用户名: 密码: 验证码:
钨酸盐微/纳米材料的控制合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究金属钨酸盐微/纳米材料的控制合成、机理及性质。分别以KN03溶液和蒸馏水为溶剂用水热法成功制备了3D分级结构Bi2WO6微球和八面体Bi2WO6,探讨了3D分级结构Bi2WO6微球的形成机理;利用简单的水热法制备了新颖复合体系ZnWO4-Cu和ZnWO4-Cu2O,探讨了Cu在光催化与类芬顿协同效应中的作用;利用水热法在较为温和的条件下制备了介稳结构的立方ZrW2O8,分析了不同反应条件对产物的影响,并通过掺杂少量的钼,合成在室温条件下具有高温立方β相结构的ZrMoxW2-xO8材料。
     论文主要内容概述如下:
     1、3D分级结构Bi2WO6微球的控制合成及光催化性质
     分别以KN03溶液和蒸馏水为溶剂,利用水热法制备了3D分级结构Bi2WO6微球和八面体Bi2WO6。通过X射线粉末衍射(XRD)、扫描电镜(SEM)、紫外一可见漫反射光谱(DRS)、比表面(BET)对产物进行表征。实验表明,KN03在控制合成3D分级结构Bi2WO6微球的过程中起到重要的作用。通过调节KN03溶液的浓度,我们推测Bi2WO6的3D微球是由晶核向外有取向生长而成,而不是由纳米片自组装形成的。以光催化降解亚甲基蓝为模型,研究了合成产物的光催化性能。结果表明八面体钨酸铋和钨酸铋微球对亚甲基蓝的脱色率分别达33.56%和99.17%,主要是因为Bi2WO6微球具有大的比表面积和特殊的分级结构。比表面积较大,电子空穴对的分离效率高;特殊的分级结构和孔结构不仅能提供丰富的有机小分子通道,还能提高光的利用率。进一步以吡啶为探针分子,通过吸附毗啶红外光谱探讨了Bi2WO6的表面酸性与光催化之间的关系。研究显示,Bi2WO6具有较强的表面酸性,增强了Bi2WO6与RhB分子之问吸附作用,有利于染料分子上的电子跃迁至催化剂上,易于发生光敏化和光催化反应。
     2、新颖复合体系ZnWO4-Cu的制备及光催化.类芬顿协同效应
     采用水热法成功合成了新颖的复合体系ZnWO4-Cu,合成方法简单,绿色环保。利用XRD、TEM和XPS对产物进行了详细的表征。以亚甲基蓝为模型污染物,在紫外光下研究了产物的光催化性能。结果表明:由于光催化和类芬顿协同作用的影响,ZnWO4-Cu的光催化活性明显优于纯ZnWO4,且Cu和ZnWO4摩尔比是0.2的样品光催化活性最高。在光催化降解MB的过程中,Cu起到了非常重要的作用。一方面Cu与H2O2反应产生羟基自由基进而氧化MB;另一方面Cu+和Cu2+作为电子捕获剂,捕获ZnWO4在紫外光照射下产生的电子,降低光生电子和空穴对的复合率,从而提高产物光催化活性。此外,详细的讨论了Cu的复合量对ZnWO4光催化活性的影响,当复合过量的Cu时,ZnWO4-Cu的光催化活性明显降低,原因在于金属Cu表面形成的钝化层不能够及时的捕获光生电子还原成Cu,使Cu+/Cu2+成为光生电子和空穴的再复合中心,降低催化剂的光催化活性。进一步提出可能的光催化降解机理。本文还采用水热法制备了复合体系ZnWO4-Cu2O,以亚甲基蓝为模型污染物,在太阳光下研究了产物的光催化性能。对于样品ZnC-0、 ZnC-0.1、ZnC-0.2和ZnC-0.3, MB的脱色率分别为46.54%、78.5%、88.34%和76.53%,并探讨了Cu20复合量对产物光催化活性的影响。
     3、负热膨胀材料ZrW2O8和ZrW1.4Mo0.6O8的水热合成
     作为一种性能优异的各向同性负热膨胀材料,立方相ZrW2O8备受世人关注。但ZrW2O8处于介稳态,热稳定范围很窄,合成较为困难。本文采用水热法在较温和的条件下制备了介稳的立方ZrW2O8。利用XRD、SEM、FT-IR等手段对产物进行表征。分析了不同反应条件对产物的影响,并对合成条件作出了优化。通过掺杂少量的钼,合成在室温条件就具有高温立方p相结构的ZrMoxW2-xO8材料。
In this thesis, the Synthesis, Mechanism and Properties of Micro-/Nano-Materials of Tungstate were investigated. Three-dimensional (3D) hierarchical Bi2WO6microsphere and octahedral Bi2WO6have been synthesized by a facile hydrothermal method using KNO3solution and distill water as solvent, respectively. A possible mechanism on the formation of Bi2WO6microsphere was proposed; A novel coupled system of ZnWO4-Cu and ZnWO4-Cu2O were successfully synthesized by the hydrothermal method. The effects of the amount of Cu on the photocatalytic performance of ZnWO4-Cu were investigated in detail. The cubic ZrW2O8was successfully synthesized by hydrothermal method with mild conditions, and the influence of synthetic conditions on the outcome was discussed. ZrMoxW2-xO8this had the cubic β-ZrW2O8structure at room temperature was successfully synthesized by doping a certain proportion of Mo.
