用户名: 密码: 验证码:
21世纪以来欧亚冷冬频发与冬季AO、极涡的联系及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪初叶尤其是2008年以来,全球变暖响应最显著的欧亚大陆冷冬频发,与自1980s以来的变暖大背景形成鲜明对比,已引起国内外学者的格外关注。本文利用1948-2012年NCEP/NCAR全球再分析月平均地表温度、高度场、风场等资料、NOAA的全球再分析海温场和AO指数资料,针对欧亚大陆中高纬度地区冬季低温异常,从年际和年代际尺度变化角度分析,该区可划分全球变暖前、后的冬季温度异常两个阶段(1980年)。分别选取1960s-1970s和21世纪初这两个处于不同阶段的冬季低温频发期,对比分析其区域低温异常以及大尺度环流特征。着重研究北极涛动(AO)和北半球极涡这两个对北半球冬季异常影响最重要的大气环流基本模态的时空年际和年代际变化规律,揭示北半球极涡及分区与AO间对北半球气候变异解释的异同点及互补性,尤其是与21世纪以来欧亚大陆中高纬度地区冬季温度异常的联系;进一步探讨该区自2008年以来冬季低温频发的成因和机制。主要结论如下:
     (1)21世纪尤其是2008年以来,欧亚大陆冬季低温频发,占全球变暖以来,该区域冷冬年的2/3,表现为低温阶段,其温度异常特征与1970s中期以前既有相似之处又有所差异。相似之处在于,冷冬的环流形势均表现为:中高纬度由低层至对流层中上层为相对深厚的垂直结构,呈显著的北半球环状模结构(AO),乌拉尔山偏北风异常偏强,分别向东、西方向传播,强冷空气主要活动在欧洲北部、亚洲大陆北部地区是两个阶段冷冬异常形成的共同主要环流背景;不同之处表现为全球变暖前的冷冬的中低纬度高度场一致偏低,极区强冷空气由对流层中低层向南输送至中高纬度地区,E-P通量辐合来源于低纬和极区。21世纪以来的冷冬的高度场却呈现中低纬度低层负距平与对流层中层以上为正距平的反位相分布形势,北风向南传播较弱,中低纬度平流层低温异常倾斜至欧亚大陆北部,E-P通量也仅来源于低纬对流层顶向北、向下传播。综合分析表明:两个不同阶段冷冬对应的北半球中、高纬度异常存在南北向的偏差,且异常程度不同。这也正是21世纪以来的冷冬异常低温区仅位于欧业中高纬度地区,而全球变暖前冷冬异常低温区覆盖中低纬—中高纬—北极区,两种冬季低温分布不同的主要表现所在。这种欧亚大陆冬季低温范围行星尺度差异不是区域性环流可以解释的,因此,研究北半球最主要的大气环流模态AO和极涡及分区的水平和垂直结构变化特征及其与21世纪欧亚大陆近几年冷冬异常的联系显得尤为必要。
     (2)冬季AO和北半球极涡的时空分布特征与演变规律。在空间变化方面:冬季AO空间垂直分布表现为由海平面至平流层深厚的准正压性结构,其正位相时气压场/高度场呈极区负距平,与中高纬度地区正距平异常分布的遥相关结构显著区位于对流层。AO典型正位相时,以北太平洋比北大西洋区域气压场偏低为主,而负位相则以北大西洋气压场偏高为主,具有显著的偏态分布特征;北半球200hPa与500hPa的极涡指数存在非常显著的自相关,表明北半球对流中、上层极涡活动呈正压状态。另外,北半球对流层以极涡为核心与中高纬度地区呈反位相涛动的正压结构,随高度的变化到平流层收缩为仅有的极涡活动模态。时间演变规律表现为:AO模态具有显著的年代际周期变化,SLP层比500hPa的AO遥相关型变化大,1970s振幅最大,2000s进入新的周期变化;北半球及其4个分区的极涡也具有显著的年际和多年代际尺度的变化规律,呈6-7波分布,在2000's后期也进入新的长周期阶段。
     (3)AO与北半球极涡及分区与海—气系统异常联系的主要模态存有异同点,并且具有较好的互补性。AO位相表现北半球极区与中高纬度环流异常反位相且呈环状分布,北半球极涡环流不仅具有环状分布,分区极涡还能更好的表征北太平洋地区半永久大气活动中心和侧重反映欧亚大陆环流异常的偏态分布特征;极涡太平洋面积指数与北太平洋的西风漂流区、赤道中东太平洋(ENSO模态区)海温关系密切,AO则与北大西洋漂流区SST异常密切。对AO位相异常进行分级,分析发现当AO正异常时对应PDO冷位相(La Nina型),反之为典型El Nino分布,而极端异常时赤道中东太平洋区的海温异常与之相反,显著性较弱;冬季极涡面积、强度随冬季ENSO事件和PDO位相的不同而呈现出显著的差异性,其中La Nina和PDO位相异常与AO、极涡异常同期关联显著。数值模拟亦表明,北太平洋冬季ENSO事件和PDO位相异常与同期AO、极涡异常分布联系显著。AO与极涡面积异常变化相反,而与强度变化正相关,关键区主要位于北美、大西洋欧洲区域。具体表现为北半球极涡面积偏大时,极区相对偏暖,而冷空气集中于中高纬度陆地,呈显著的AO负位相分布,反之,冷空气则主要龟缩于极区,对中高纬度冬季气候冷异常的影响很小。
     (4)AO与北半球极涡同样对欧亚大陆冬、夏季气候的影响具有互补性。北半球极涡及其分区指数、AO指数分别与极区、欧亚大陆中高纬度地区和中国区域的冬季气温相关呈现反位相分布。其中AO与极区、中东地区北部、北非大陆和北大西洋气温关系密切,而北半球极涡面积指数则与北太平洋西风漂流区和赤道中东太平洋气温相关更加显著。当北半球极涡面积大时,欧亚大陆中、高纬度至北美洲中东部气温偏低,非洲北部和格陵兰岛气温偏高,AO异常则相反。北美区和大西洋欧洲区的极涡面积指数对中、高纬度极区气温影响具有相似性,但对区域气温的异常影响范围、强度等略有差异;亚洲区极涡面积指数不仅对亚洲中高纬度,还对中国东部及沿海区域,以及巴基斯坦等南亚和西北印度洋地区气温异常作用显著,恰恰能够表征亚洲大陆西面和东面两支主要冷空气向低纬度暴发的某些特征;总体而言,极涡与AO对北半球气温的影响具有共同的热力性质。但极涡及其分区活动,能更好地体现其与各大洲气温显著相关的地域特征。亚洲区极涡活动与AO指数对北半球冬季气温场影响相比,能更好地体现其与各大洲气温显著相关的地域特征,其主要机制是冬季北半球极涡及分区面积能清晰反映出北半球冷空气活动偏态活动特征,尤其能很好描述亚洲冬季风不仅体现在东亚,另一支侧重在中亚地区。此外,冬季AO、极涡对中国地区同期和次年夏季的温度、降水具有较好相关性,表明AO和极涡也是中国冬季温度和次年夏季温度和降水变化的主要因子,但上述关系亦呈现出显著的区域性差异。北半球极涡及分区面积波动显著;北半球极涡及分区面积不仅在冬季活动具有显著特点,春季北太平洋极涡面积强与弱的差值还强迫出NPO的正位相,并且成为影响夏季东北地区低温的重要前期信号,NPO的正(负)位相,有利于在北太平洋区域上空形成定常的超长波槽(脊),在非绝热加热后退慢波的作用下,分别对东北亚的冷涡(阻塞高压)异常活动提供低(高)值扰动源。
