorrhizal interactions:A field test of three hypotheses. Ecology,2013,94(1):62-71.
    Grogan P and Chapin F S. Nitrogen limitation of production in a Californian annual grassland:The contribution of arbuscular mycorrhizae. Biogeochemistry,2000,49(1):37-51.
    Hart M M, Reader R J and Klironomos J N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution,2003,18(8):418-423.
    Hartnett D C and Wilson G W T. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology,1999,80(4):1187-1195.
    Hautier Y, Niklaus P A and Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science,2009,324(5927):636-638.
    Hetrick B A D, Hartnett D C, Wilson G W T, et al. Effects of mycorrhizae, phosphorus availability, and plant-density on yield relationships among competing tallgrass prairie grasses. Canadian Journal of Botany,1994,72(2):168-176.
    Hetrick B A D, Kitt D G and Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany,1988,66(7):1376-1380.
    Hetrick B A D, Wilson G W T and Cox T S. Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Canadian Journal of Botany,1992,70(10):2032-2040.
    Hetrick B A D, Wilson G W T and Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany,1989,67(9): 2608-2615.
    Hoagland D R and Arnon D I. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular,1950,347:1-32.
    Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters,2010,13(3):394-407.
    Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning:A consensus of current knowledge. Ecological Monographs,2005,75(1):3-35.
    Jacquemyn H, Brys R, Merckx V S F T, et al. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist,2014,202(2):616-627.
    Jakobsen I and Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist,1990,115(1):77-83.
    Janos D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza, 2007,17(2):75-91.
    Janouskova M, Rydlova J, Puschel D, et al. Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza,2011,21(7):641-650.
    Janse J M. Les endophytes radicaux de quelques plantes Javanaise. Annales du Jardin Botanique de Buitenzorg,1897,14:53-212.
    Jeffries P, Gianinazzi S, Perotto S, et al. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils,2003,37(1):1-16.
    Johnson N and Graham J. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant and Soil,2013,363(1-2):411-419.
    Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist,2010,185(3):631-647.
    Johnson N C, Angelard C, Sanders I R, et al. Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters,2013,16:140-153.
    Johnson N C, Graham J H and Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist,1997,135(4):575-585.
    Johnson N C, Rowland D L, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology,2003a,84(7):1895-1908.
    Johnson N C, Wilson G W T, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America,2010,107(5):2093-2098.
    Johnson N C, Wolf J and Koch G W. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters,2003b,6(6):532-540.
    Jung S, Martinez-Medina A, Lopez-Raez J, et al. Mycorrhiza-Induced resistance and priming of plant defenses. Journal of Chemical Ecology,2012,38(6):651-664.
    Kahiluoto H, Ketoja E and Vestberg M. Creation of a non-mycorrhizal control for a bioassay of AM effectiveness 1. Comparison of methods. Mycorrhiza,2000,9(5):241-258.
    Kaschuk G, Leffelaar P A, Giller K E, et al. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi:A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry,2010,42(1):125-127.
    Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science,2011,333(6044):880-882.
    Kiers E T and van der Heijden M G A. Mutualistic stability in the arbuscular mycorrhizal symbiosis: Exploring hypotheses of evolutionary cooperation. Ecology,2006,87(7):1627-1636.
    Klabi R, Hamel C, Schellenberg M P, et al. Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biology and Biochemistry,2014,70:176-182.
    Klironomos J, Zobel M, Tibbett M, et al. Forces that structure plant communities:quantifying the importance of the mycorrhizal symbiosis. New Phytologist,2011,189(2):366-370.
    Klironomos J N, McCune J, Hart M, et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters,2000,3(2):137-141.
    Koide R. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia,1991,85(3):389-395.
    Koide R T and Li M. Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytologist,1989,111(1):35-44.
    Kytoviita M M, Vestberg M and Tuom J. A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology,2003,84(4):898-906.