     The details are summarized as follows:
     1. Controlled Synthesis of Three-Dimensional Hierarchical Bi2WO6Microspheres with Optimum Photocatalytic Activity
     Three-dimensional (3D) hierarchical Bi2WO6microsphere and octahedral Bi2WO6have been synthesized by a facile hydrothermal method using KNO3solution and distill water as solvent, respectively. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2adsorption/desorption (BET), and UV-vis diffuse reflectance spectroscopy (DRS) in detail. The concentrated KNO3played a key role for the formation of3D Bi2WO6hierarchical microspheres. By changing the concentration of KNO3solution, we deduced that3D hierarchical Bi2WO6microsphere was produced through crystal plane-selective growth starting from cores, not through aggregation of rectangular platelets which were produced independently. The photocatalytic activity of the as-synthesized products was evaluated by monitoring the degradation of MB solution. The decoloration ratio of MB was33.56%and99.17%respectively for the octahedral Bi2WO6and Bi2WO6microsphere, which was attributed to the larger surface area and special hierarchical structure of Bi2WO6microsphere. For large surface area, the ratio of the surface charge carrier transfer rate to the electron-hole recombination rate could be greatly improved. The hierarchical architecture with large surface area and pore system not only improved the molecular transport of reactants, but also allowed more efficient light harvesting. By pyridine adsorption, the surface acidity of catalyst Bi2WO6was measured using infrared spectroscopy. The relationship between surface acidity of Bi2WO6and photocatalytic degradation of RhB was explored. It was found that the more surface acid sites of Bi2WO6, the stronger adsorption between with RhB and Bi2WO6. Consequently, the photogenerated electrons on the dye could more easily transfer to the photocatalyst, leading to the photosensitization and photocatalysis.
     2. ZnWO4-Cu System with Enhanced Photocatalytic Activity by Photo-Fenton-Like Synergistic Reaction
     A novel coupled system of ZnWO4-Cu was successfully synthesized by the hydrothermal method. The synthesis was simple and green. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was evaluated by monitoring the degradation of MB solution under UV light irradiation. The catalytic activity of ZnWO4-Cu was much higher than that of bare ZnWO4and the photocatalytic activity of the ZC-0.2was best, which was attributed to the synergistic effect between photocatalysis and Fenton-like process. Cu played a key role in the process of photocatalytic degradation of MB. The copper reagent not only served as a heterogeneous catalyst for the decomposition of H2O2so as to generate hydroxyl radicals to attack the contaminants, but also acted as an electron shuttle that promoted the separation of the photogenerated carriers. Furthermore, the effects of the amount of Cu on the photocatalytic performance of ZnWO4-Cu were investigated in detail. The photocatalytic degradation ratio of MB decreased when too much Cu was introduced which was attributed to the passivation layer on the Cu surface could not be reduced timely by the photogenerated electron. The redundant Cu+/Cu2+may react with both photogenerated electrons and holes as recombination center, thereby make the photocatalytic activity of ZnWO4decreased.The possible mechanism of the synergistic system was proposed. A coupled system of ZnWO4-Cu2O was synthesized by the hydrothermal method. The photocatalytic activity was evaluated by monitoring the degradation of MB solution under sunlight irradiation. The degradation ratio of MB was46.54%、78.5%、88.34%and76.53%respectively for ZnC-0, ZnC-0.1, ZC-0.2and ZC-0.3. The effects of the amount of Cu2O on the photocatalytic performance of ZnWO4-Cu2O were investigated.
     3. Hydrothermal synthesis of negative thermal expansion ZrW2O8and ZrMoxW2-xO8
     As an excellent kind of isotropic negative thermal expansion materials, cubic ZrW2O8is coming to be people's concern. But it is difficult to be synthesized because it is metastable and has narrow thermodynamic stability range.The cubic ZrW2O8was successfully synthesized by hydrothermal method with mild conditions. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The influence of synthetic conditions on the outcome was discussed and made optimization in this passage. ZrMoxW2-xO8this had the cubic β-ZrW2O8structure at room temperature was successfully synthesized by doping a certain proportion of Mo.
引文
[1]J. H. Li, J. Z. Zhang, Optical properties and applications of hybrid semiconductor nanomaterials[J]. Coord. Chem. Rev.,2009,253:3015-3041.
    [2]M. R. Gwinn, Nanomaterials:Potential ecological uses and effects[J]. Encycl. Environ. Health,2011,1-11.
    [3]张立德,牟季美,纳米材料和纳米结构[M].科学出版社,2001
    [4]L. J. Zhang, Thomas J. Webster, Nanotechnology and nanomaterials:Promises for improved tissue regeneration[J]. Nano Today,2009,4:66-80.
    [5]W. W. Ge, H. J. Zhang, J. Y. Wang, The thermal and optical properties of BaWO4 single crystal[J]. J. Cryst. Growth,2005,276:208-214.
    [6]S. Rajagopal, V. L. Bekenev, D. Mangalaraj, O. Y. Khyzgun, Electronic structure of FeWO4 and CoWO4 tungstate:First-principles FP-LAPW calculations and X-ray spectroscopy studies[J]. J. Alloy. Compd.,2010,496:61-68.
    [7]S. P. Pathare, K. G. Akamanchi, Sulfated tungstate:a green catalyst for strecker reaction[J]. Tetrahedron Lett.,2012,53:871-875.
    [8]K. Gandhi, B. K. Dixit, D. K. Dixit, Effect of addition of Zirconium tungstate, lead tungstate and titanium dioxide on the pronton conductivity of polystyrene porous membrane[J]. Int. J. Hydrogen Energy,2012,37:3922-3930.
    [9]J. Tamaki, T. Fujii, K. Fujimori, N. Miura, N. Yamazoe, Application of metal tungstate-carbonate composite to nitrogen oxide sensor operative at elevated temperature[J]. Sens. Actuators B,1995,25:396-399.
    [10]宋祖伟,钨酸盐微/纳米粉的制备及其防腐应用研究[D].中国科学院研究生院(海洋研究所),2010.