     (5)AO与北半球极涡的异常变化与2008年以来欧亚大陆地区出现的冬季低温以及与东北夏季低温的诊断分析。多个例综合分析发现,2008年1-2月中国大范围、持续性的低温、雨雪、冰冻灾害与AO负位相分布有关;自2009年以来连续3年的北半球尤其是欧亚大陆中高纬度冬季低温事件频发,不仅由冬季AO负位相所致(2011年冬季AO为正位相除外),还与北半球极涡面积特别是亚洲区极涡面积偏大联系密切;2009年夏季东北气温偏低,冷涡活动异常偏多,不仅与其前冬1-2月AO正位相分布显著相关,还与北太平洋极涡面积偏小,也就是NPO的负位相联系密切。综合分析表明:2008年以来欧亚大陆地区出现的冷事件主要受AO、极涡异常变化的影响所致,AO和极涡是21世纪以来欧亚大陆中高纬度地区冬季频发的直接且最主要的影响因子,与太平洋极涡面积联系密切的NPO异常位相不仅是东北夏季气温变化的重要前期信号,还是大气中除了天气尺度混沌分量外可提取的行星尺度稳定分量。
     (6)极涡及分区与AO同北半球海-气系统主要模态间的联系,特别是对21世纪初叶欧业大陆中高纬度地区冷冬开始频发的物理机制解释,具有互补性。北半球极涡及分4个区活动(亚洲、北太平洋、北美和大西洋欧洲区),是否具有客观性,正是本论文所要着重研究“互补性”的科学问题。
In the early21st century, especially since2008, cold winter has occurred frequently in Eurasia, the most significant place responsing to global warming. Contrast with the warming background since1980s, it has attracted special attention of scholars both at home and abroad. In this paper, using reanalysis data provided by NCEP/NCAR including monthly mean global surface temperature, height and wind, global SST reanalysis data provided by NOAA, and AO index data, aiming at the low temperature anomalies region in mid-high latitude in Eurasia, it could be divided into two winter temperature anomaly stages, before and after global warming (1980). We selected two different period of frequent winter low temperature, thus1960s-1970s and early21th century, and carried on a research on contrasting and analyzing their low temperature anomaly regions and the characteristics of large scale atmospheric circulation. We focused on the temporal variation rule and the characteristic of spatial distribution in detail of two important circulation systems for northern hemisphere winter, arctic oscillation (AO) and polar vortex. On this basis, we revealed the homogeny and complementarity of the effect on northern hemisphere climate anomaly of the arctic oscillation and the whole or different part of the polar vortex, especial the relationship between the both systems and the winter temperature anomaly in mid-high latitude of Eurasia. At last, we also conducted a further analysis on the cause and mechanism of frequent low temperature in winter since2008. We concluded that:
     1) In21th century especial since2008, low winter temperature in Eurasia ocurried frequently.
     The winters with low temperature has accounted for about2/3of the total winters since global warming, and it stays in a stage of low temperature, showing some similarities and differences of characteristic with that before1970s. The atmospheric circulations of the above two stages are similar. It is a relatively deep vertical structure from the lower to the upper troposphere in mid-hight latitude, and showing a significant annular structure in the northern hemisphere (AO). Northerly winds in Ural Mountains are strong and blowing towards east and west direction respectively. It is active of cold air in northern Eurasia.