    Lan Z and Bai Y. Testing mechanisms of N-enrichment-induced species loss in a semiarid Inner Mongolia grassland:critical thresholds and implications for long-term ecosystem responses. Philosophical Transactions of the Royal Society B:Biological Sciences,2012,367(1606): 3125-3134.
    Larimer A L, Clay K and Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology,2014. Doi: 10.1890/13-0025.1
    Lesueur D and Sarr A. Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn. Agroforestry Systems,2008,73(1):37-45.
    Li X L, George E and Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil,1991a,136(1):41-48.
    Li X L, George E and Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist,1991b,119(3):397-404.
    Li Y J, Liu Z L, Hou H Y, et al. Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum,2013,35(12):3465-3475.
    Liu M L, Baoyig T, Yang C, et al. Effect of appling N,P, K to mowing grassland on plant community composition and grassland quality of typical steppe. Journal of Arid Land Resources and Environment,2007,21(11):131-135.
    Liu Y, Shi G, Mao L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist,2012, 194(2):523-535.
    Loreau M and de Mazancourt C. Biodiversity and ecosystem stability:a synthesis of underlying mechanisms. Ecology Letters,2013,16(Supplement s1):106-115.
    MacArthur R H and Wilson E O. The theory of island biogeography. Princeton:Princeton University Press,1967.
    Maron J L, Marler M, Klironomos J N, et al. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters,2011,14(1):36-41.
    Marques M S, Pagano M and Scotti M R M M L. Dual inoculation of a woody legume (Centrolobium tomentosum) with rhizobia and mycorrhizal fungi in south-eastern Brazil. Agroforestry Systems,2001,52(2):107-117.
    Marschner H and Dell B. Nutrient uptake in mycorrhizai symbiosis. Plant and Soil,1994,159(1): 89-102.
    McCune B and Mefford M J. PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, Oregon, U.S.A.,1999.
    Montesinos-Navarro A, Segarra-Moragues J G, Valiente-Banuet A, et al. Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 2012,196(3):835-844.
    Moora M and Zobel M. Effect of arbuscular mycorrhiza on inter-and intraspecific competition of two grassland species. Oecologia,1996,108(1):79-84.
    Moora M and Zobel M (2010). Arbuscular mycorrhiza and plant-plant interactions. Impact of invisible world on visible patterns. In:Positive Plant Interactions and Community Dynamics (ed. Pugnaire F I). CRC Press Boca Raton.
    Naeem S and Li S. Biodiversity enhances ecosystem reliability. Nature,1997,390(6659):507-509.
    Nakano-Hylander A and Olsson P. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology and Biochemistry,2007,39(7):1450-1458.
    Newsham K K, Fitter A H and Watkinson A R. Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. Journal of Ecology,1994,82(4): 805-814.
    Newsham K K, Watkinson A R, West H M, et al. Symbiotic fungi determine plant community structure-changes in a Lichen-Rich community induced by fungicide application. Functional Ecology, 1995,9(3):442-447.
    O'Connor P J, Smith S E and Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist,2002,154(1):209-218.
    Opik M, Moora M, Liira J, et al. Comparison of communities of arbuscular mycorrhizal fungi in roots of two Viola species. Proceedings of the Estonian Academy of Sciences Biology Ecology,2006, 55(1):3-14.
    Osanai Y, Bougoure D, Hayden H, et al. Co-occurring grass species differ in their associated microbial community composition in a temperate native grassland. Plant and Soil,2013,368(1-2): 419-431.
    Pankova H, Munzbergova Z, Rydlova J, et al. The response of Aster Amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. American Journal of Botany, 2011,98(5):850-858.
    Peng S B, Eissenstat D M, Graham J H, et al. Growth depression in mycorrhizal citrus at high-phosphorus supply-analysis of carbon costs. Plant Physiology,1993,101(3):1063-1071.
    Perez M and Urcelay C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza,2009,19(8):517-523.