    [11]王步国,施尔畏等,钨酸盐晶体中负离子配位多面体的结晶方位与晶体的形貌[J].无机材料学报,1998,13:648-654.
    [12]I. A. Kamenskikh, V. N. Kolobanov, V. V. Mikhailin, Anisotropy of Optical Properties of Scheelite Tungstates in the Fundamental Absorption Region[J]. Nucl. Instrum. Met. Phys. Res. Sect., A 2001,470:270-273.
    [13]M. Anicete-Santos, F. C. Picon, C. N. Alves, P. S. Pizani, J. A. Varela, E. Longo, The Role of Short-Range Disorder in BaWO4 Crystal in the Intense Green Photoluminescence[J]. J. Phys. Chem. C.,2011,115:12180-12186.
    [14]F. B. Cao, Sol-Gel Synthesis of Red-Emitting Phosphor Ca-Sr-Mo-W-O-(Eu3+ La3+) Powders and Luminescence Properties [J]. Ind. Eng. Chem. Res.,2012, 51(9):3569-3574.
    [15]Z. D. Lou, M. Cocivera, Catlioda Luminesence of CaWO4 and SrWO4 thin films prepared by spray pyrolysis[J]. Mater. Res. Bull,2002,37:1573-1575.
    [16]M. J. Chen, W. Chu, Efficient Degradation of an Antibiotic Norfloxacin in Aqueous Solution via a Simulated Solar-Light-Mediated Bi2WO6 Process [J]. Ind. Eng. Chem. Res.,2012,51(13):4887-4893.
    [17]朱永法,李巍,何误,尚静.不锈钢金属丝网上TiO2纳米薄膜光催化剂的研究[J].高等化学学报,2003,3:465-468.
    [18]P. S. Tang, H. F. Chen, F. Cao, One-step preparation of bismuth tungstate nanodisks with visible-light photocatalytic activity[J]. Mater. Lett.,2012,68:171-173.
    [19]吴大雄,朱海涛,帅仁忠, 菊花状纳米Bi2WO6的制备及可见光催化性能研究[J].中国陶瓷,2008,11:25-27.
    [20]张治国,马清林,梅建军, 钼酸盐与钨酸盐缓蚀体系在钢铁及铁质文物上的应用进展[J].腐蚀与防护,2008,29:639-641.
    [21]W. D.Robertson, Molybdate and tungtate as corrosion inhibitors and the mechanism of inhibition[J]. J Electrochem Soc,1951,98(3):55-58.
    [22]T. T. X. Hanga, T. A. Truca, N. T. Duonga, N. Pebereb, M. Olivier, Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel [J]. Prog. Org. Coat.,2012,74(2):343-348.
    [23]Evaggelos D. Mekeridis, Ioannis A. Kartsonakis, George C. Kordas, Multilayer organic-inorganic coating incorporating TiO2 nanocontainers loaded with inhibitors for corrosion protection of AA2024-T3 [J]. Prog. Org. Coat.,2012,73(2-3):142-148.
    [24]靳涛,刘立强,颜填料研究现状及其在隔热涂料中的应用[J].材料导报,2008,22:26-30.
    [25]P. E. Cavicchi, R. H. Silsbee, Coulomb Suppression of Tunneling Rate from Small Metal Particles[J]. Phys. Rev. Let.,1984,52:1453-1456.
    [26]C. M. Mo, Z. Yuan, L. D. Zhang, Photoluminescence of nanoparticles[J]. Nanostructured Mater.,1993,2:113-116.
    [27]Q. Jiang, D. S. Zhao, M. Zhao, Size-dependent interface energy and related interface stress[J]. Acta Mater.,2001,49:3143-3147.
    [28]S. H. Yu, B. Liu, M. S. Mo, General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires:A Facile, Low-Temperature Solution Approach[J]. Adv. Funct. Mater.,2003,13:639-647.
    [29]M. Daturi, G. Busca, M. M. Borel, Vibrational and XRD study of the system CdWO4-CdMO4[J]. J. Phys. Chem. B,1997,101:4358-4369.
    [30]R. P. Chaudhury, F. Yen, Cruz C. R. dela, Thermal expansion and pressure effect in MnWO4[J]. Phys. B (Amsterdam, Neth.),2008,403:1428-1430.
    [31]M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, R. S. P. Bokalawela, Ionic conductivity of PEO9:Cu(CF3SO3)2):Al2O3 nano-composite solid polymer electrolyte [J]. Electrochim. Acta,2005,50:5602-5605.
    [32]郭金学,陈菲,纳米钨酸锰的超声合成及其性质研究[J].青岛科技大学学报 (自然科学版),2010,31:361-366.
    [33]胡兴定,张文朴,张改莲.钨酸铋和钨酸铁铋气体敏感材料的研究[J].稀有金属,1995,19:255-259.
    [34]代小英,许欣,陈绍斌,纳米抗菌剂的概况[J].现代预防医学,2008,35:2513.2515.
    [35]F. N. Chen, X. D. Yang, Q. Wu, Antifungal capability of TiO2 coated film on moist wood [J]. Building and Environ.,2009,44:1088-1093.
    [36]吴卫华,王黔平,钨酸盐抗菌剂的实验研究[J].陶瓷,2010,7:17-20.
    [37]曾汉民主编.高技术新材料要览[M].北京:中国科学出社,1993,5.
    [38]W. W. Ge, H. J. Zhang, J. Y. Wang, Growth of large dimension BaWO4 crystal bythe Czochralski method[J]. J. Cryst. Growth,2004,270:582-588.
    [39]Q. T. Guo, J. W. Wang, O. J. Kleppa, Note on the enthalpies of formation, from the component oxides, of CoWO4 and NiWO4, determined by high-temperature direct synthesis calorimetry[J]. Thermochimica Acta,2001,380:1-4.