     Before global warming, the height fields in mid-low latitudes of cold winters were consistently low, strong clod air in Polar Regions transfered southward to mid-high latitudes in mid-low troposphere, and E-P flux converged from low latitude and Polar Regions. However, since21th century, the height fields of cold winter represent an opposite phase distribution, thus, it is negative anomaly in lower troposphere, and it is positive anomaly in upper troposphere in mid-low latitudes. It is weak of northerly wind to blow southward, low temperature anomaly of stratosphere in mid-low latitude leans to northern Eurasia, and E-P flux only converged from tropopause in low latitude. Comprehensive analysis shows that it has a south-north difference between the two stages, which leading to the difference of the low temperature distribution in winter. Since21th century, low temperature anomaly area is only located in mid-high latitudes in Eurasia. However, before global warming, it covered the extensive regions from mid-low latitudes to northern Polar Regions. Such a planetary scale difference of low temperature in Eurasia could not be explained by regional circulation. So, it is necessary to conduct a research on horizontal and vertical structure characteristics of the arctic oscillation and the whole or different part of the polar vortex, and the relationship between the above with clod winter in Eurasia since21th century.
     2) Temporal variation rule and space distribution characteristics of AO and polar in winter.
     For AO, its vertical distribution presents a deep quasi-barotropic structure from sea surface to stratosphere. When it stays in a positive phase, height anomaly is negative in Polar Regions, and it is positive in mid and high latitudes. The significant region of teleconnection distribution is located in troposphere. While in latitudinal direction, it shows a markedly skewed distribution. When AO stays in a positive phase, the main characteristic is that the atmospheric pressure in North Pacific is lower than that in North Atlantic. When in a negative phase, it presents that the atmospheric pressure in North Atlantic is higher. For polar vortex in northern hemisphere, it is significant autocorrelation for polar vortex indexes both in200hPa and500hPa, which indicate that the polar vortex in the northern hemisphere was positive pressure state in middle and upper troposphere. Besides, in troposphere of Northern hemisphere the major positive pressure mode presents a negative oscillation between polar vortex and mid-high latitudes. And along with the height changes into stratosphere, it only presents an active polar vortex mode.