    Pietikainen A and Kytoviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants. Journal of Ecology,2007,95(4):639-647.
    Pimm S L. The complexity and stability of ecosystems. Nature,1984,307(5949):321-326.
    Plenchette C, Fortin J A and Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil,1983,70(2):211-217.
    Porcel R, Aroca R and Ruiz-Lozano J. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development,2012,32(1):181-200.
    Querejeta J, Egerton-Warburton L, Prieto I, et al. Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant and Soil,2012,355(1):63-73.
    Rabie G H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia,1998,141(3): 159-166.
    Reeves F B, Wagner D, Moorman T, et al. Role of endomycorrhizae in revegetation practices in the semi-arid west.l. comparison of incidence of mycorrhizae in severely disturbed vs natural environments. American Journal of Botany,1979,66(1):6-13.
    Reich P B, Knops J, Tilman D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature,2001,410(6830):809-812.
    Reinhart K O, Wilson G W T and Rinella M J. Predicting plant responses to mycorrhizae:integrating evolutionary history and plant traits. Ecology Letters,2012,15(7):689-695.
    Robinson D and Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany,1999,50(330):9-13.
    Ryan M H, Small D R and Ash J E. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture,2000,40(5):663-670.
    Scheublin T R, Van Logtestijn R S P and Van der Heijden M G A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 2007,95(4):631-638.
    Schnoor T K, Martensson L M and Olsson P A. Soil disturbance alters plant community composition and decreases mycorrhizal carbon allocation in a sandy grassland. Oecologia,2011,167(3): 809-819.
    Schroeder-Moreno M S and Janos D P. Intra-and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany,2008,86(10):1180-1193.
    Schroeder M S and Janos D P. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil,2004,264(1-2):335-348.
    Simard S W, Beiler K J, Bingham M A, et al. Mycorrhizal networks:mechanisms, ecology and modelling. Fungal Biology Reviews,2012,26(1):39-60.
    Siqueira J O and Saggin-Junior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza,2001,11(5):245-255.
    Smith F A and Smith S. How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant and Soil,2013,363(1-2):7-18.
    Smith M D, Hartnett D C and Rice C W. Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biology & Biochemistry,2000,32(7):935-946.
    Smith S E and Read D J. Mycorrhizal symbiosis 3rd edition. New York:Elsevier,2008.
    Smith S E and Smith F A (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth:new paradigms from cellular to ecosystem scales. In:Annual Review of Plant Biology (eds. Merchant S S, Briggs W R and Ort D), pp.227-250.
    Song L, Bao X, Liu X, et al. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences,2011,8(8):2341-2350.
    Sterner R W and Elser J J. Ecological stoichiometry:the biology of elements from moleculaes to the biosphere. Princeton:Princeton University Press,2002.
    Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands. Science,2004,303(5665):1876-1879.
    Streitwolf-Engel R, van der Heijden M G A, Wiemken A, et al. The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology,2001,82(10): 2846-2859.
    Suding K N, Collins S L, Gough L, et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America,2005,102(12):4387-4392.
    Sudova R and Vosatka M. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant and Soil,2008,308(1): 55-67.
    Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition,2003,49(5):655-668.
    Tian H, Gai J, Zhang J, et al. Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia. European Journal of Soil Biology,2009a,45:321-327.
    Tian H, Gai J, Zhang J, et al. Arbuscular mycorrhizal fungi in degraded typical steppe of Inner Mongolia. Land Degradation & Development,2009b,20(1):41-54.
    Tilman D. Plant strategies and the dynamics and structure of plant communities. Princeton, New Jersey, USA:Princeton University Press,1988.
    Tilman D. Species richness of experimental productivity gradients-how important is colonization limitation. Ecology,1993,74(8):2179-2191.
    Tilman D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology,1997, 78(1):81-92.
    Tilman D and Downing J A. Biodiversity and Stability in Grasslands. Nature,1994,367(6461): 363-365.