    [40]L. I. Ivleva, I. S. Voronina, P. A. Lykov, Growth of Optically Homogeneous BaWO4 Single Crystals for Raman Lasers[J]. J. Cryst. Growth,2007,304:108-113.
    [41]C. H. Yang, T. T. Chen, W. T. Tsai, Synergistic hydrogen desorption behavior of magnesium aluminum hydride synthesized by mechano-chemical activation method [J]. J. Alloy. Compd.,2012,525(5):126-132.
    [42]I. Koseva, A. Yordanova, P. Tzvetkov, V. Nikolov, D. Nihtianova, Nanosized pure and Cr doped Al2-xInx(WO4)3 solid solutions [J]. Mater. Chem. Phys.,2012, 132(2-3):808-814.
    [43]S. Obregon Alfaro, A. Martinez-de la Cruz, Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and BI2W2O9 obtained by co-precipitation method[J]. Appl. Catal., A 2010,383:128-133.
    [44]J. S. Sun, T. T. Yu, X. P. Li, J. S. Zhang, L. H. Cheng, H. Y. Zhong, Y. Tian, R. N. Hua, B. J. Chen, Co-precipitation synthesis, structural and morphological characterization, and luminescence properties of Dy3+ doped nanocrystal and Gd2WO6 phosphors [J]. J. Phys. Chem. Solids,2012,73(3):465-470.
    [45]戈磊,张宪华,微乳液法合成新型可见光催化剂Bi2WO6及其光催化性能[J].硅酸盐学报,2010,38:457-462.
    [46]Y. X. Guo, G. C. Fan, Z. Y. Huang, J. L. Sun, L. D. Wang, T. H. Wang, J. Chen, Determination of standard molar enthalpies of formation of SrMoO4 micro/nano structures [J]. Thermochim. Acta,2012,530:116-119.
    [47]周萍,张杰,顾晓天,戴志晖,唐亚文,包建春,不同形状的钨酸钡纳米粒子的合成[J].应用化学,2006,23:370-373.
    [48]L. S. Cavalcantea, J. C. Sczancoskia, M. Siu Li, E. Longo, J. A. Varela, β-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties [J]. Colloids Surf., A,2012, 369:346-351.
    [49]Y. Tian, G. M. Hua, W. Xu, N. Li, M. Fang, L. D. Zhang, Bismuth tungstate nano/microstructures:Controllable morphologies, growth mechanism and photocatalytic properties [J]. J. Alloy. Compd.,2011,509:724-730.
    [50]M. A. P. Almeida, L. S. Cavalcante, J. A. Varela, M. Siu Li, E. Longo, Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method [J]. Adv. Powder Technol.,2012,23(1):124-128.
    [51]P. Chen, L. Y. Zhu, S. H. Fang, C. Y. Wang, G. Q. Shan, Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light[J]. Environ. Sci. Technol.,2012,46:2345-2351.
    [52]D. K. Ma, S. M. Huang, W. X. Chen, S. W. Hu, F. F. Shi, K. L. Fan, Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates:Controlled Synthesis, Photocatalytic Activities, and Wettability[J]. J. Phys. Chem. C,2009,113:4369-4374.
    [53]G. J. Xing, R. Liu, C. Zhao, Y. L. Li, Y. Wang, G. M. Wua, Photoluminescence and photocatalytic properties of uniform PbMoO4 polyhedral crystals synthesized by microemulsion-based solvothermal method [J]. Ceram. Int.,2011,37(7):2951-2956.
    [54]B. S. Barros, A. C. deLima, Z. R. daSilva, D. M. A. Melo, S. Alves-Jr, Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates [J]. J. Phys. Chem. Solids,2012,73(5):635-640.
    [55]W. M. Tong, L. P. Li, W. B. Hu, T. J.Yan, G. S. Li, Systematic Control of Monoclinic CdWO4 Nanophase for Optimum Photocatalytic Activity[J]. J. Phys. Chem. C,2010,114:1512-1519.
    [56]毕剑,赖欣,高道江,电化学沉积CaWO4薄膜及表征[J].四川师范大学学报(自然科学版),2003,26:513-516.
    [57]高道江,肖定全,金亿鑫,SrWO4薄膜的电化学制备及室温光致发光特性[J].功能材料,2005,36:711-716。
    [58]Y. Huang, Z. H. Ai, W. K. Ho, Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photoaalytic Removal of NO[J]. J. Phys. Chem. C,2010,114:6342-6349.
    [59]F. Dong, Y. Huang, S. C. Zou, J. Liu, S. C. Lee, Ultrasonic spray pyrolysis fabrication of solid and hollow PbWO4 spheres with structure-directed photocatalytic activity[J]. J. Phys. Chem. C,2011,115:241-247.
    [1]H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Polymer-Directed Synthesis of Penniform BaWO4 Nanostrucyures in Reverse Micelles [J]. J. Am. Chem. Soc.,2003, 125:3450-3451.
    [2]A. M. Cao, J. S. Hu, H. P. Liang, W. G. Song, L. J. Wan, X. L. He, X. G. Gao, S. H. Xia, Hierarchically Structure Cobalt Oxide (Co3O4):The Morphology Control and Its Potential in Sensors [J]. J. Phys. Chem. B,2006,110:15858-15863.
    [3]H. L. Zhang, J. S. Liu, Z. W. Yao, J. Yang, L. Z. Pan, Z. Q. Chen, Biomimetic mineralization of electrospun poly (lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro [J]. Mater. Lett.,2009,63:2313-2316.