     In temporal variation rules, AO has significant decadal cycle. Especially in SLP and500hPa, the amplitude reached a peak in1970's. And after2000's, it changed into a new cycle. It also appears significant cycles in interannual scale and multi-interdecadal scales in the northern hemisphere and its four polar vortexes located in different regions, which showing a6-7waves distribution. And it also changed into a new long cycle stage in late2000s.
     3) It has some similarities and differences of anomalous relationship between sea-air system and AO or polar vortex (including its different partitions) in northern hemisphere. They also are complementary for each other.
     It is the annular distribution for the AO negative phase, showing the opposite anomaly between Polar Regions and mid-high latitudes in northern hemisphere. While, for polar vortex circulation, it is not only showing a annular distribution, but also charactering semipermanent atmospheric activity center in north Pacific better, and reflecting the skewness distribution characteristics of circulation anomalies in Eurasia. Sea surface temperature (SST) of west wind drift area in north Pacific and middle-east equator Pacific Ocean (ENSO) both have a relationship with the Pacific area index of polar vortex. While AO is related to SST in the north Atlantic drift area. After classifying anomalous phases of AO, we could find that positive AO anomaly corresponds with negative phase of PDO (La Nina), and negative AO anomaly corresponds with typical El Nino distribution. When AO stays in an extreme anomaly state, the corresponding relationship is opposite with the above. Both the effected area and strength of polar vortex in winter appear obvious distinction as the phases of ENSO or PDO change. It is significantly synchronous related for the phase anomalys of La Nina and PDO to AO and polar vortex, which has been proved by numerical simulation. Besides, AO is negatively/positively related to area/strength of polar vortex, and the significantly related regions are mainly located in North America and Atlantic nearby Europe. When the area of polar vortex in northern hemisphere is larger, it is relatively warmer in the polar region. At the same time, cold air concentrates at high latitudes in the land, embodying significantly AO negative phase distribution. On the other hand, the cold air is mainly to huddle in the polar region, has less effect on the high-latitude climate anomaly.
     4) It also has some conplementary for AO and polar vortex to the effect on both summer and winter climate in Eurasia.
     Polar vortex in the northern hemisphere, its different partition indexes, and AO index are negatively related to the winter temperature in polar area, high latitudes of Eurasia and China respectively. Among them, the temperatures of regions which are more significantly related to AO are located in polar area, the north Middle East, North Africa, and the north Atlantic. While polar vortex area index in the northern hemisphere is more significantly related to temperatures in the north Pacific west wind drift region and the Middle-East equator Pacific. When polar vortex area in the northern hemisphere is larger, it is colder from high latitudes of Eurasia to middle-east North America, and warmer in northern Africa and Greenland. However, the corresponding relationship is opposite for AO anomaly. Temperatures of middle and high latitudes in polar area are similar influenced by polar vortex area indexes in North America and the Atlantic nearby Europe. But the impact on anomaly scope, intensity of regional temperature is slightly different. Polar vortex area index in Asia is significantly related to temperatures not only in middle and high latitudes in Asia, but also in Eastern China and coastal areas and parts of South Asia like Pakistan and northwest Indian Ocean, which could precisely depict some characteristics that two main cold air burst out into low latitudes from the west and the east Asian continent. Overall, AO and polar vortex have similar thermal property to temperature of the northern hemisphere. While compared with the effect on the temperature field in the northern hemisphere winter, polar vortex in the northern hemisphere and its partition activity can better reflect regional characteristic on significantly related relationship between itself and temperature of each continent. The major mechanism, for polar vortex in Asia is that the area of the polar vortex could clearly reflect the activity characteristics of cold air, especially could depict the East Asian winter monsoon which is not only in East Asia, but also in Central Asia. Besides, AO and polar vortex area in winter are both well related to temperatures and precipitation in China during the same period and summer next year, showing that AO and polar vortex are the main factors leading to the temperature and precipitation changes in winter and next summer even though with great regional distinction. It fluctuates significantly of the areas of polar vortex and its partitions in the northern hemisphere, which has marked characteristics in winter. And the difference between the strong and weak earas of partition in north Pacific could also enforce the positive phase of NPO, which is an important early signal for low temperature of northeast China. The positive/negative phase of NPO conducives to the formation of constant super long wave trough/ridge, which will provide low/high value disturbance source for anomalous activities of cold vortex/blocking high in Northeast Asia under the function of non adiabatic heating by backward and slow wave.