    Tilman D, Lehman C L and Thomson K T. Plant diversity and ecosystem productivity:theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America,1997,94(5):1857-1861.
    Tilman D, Reich P B and Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature,2006,441(7093):629-632.
    Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist,2004,164(2):347-355.
    Trouvelot A, Kough J L and Gianinazzi-Pearson V (1986). Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle. In:Physiological and Genetic Aspects of Mycorrhizae (eds. Gianinazzi-Pearson V and Gianinazzi S). INRA Paris, pp.217-221.
    Turnbull L A, Crawley M J and Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos,2000,88(2):225-238.
    Urcelay C and Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters,2003,6(5):388-391.
    van der Heijden M G A. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters,2004,7(4):293-303.
    van der Heijden M G A. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology,2010,91(4):1163-1171.
    van der Heijden M G A, Bakker R, Verwaal J, et al. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS microbiology ecology, 2006a,56(2):178-187.
    van der Heijden M G A, Bardgett R D and van Straalen N M. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters,2008a, 11(6):296-310.
    van der Heijden M G A, Boller T, Wiemken A, et al. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology,1998a,79(6):2082-2091.
    van der Heijden M G A and Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology,2009,97(6):1139-1150.
    van der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature,1998b,396(6706):69-72.
    van der Heijden M G A, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006b,172(4):739-752.
    van der Heijden M G A, Verkade S and de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008b,14(11):2626-2635.
    van der Heijden M G A, Wiemken A and Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist,2003, 157(3):569-578.
    Vandenkoornhuyse P, Ridgway K P, Watson I J, et al. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology,2003,12(11):3085-3095.
    Voets L, de la Providencia I, Fernandez K, et al. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, 2009,19(5):347-356.
    Vogelsang K M, Reynolds H L and Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist,2006,172(3): 554-562.
    Vos C, Claerhout S, Mkandawire R, et al. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil,2012,354(1):335-345.
    Wagg C, Jansa J, Schmid B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters,2011a,14(10):1001-1009.
    Wagg C, Jansa J, Stadler M, et al. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology,2011b,92(6):1303-1313.
    Wahrlich W. Beitrage zur kenntnis der qrchideen wurzelpilze. Botanische Zeitung,1886,44:480-488.
    Walder F, Niemann H, Lehmann M F, et al. Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biology and Biochemistry, 2013,58:341-344.
    Walder F, Niemann H, Natarajan M, et al. Mycorrhizal networks:common goods of plants shared under unequal terms of trade. Plant Physiology,2012,159(2):789-797.
    Watts-Williams S, Turney T, Patti A, et al. Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil,2014,376(1-2):165-175.
    West H M. Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata. Journal of Ecology,1996,84(3):429-438.
    West H M, Fitter A H and Watkinson A R. The influence of three biocides on the fungal associates of the roots of Vulpia ciliata ssp. ambigua under natural conditions. Journal of Ecology,1993,81(2): 345-350.
    Wilson G W T and Hartnett D C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany,1998,85(12):1732-1738.
    Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments. Ecology Letters,2009,12(5):452-461.
    Wilson J B. The effect of initial advantage on the course of plant competition. Oikos,1988,51(1): 19-24.
    Yang G W, Liu N, Lu W J, et al. The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology,2014. Doi:10.1111/1365-2745.12249
    Yang H, Jiang L, Li L, et al. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters,2012,15(6):619-626.
    Yang H J, Li Y, Wu M Y, et al. Plant community responses to nitrogen addition and increased precipitation:the importance of water availability and species traits. Global Change Biology, 2011,17(9):2936-2944.
    Yao Q, Li X L, Feng G, et al. Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil,2001,230(2):279-285.
    Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters,2010,13(11):1390-1399.
    Yu Q, Elser J J, He N, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia,2011,166(1):1-10.
    Zaller J G, Heigl F, Grabmaier A, et al. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. Plos One,2011,6(12): e29293.