    [4]Anthony S. Ratkovich, R. Lee Penn, Controlling oriented aggregation using reagent concentrations and trihalo acetic acid surfactants [J]. J. Solid State Chem., 2008,181:1600-1608.
    [5]B. Liu, H. C. Zeng, Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process. J. Am. Chem. Soc.,2004,126:16744-16746.
    [6]C. Y. Wang, H. Zhang, F. Li, L. Y. Zhu, Degradation and Mineralization of Bisphenol A by Mesoporous Bi2WO6 under Simulated Solar Light Irradiation [J]. Environ. Sci. Technol.,2010,44:6843-6848.
    [7]W. Z. Yin, W. Z. Wang, S. M. Sun, Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation [J]. Catal. Commun., 2010,11:647-650.
    [8]B. Aurivilus, The structure of Bi2NbO5F and isomorphous compounds [J]. Ark. Kemi,1952,5:39-47.
    [9]J. Y. Xiang, J. P. Tu, L. Zhang, Y. Zhou, X. L. Wang, S. J. Shi, Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and application as anodes for lithium ion batteries [J]. J. Power Sources,2010, 195:313-319.
    [10]G. L. Tan, J. H. Du, Q. J. Zhang, Structual evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying [J]. J. Alloy. Compd.,2009, 468:421-431.
    [11]D. N. Ke, T. Y. Peng, L. Ma, P. Cai, K. Dai, Effects of Hydrothermal Temperature on the Micristructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light [J]. Inorg. Chem.,2009,48:4685-4691.
    [12]A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solution on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions[J]. Chem. Lett.,1999,10:1103-1106.
    [13]J. W. Tang, Z. G. Zou, J. H. Ye, Catal. Lett.,2004,92:53-60.
    [14]C. Zhang, Y. F. Zhu, Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts [J]. Chem. Mater.,2005,17:3537-3545.
    [15]C. Ng, A. lwase, Y. H. Ng, R. Amal, Transforming Anodized WO3 Films into Visible-Light-Active Bi2WO6 Photoelectrodes by Hydrothermal Treatment [J]. J. Phys. Chem. Lett.,2012,3(7):913-918.
    [16]Z. J. Zhang, W. Z. Wang, J. Xu, M. Shang, J. Ren, S. M. Sun, Enhanced photocatalytic activity of Bi2WO6 doped with upconversion luminescence agent [J]. Catal. Commun.,2011,13(1):31-34.
    [17]M. Shang, W. Z. Wang, S. M. Sun, L. Zhou, L. Zhang, Bi2WO6 Nanocrystals with High Photocatalytic Activities under Visible Light [J]. J. Phys. Chem. C,2008, 112:10407-10411.
    [18]D. K. Ma, S. M. Huang, W. X. Chen, S. W. Hu, F. F. Shi, K. L. Fan, Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates:Controlled Synthesis, Photocatalytic Activities, and Wettability [J]. J. Phys. Chem. C.,2009,113:4369-4374.
    [19]Y. Huang, Z. H. Ai, W. K. Ho, Ultrasonic Spray Pyrolysis Synthesis of Porous Bi2WO6 Microspheres and Their Visible-Light-Induced Photoaalytic Removal of NO [J]. J. Phys. Chem. C.,2010,114:6342-6349.
    [20]Y. Tian, G. M. Hua, W. Xu, N. Li, M. Fang, L. D. Zhang, Bismuth tungstate nano/microstructures:Controllable morphologies, growth mechanism and photocatalytic properties [J]. J. Alloy. Compd.,2011,509:724-730.
    [21]L. Yan, R. B. Yu, J. Chen, X. R. Xin, Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods:Investigation of the Morphology Evolution [J]. Crystal Growth & Design,2008,8:1474-1477.
    [22]Y. X. Liu, H. Song, Q. H. Zhang, D. Y. Chen, A Preliminary Study of the Preparation of a KBr-Doped ZnO Nanoparticle and its Photocatalytic Performance on the Removal of Oil from Oily Sewage[J]. Ind. Eng. Chem. Res.,2012, 51(13):4779-4782.
    [23]M. J. Chen, W. Chu, Efficient Degradation of an Antibiotic Norfloxacin in Aqueous Solution via a Simulated Solar-Light-Mediated Bi2WO6 Process [J]. Ind. Eng. Chem. Res.,2012,51(13):4887-4893.
    [24]J. Y. Chen, T. Herricks, M. Geissler, Y. N. Xia, Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process [J]. J. Am. Chem. Soc.,2004,126:10854-10855.
    [25]K. S. W. Sing, D. H. Evereet, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Sieminewska, Pure Appl. Chem.,1985,57:603-606.
    [26]X. T. Gao, I. E. Wachs, Investigation of Structures of Supported Vanadium Oxide Catalysts by UV-vis-NIR Diffuse Reflectance Spectroscope [J]. J. Phys. Chem. B.,2000,104;1261-1268.
    [27]王齐,赵进才,丛燕青,张轶,无定形Ti02可见光敏化降解染料污染物[J]. 催化学报,2011,32(6):1076-1082.
    [28]S. S. Soni, M. J. Henderson, J. F. Bardeau, A. Gibaud, Adv. Mater.,2000,20: 1493-1498.
    [29]B. S. Liu, K. Nakata, A. H. Liu, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, A. Fujishima, Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays:the Effects of Nanotube Geometry on Photocatalytic Activity[J]. J. Phys. Chem. C,2012,116(13):7471-7479.
    [30]T. Zhu, J. S. Chen, X. W. Luo, Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres with High Surface Area[J]. J. Phys. Chem. C,2012,116(12):6873-6878.
    [31]Y. D. Hou, L. Wu, X. C. Wang, Z. X. Ding, Z. H. Li, X. Z. Fu, Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air [J]. J. Catal.,2007,250:12-18.