     5) the diagnosis analysis of the effect of AO and polar vortex in northern hemisphere anomaly changes on winter low temperature in Eurasia and summer low temperature in northeast China since2008.
     After comprehensive analysis on individual cases, we could find that wide range and continuous low temperature, sleet and freezing disasters occurred in China from January to February2008are associated with AO positive phase distribution. Frequent low temperature events in winter in the northern hemisphere, especially the high latitude in Eurasia since2009, not only caused by the interseasonal AO negative phase (with the exception of the2011winter), and also are associated with the larger polar vortex area especially parts in Asia. Both low summer temperatures in northeast China and frequent cold vortex activity in2009are not only significantly related to AO positive phase in previous winter (January to February), but also have relationship with small polar vortex area in north Pacific (the negative phase of NPO). Comprehensive analysis shows that cold events occurried in Eurasia since2008are mainly affected by the anonamly changes of AO and polar vortex. AO and polar vortex are directly and main influence factors for frequent cold winter in mid-high latitudes of Eurasia since21th century. The anomaly phase of NPO which has relationship with polar vortex areas in Pacific is not only the important early signals for summer temperature anomaly in northeast China, but also the steady component in planetary scale which could be extracted in addition to chaotic components in synoptic-scale.
     6) It is complementary each other between AO and polar vortex (including its partitions) for the relationship with the major models of sea-air system, and especial for the mechanism of cold winter occurried in mid-high latitudes of Eurasia in early21th century. What we focus on in this paper is whether polar vortex and its four partitions in the northern hemisphere (in Asia, north Pacific, north America and Atlantic near Europe) have objectivity.
引文
Baldwin M P, Cheng X, Dukerton T J.1994. Observed correlations between wintermean tropospheric and stratospheric circulation anomalies. Geophys. Res. Lett,21:1141-1144
    Baldwin M P, Dunkerton T J.1999. Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys. Res,104(24):30937-30946
    Baldwin M P, Dunkerton T J.2001. Stratospheric harbingers of anomalous weather regimes. Science,294(5542):581-584
    Chang C-P, Zhang Yongsheng, Li T,1999a. Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part I:Roies of the subtropical ridge. J. Climate,13:4310-4325
    Chang C-P, Zhang Yongsheng, Li T,1999b. Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific SSTs. Part :Meridional structure of the monsoon. J. Climate,13:4326-4332
    Collins W D, Coauthors.2004. Description of the NCAR Community Atmo sphereModel (CAM 3) //Tech Rep NCAR/TN-464 STR, National Center for Atmospheric Research, Boulder, CO.226
    Collins W D, Coauthors.2006. The formulation and atmosphericsim ulation of the Community Atmosphere Model Version 3 (CAM3). J Climate,19(11):2144-2161
    Dai A, Trenberth K E, Karl T R.1998. Global variations in droughts and wet spells:1900-1995. Geophys Res Lett.25:3367-3370.
    Ding Y H.1992. Summer monsoon rainfalls in China. J Meteor Soc Japan,70:397-421.
    Diriba K, Anthony G B.2007. Predictability of June-September rainfall in Ethiopia. Mon Wea Rew,2:628-650
    Edmon Jr H J, Hoskins B J, Mclntyle M E.1980. Eliassen-Palm cross sections for troposhere. J Atmos Sci,37:2600-2616
    Filippo G, Linda M, Christine S, et al.1996. A regional model study of the importance of local verses remote controls of the 1988 drought and the 1993 flood over the central United States. J Climate,9:1150-1162
    Frich P, Alexander L V, Della-Marta P et al.2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research,19:193-212
    Gong D Y, Ho C H.2003. Arctic Oscillation signals in East Asian summer monsoon. Journal of Geophysical Research,108(D2).4066, doi:10.1029/2002JD002193
    Gong D Y, Wang S W, Zhu J H,2001. East Asian winter monsoon and Arctic Oscillation. Geophys Res Lett,28(10):2073-2076. DOI:10.1029/2000GL012311
    Gong D Y, Wang S W.1999. Definition of Antarctic Oscillation index. Geophys Res Lett, 26:459-462
    Gong Daoyi, Changhoi H O.2002. Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res,108(D2):ACL14
    Hansen J, Rudy R, Glaseoe J, et al.1999. G1SS analysis of surface temperature change. J Geophys Res,104(D24):30997-31022
    Hurrell J W, Hvan Loon.1997. Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change,36:301-326
    1PCC.2007. Summary of policymakers of climate change 2007:The physical science basis //Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA:Cambridge University Press.