    Zhang T, Shi N, Bai D S, et al. Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (Chenopodiaceae) with no enhancement of phosphorus nutrition. Plos One,2012, 7(9):e41151.
    Zhen L N, Yang G W, Yang H J, et al. Arbuscular mycorrhizal fungi affect seedling recruitment:a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant and Soil,2014,375(1-2):127-136.
    Zobel M and Moora M. Interspecific competition and arbuscular mycorrhiza:Importance for the coexistence of two calcareous grassland species. Folia Geobotanica,1995,30(2):223-230.
    Zobel M, Moora M and Haukioja E. Plant coexistence in the interactive environment:Arbuscular mycorrhiza should not be out of mind. Oikos,1997,78(1):202-208.
    包玉英,孙芬和闫伟.内蒙古荒漠地区丛枝菌根植物的初步研究.干旱区资源与环境,2005,19(3):180-184.
    包玉英和闫伟.内蒙古中西部草原主要植物的丛枝菌根及其结构类型研究.生物多样性,2004,12(5):501-508.
    鲍士旦.土壤农化分析第三版.北京:中国农业出版社,2000.
    蔡晓布,冯固,钱成,等.丛枝菌根真菌对西藏高原草地植物和土壤环境的影响.土壤学报,2007,44(1):63-72.
    蔡晓布,盖京苹,钱成,等.西藏高原天然长芒草地丛枝菌根真菌接种效应.应用生态学报,2006,17(11):2121-2126.
    李登武,薛玲和张万红.黄土丘陵沟壑区丛枝菌根真菌多样性及其分布.林业科学,2011,47(7): 116-122.
    李树林和赵士杰.内蒙古西部地区VA菌根调查初报.内蒙古农业科技,1993,2:28-31.
    刘润进和陈应龙.菌根学.北京:科学出版社,2007.
    刘振基和陈圣宾.群落生态学.北京:气象出版社,2011.
    钱成,蔡晓布,盖京苹,等.丛枝菌根真菌对西藏高原固沙植物吸磷效率的影响.植物营养与肥料学报,2006,12(4):537-543.
    石伟琦.丛枝菌根真菌对内蒙古草原主要牧草生长和群落结构的影响:[博士学位论文].中国农业大学,2007.
    石伟琦.丛枝菌根真菌对内蒙古草原大针茅群落的影响.生态环境学报,2010,19(2):344-349.
    宋勇春,冯固和李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,2000,6(2):171-175.
    宋勇春,张俊伶,李晓林,等.根间菌丝桥对三叶草生长及磷营养状况的影响.中国农业大学学报,1999,4(1):26-32.
    苏友波,王贺,张俊伶,等.丛枝菌根对三叶草根际磷酸酶活性的影响.植物营养与肥料学报,1998,4(3):264-270.
    汪诗平.不同放牧率对内蒙古冷蒿草原植物多样性的影响.植物学报,2001,43(1):89-96.
    谢越.典型草原五草种对接种丛枝菌根真菌的生长反应:[硕士学位论文].北京:中国农业大学,2012.
    徐黎明.不同水分状况下丛枝菌根真菌对植物密度效应的调节及机理:[硕士学位论文].浙江大学,2010.
    姚青,朱红惠,王栋,等.亚热带草地中植物优势种与从属种对AM真菌的差异性生长反应.生态学报,2006,26(7):2288-2293.
    张福锁,申建波和冯固.根际生态学-过程与调控.北京:中国农业大学,2009.
    张倩.植物相互作用与丛枝菌根真菌:[博士学位论文].杭州:浙江大学,2011.
    甄莉娜.刈割和氮磷添加条件下丛枝菌根真菌对成株和幼苗间生长关系的影响机制:[博士学位论文].北京:中国农业大学,2012.
    周翰舒.典型草原克氏针茅和冷蒿对氮磷供给的生长反应:[博士学位论文].北京:中国农业大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700