    [32]H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc.,2007,129:8406-8407.
    [33]L. G. Devi, B. N. Murthy, S. G. Kumar, Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light:Correlation of dye structure and its adsorptive tendency on the degradation rate [J]. Chemosphere,2009,76:1163-1166.
    [34]J. Zou, J. Gao, Y. Wang, Synthesis of highly active H2O2-sensitized sulfated titania nanoparticles with a response to visible light [J]. J. Photochem. Photobiol., A 2009,202:128-135.
    [35]X. Wang, J. C. Yu, P. Liu, X. Wang, W. Su, X. Fu, Probing of photoreceptor decay characteristics of vanadyl-phthalocyanine films annealed under magnetic field [J]. J. Photochem. Photobiol., A 2006,179:339-347.
    [36]曾玉凤,刘自力,秦祖增,刘宏伟,Sn02的表面酸性及其催化臭氧氧化活性的研究[J].分子催化,2009,23:53-56.
    [37]X. J. Dai, Y. S. Luo, W. D. Zhang, S.Y. Fu, Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area Electronic supplementary information (ESI) available:SEM images and XRD patterns of the Bi2WO6 products synthesized under different conditions [J]. Dalton Trans.,2010,39:3426-3432.
    [38]S. Cingarapu, M. A. Ikenberry, D. B. Hamal, C. M. Sorensen, K. Hohn, K. J. Klabunde, Transformation of Indium Nanoparticles to β-Indium Sulfide:Digestive Ripening and Visible Light-Induced Photocatalytic Properties[J]. Langmuir,2012, 28(7):3569-3575.
    [39]Y. F. Li, D. H. Xu, Jeong Oh, W. Z. Shen, X. Li, Y. Yu, Mechanistic Study of Codoped Titania with Nanmetal and Metal Ions:A Case of C+ Mo Codoped TiO2[J]. ACS Catal.,2012,2(3):391-398.
    [40]X. Li, J. Ye, Photocatalytic Degradation of Rhodamine B over Pb3Nb4O13/Fumed SiO2 Composite under Visible Light Irradiation [J]. J. Phys. Chem. C,2007,111: 13109-13116.
    [41]T. Watanabe, T. Takizawa, K. Honda, Photocatalysis through excitation of adsorbates.1. Highly efficient Ndeethylation of rhodamine B adsorbed to cadmium sulfide [J]. J. Phys. Chem.,1977,81:1845-1851.
    [42]T. Saison, N. Chemin, C. Chaneac, O. Durupthy, Bi2O3, BiVO4, and Bi2WO6: Impact of Surface Properties on Photocatalytic Activity under Visible Light[J]. J. Phys. Chem. C,2011,115(13):5657-5666.
    [43]B. W. Jing, M. H. Zhang, Advances in dye-sensitized solar cell[J]. Chinese Science Bull,1997,42:1937-1947.
    [44]E. Galoppini, Linkers for anchoring sensitizers to semiconductor nanoparticles[J]. Coord. Chem. Rev.,2004,248:1283-1297.
    [45]何节玉,廖德仲,硫酸钛的表面酸性及其催化缩酮活性[J].石油化工,2003,32(4):278-280.
    [46]D. Dambournet, H. Leclerc, A. Vimont, J. C. Lavalley, M. Nickkho-Amiry, M. Daturi, J. M. Winfield, The use of multiple probe molecules for the study of the acid-base properties of aluminium hydroxyfluoride having the hexagonal tungsten bronze structure:FTIR and [36CI] radiotracer studies [J]. Phys. Chem. Chem. Phys., 2009,11:1369-1379.
    [47]郭岱石,马紫峰,蒋淇忠,SO42-/TiO2表面酸性的红外光谱和密度泛函理论研究[J].催化学报,2007,28:627-634.
    [48]江芳,郑正,郑寿荣,SO42-/TiO2表面的酸性对其光催化性能的影响[J].环境化学,2008,27:565.568.
    [49]何节玉,廖德仲,硫酸钛的表面酸性及其催化缩酮活性[J].石油化工,2003,32:278.280.
    [50]曾拥军,王一男,王听,氢氧化铌改性沸石分子筛的表面酸性及其催化活性[J].化学世界,2007,11:641-645.
    [51]C. M. Schumacher, R. N. Grass, M. Rossier, E. K. Athanassious, W. J. Stark, Physical Defect Foemation in Few Layer Graphene-like Carbon on Metals:Influence of Temperature, Acidity, and Chemical Functionalization[J]. Langmuir,2012, 28(9):4565-4572.
    [52]K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles:Relation between surface acidity, structure and photocatalytic activity [J]. Appl. Catal.,2008,79:53-62.
    [53]F. Deng, Y. X. Li, X. B. Luo, L. X. Yang, X. M. Tu, Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2012,395:183-189.
    [54]Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C. Photodegradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron:Influence of various reaction parameters and its degradation mechanism[J]. J. Hazard. Mater.,2009,164:459-467.
    [55]R. Sasikala, A. R. Shirole, V. Sudarsan, V. S. Kamble, C. Sudakar, R. Naik, R. Rao, S. R. Bharadwaj, Role of support on the photocatalytic activity of titanium oxide[J]. Applied Catalysis A:General,2010,390:245-252.
    [1]D.F. Ollis, Emerging Technologies in Hazardous Waster Management III [J]. ACS Symp. Ser.,1993,518:18-34.
    [2]M. Adachi, Y. Murata, J. Takao, J. T. Jiu, M. Sakamoto, F. M. Wang, Highly Efficient Dye-Sensitized Solar Cells with Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "oriented Attachment" Mechanism [J]. J. Am. Chem. Soc.,2004,126:14943-14949.
    [3]A. L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results [J]. Chem. Rev.,1995,95:735-758.
    [4]M. A. Fox, M. T. Duby, Heterogeneous photocatalysis [J]. Chem. Rev.,1993, 93:341-357.
    [5]H. Wang, J. M. Song, H. Zhang, F. Gao, H. Q. Hu, S. J. Zhao, Controlled synthesis of three-dimensional hierarchical Bi2WO6 microspheres with optimum photocatalytic activity [J]. Mater. Res. Bull.,2012,47:315-320.
    [6]Y. Wu, S. C. Zhang, L. W. Zhang, Y. F. Zhu, Photocatalytic Activity of Nanosized ZnWO4 Prepared by the Sol-gel Method [J]. Chem. Res. Chin. Univ.,2007, 23(4):465-468.
    [7]X. Zhao, Y. F. Zhu, Synergetic Degradation of Rhodamine B at a Porous ZnWO4 Film Electrode by Combined Electro-Oxidation and Photocatalysis [J]. Environ. Sci. Technol.,2006,40:3367-3372
    [8]H. B. Fu, J. Lin, L. W. Zhang, Y. F. Zhu, Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process [J]. Appl. Catal. A:Gen.,2006, 306:58-67.
    [9]G. L. Huang, Y. F. Zhu, Enhanced Photocatalytic Activity of ZnWO4 Catalyst via Fluorine Doping [J]. J. Phys. Chem. C.,2007,111:11952-11958.
    [10]L. M. Sun, X. Zhao, X. F. Cheng, H. G. Sun, Y. L. Li, P. Li, W. L. Fan, Evaluating the C, N, and F Pairwise Codoping Effect on the Enhanced Photoactivity of ZnWO4: The Charge Compensation Mechanism in Donor-Acceptor Pairs [J]. J. Phys. Chem. C,2011,115(31):15516-15524.
    [11]H. J. H. Fenton, Oxidation of tartaric acid in presence of iron[J]. Journal of the chemical society.,1894,65:899-910.
    [12]J. B. Zhang, J. Zhuang, L. Z. Gao, Y. Zhang, N. Gu, J. Feng, D. L. Yang, J. D. Zhu, X. Y. Yan, Decomposing phenol by the hidden talent of ferromagnetic nanoparticles [J]. Chemosphere,2008,73:1524-1528.
    [13]F. Duarte, F. J. Maldonado-Hodar, A. F. Perez-Cadenas, L. M. Madeira, Fenton-like degradation of azo-dye Orange Ⅱ catalyzed by transition metals on carbon aerogels [J]. Appl. Catal. B:Environ.,2009,85:139-147.
    [14]C. P. Huang, C. Dong, Z. Tang, Advanced chemical oxidation:Its present role and potential future in hazardous waste treatment [J]. Waste Management,1993,13: 361-377.
    [15]E. Brillas, I. Sires, M. A. Oturan, Electro-Fenton Process and Related Electrochemical technologies Based on Fenton's Reaction Chemistry [J]. Chem. Rev., 2009,109:6570-6631.
    [16]J. H. Deng, J. Y. Jiang, Y. Y. Zhang, X. P. Lin, C. M. Du, Y. Xiong, FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange Ⅱ [J]. Appl. Catal. B:Environ.,2008,84:468-473.
    [17]A. L. T. Pham, C. Lee, F. M. Doyle, D. L. Sedlak, A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values [J]. Environ. Sci. Technol.,2009,43:8930-8935.
    [18]D. H. Bremner, A. E. Burgess, D. Houllemare, K. C. Namkung, Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide [J]. Appl. Catal. B Environ.,2006,63:15-19.
    [19]M. C. Lu, Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite [J]. Chemosphere,2000,40:125-130.
    [20]J. C. Barreiro, M. D. Capelato, L. Martin-Neto, H. C. B. Hansen, Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system [J]. Water Res.,2007,41:55-62.
    [21]P. Claus, H. Hofmeister, Electron Microscopy and Catalytic Study of Silver Catalysts:Structure Sensitivity of the Hydrogenation of Crotonaldehyde [J]. J. Phys. Chem. B,1999,103:2766-2775.
    [22]J. H. Xu, W. Z. Wang, E. P. Gao, J. Ren, L. Wang, Bi2WO6/Cu0:A novel coupled system with enhanced photocatalytic activity by Fenton-like synergistic effect [J]. Catal. Commun.,2011,12:834-838.
    [23]S. H. Chen, S. X. Sun, H. G. Sun, W. L. Fan, X. Zhao, X. Sun, Experimental and Theoretical Studies on the Enhanced Photocatalytic Activity of ZnWO4 Nanorods by Fluorine Doping [J]. J. Phys. Chem. C,2010,114:7680-7688.
    [24]J. P. Li, Z. H. Ai, L. Z. Zhang, Design of a neutral electron-Fenton system with Fe@Fe2O3/ACF composite cathode for wastewater treatment [J]. J. Hazard. Mater., 2009,164:18-25.
    [25]L. F. Liu, F. Chen, F. L. Yang, Stable photocatalytic activity of immobilized Fe0/TiO2/ACF on composite membrane in degradation of 2,4-dichlorophenol [J]. Sep. Purif. Technol.,2009,70:173-178.
    [1]Joseph N. Grima, B. Ellul, D. Attard, R. Gatt, M. Attard, Composites with needle-like inclusion exhibiting negative thermal expansion:A preliminary investigation [J]. Comp. Sci. Technol.,2010,70:2248-2252.
    [2]J. Peng, M. M. Wu, H. Wang, Y. M. Hao, Z. Hu, Z. X. Yu, D. F. Chen, R. Kiyanagi, J. S. Fieramosca, S. Short, J. Jorgensen, Structure and negative thermal expansion properties of solid solution YxNd2-xW3O12 (x=0.0-1.0,1.6-2.0) [J]. J. Alloys Compd., 2008,453:49-54.
    [3]P. P. Sahoo, S. Sumthra, G. Madas, T. N. Guru Row, Synthesis, structure, Negstive Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7[J]. Inorg. Chem.,2011,50(18):8774-8781.
    [4]Q. S. Lin, J. D. Corbett, Formation of Nets of Corner-Shared Bicapped Gold Squares in SrAu3Ge:How a BaAl4-Type Derivativer Recapped Fewer Valence Electrons and the Origin of its Uniaxial Negative Thermal Expansion[J]. J. Am. Soc., 2012,134:4877-4884.
    [5]S. Sumithra, A. M. Umarji, Negative thermal expansion in rare earth molybdates [J]. Solid State Sci.,2006,8:1453-1458.
    [6]P. Badrinarayanan, M. K. Rogalski, M. R. Kessler, Carbon Fiber-Reinforce Cyanate Ester/Nano- ZrW2O8 composites with Tailored Thermal Expansion[J]. ACS Appl. Mater. Interfaces,2012,4:510-517.
    [7]殷海荣,吕承真,李慧等,先进负热膨胀材料的最新研究进展[J],中国陶瓷,2008.44:14-17.
    [8]刁忠聪,林伟林,负热膨胀材料的研究现状及展望[J].中国钨业,2010,25:38-42.
    [9]徐建中,刘颖,李妍等,负热膨胀材料的研究与应用进展[J].河北大学学报(自然科学版),2009,29:443-448.
    [10]H. F. Liu, Z. P. Zhang, W. Zhang, X. B. Chen, X. N. Cheng, Negative thermal expansion ZrW2O8 thin films prepared by pulsed laser deposition [J]. Surf. Coat.Technol.,2011,205:5073-5076.
    [11]Nathan A. Banek, Hassan I. Baiz, Akena Latigo, Cora Lind, Autohydration of nanosized cubic Zirconium tungstate [J]. J. Am. Soc.,2010,132:8278-8279.
    [12]Z. C. Tao, Q. G Guo, L. Liu, Graphite fiber/copper composites with near-zero thermal expansion[J]. Materials & Design,2012,33:372-375.
    [13]R. J. Huang, Z. X. Wu, H. H. Yang, Z. Chen, X. X. Chu, L. F. Li, Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si [J]. Cryogenics,2010,50:750-758.
    [14]T. Isobe, T. Umezome, Y. Kameshima, A. Nakajima, K. Okada, Preparation and properties of negative thermal expansion Zr2WP2O12 ceramics [J]. Mater. Res. Bull., 2009,44:2045-2049.
    [15]P. Badrinarayanan, M. R. Kessler, Zirconium tungstate/cyanate ester nanocomposites with tailored thermal expansivity[J]. Comp. Sci. Technol.,2011, 71(11):1385-1391.
    [16]X. R. Xing, Q. F. Xing, R. B. Yu, J. Meng, J. Chen, G R. Liu, Hydrothermal synthesis of ZrW2O8 nanorods [J]. Phys. B,2006,371:81-84.
    [17]N. Khosrvani, A. W. Sleght, Structure of ZrV2O7 from-263 to 470℃ [J]. J. Solid State Chem.,132 (1997) 355-360.
    [18]H. F. Liu, Z. P. Zhang, W. Zhang, X. B. Chen, Effects of HCl concentration on the growth and negative thennal expansion property of the ZrW2O8 nanorods [J]. Ceram. Int.,2012,38:1341-1345.
    [19]I. L. Chang, F. R. Chang, The atomistic study on the thermal expansion behaviors of nanowires[J]. Comput. Mater. Sci.,2012,54:266-270.
    [20]S. G. Zhao, G. C. Zhang, J. Lu, Growth, thermophysical and properties of the nonlinear optical crystal BPO4[J]. Crystal. Resear. Technol.,2012,47(4):391-396.
    [21]Q. Q. Liu, X. N. Cheng, J. Yang, X. J. Sun, Fabrication of negative ther mal expansion ZrMo2O8 film by sol-gel method[J]. Mater. Sci. Eng. B.,2012, 177(2):263-268.
    [22]J. P. Wang, Q. D. Chen, W. W. Feng, Rapid synthesis and Raman spectroscopic study of the negative thermal expansion material of A(WO4)2(A=Zr2+, Hf2+)[J]. Optik-International Journal for light and Electron Optics,2012, in Press.
    [23]惠春,徐爱兰,郑家范,水热合成法及其应用[J].西北轻工业学院学报,1994,12:114.120.
    [24]Md. Imteyaz Ahmad, G. Mohanty, Crystal growth of ZrW2O8 and its optical and mechanical characterization[J]. J. Cryst. Growth,2012,343(1):115-121.
    [25]Q. Q. Liu, J. Yang, X. N. Cheng, X. J. Sun, C. L. Zang, Abnormal positive thermal expansion in Mo substituted ZrW2O8 [J]. Phys. B,2011,406:3458-3464.
    [26]P. Badrinarayanan, M. I. Ahmad, M. Akinc, M. R. Kessler, Synthesis, processing, and characterization of negative thermal expansion zirconium tungstate nanoparticles with different morphologies [J]. Mater. Chem. Phys.,2011,131:12-17.
    [27]Z. C. Tao, Q. G. Guo, X. Q. Gao, L. Liu, Graphite fiber/copper composites with near-zero thermal expansion [J]. Mater. Design,2012,33:372-375.
    [28]Mousumi Mani-biswas, Tahir Cagin, Insight from theoretical calculation on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks [J]. Comput. Theor. Chem.,2012, in Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700