    Ju J H, Lu J M, Cao J, et al.2005. Possible impacts of the Arctic Oscillation on the interdecadal variation of summer monsoon rainfall in East Asia. Adv Atmos Sci,22(1):39-48.
    Kalnay E, Kanamitsu M, Kistler R, et al.1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc,77 (3):437-471.
    Karl T R, Knight R W, Plummer N.1995. Trends in high-172 observed climate variability and change frequency climate variability in the twentieth century.Nature,377:217-220
    Li S, Bates G.2007. Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci,24(1):126-135
    Liu J P, Judith A C, Wang H J, et al.2012. Impact of declining Arctic sea ice on winter snowfall. PNAS.109(11):4074-4079. doi/10.1073/pnas.1114910109
    Lorenz, E. N,1951. Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. Meteor,8:52-59
    Luterbacher J, Dietrich D, Xoplaki E, et al.2004. European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500. Science,303(5663):1499-1503.DOI: 10.1126/science.1093877
    Nan S L, Li J P 2003. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mod. Geophys Res Lett, 30(24):2266.
    Perlwitz J and Graf H-F.1995. The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J Climate,8:2281-2295
    Petoukhov V and Semenov V A.2010. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res,115:D21111, doi: 10.1029/2009JD013568
    Polvani L M, Waugh D W.2004. Upward wave activity flux as aprecursor to extreme stratospheric events and subsequent anomalous surface weather regimes. Journal of Climate,15: 3548-3553
    Ricardo G H, Daniel P, Ricardo M T, et al.2007. The outstanding 2004/05 drought in the Iberian Peninsula:Associated atmospheric circulation. J Hydrometeor,3:483-498
    Rigor I G, Colony R L, Martin S.2000. Variations in surface air temperature observations in the Arctic,1979-1997. J Climate,13(5):896-914
    Shen B Z, Lin Z D, Lu R Y, et al.,2011. Circulation anomalies associated with interannual variation of early-and late-summer precipitation in Northeast China. Sci China Earth Sci,54: 1095-1104, doi:10.1007/s11430-011-4173-6
    Shen Baizhu, Liu Shi, Lian Yi, et al.,2012. The 2009 summer low temperature in Northeast China and its association with prophase changes of the air-sea system. Acta Meteor. Sinica, 26(4):438-453, doi:10.1007/s13351-012-0404-9
    Shi N, Gu J Q, Yi Y M, Lin Z M.2005. An improved south Asian summer monsoon index with Monte Carlo test. ChinPhys,14844 doi:10.1088/1009-1963/14/4/037
    Shi N, Yi Y M, Gu J Q, Xia D D.2006. On the correlation of nonlinear variables containing secular trend variations:numerical experiments. Chin Phys,152180 doi:10.1088/1009-1963/15/9/046
    Shi N, Zhu Q G.1993. Studies on the northern ealy summer teleconnection patterns, their interannual variations and relation to drought 0 flood in China. Adv Atmos Sci, 10(2):155-168
    Smith, T. M., R. W. Reynolds, T. C. Peterson, et al.2008. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006). J Climate,21:2283-2296
    SteffenW.2010.全球变化与地球系统.符淙斌等译.北京:气象出版社,410pp
    Sun L, B Z Shen, B Sui.2010. A study on water vapor transport and budget of heavy rain in Northeast China. Adv Atmos Sci,27(6):1399-1414, doi:10.1007/s00376-010-9087-2
    Tao S Y, Chen L X.1987. A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C P Chang and T N Krishnamurti, Eds, Oxford University Press,60-92
    Thompson D W J, Wallace J M T.1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophy Res Lett,25(9):1297-1300
    Thompson D W J, Wallace J M.2000a. Annular modes in the extratropical circulation, Part I: Month-to-month variability. J Climate,13(5):1000-1016.
    Thompson D W J, Wallace J M.2000b. Annular modes in the extratropical circulation. Part II: Tends. J Climate,13(5):1018-1036
    Thompson D. W. J, Wallace J M.2001. Regional climate impacts of the Northern Hemisphere annular mode. Science,293:85-89
    Uppala S M, Allberg K, Simmons P W, et al.2005. The ERA-40 re-analysis. Quart J Roy Meteor Soc,131:2961-3012
    Wallace J M and D S Gutzler.1981. Teleconnections in the geopotential height field during the Northern Hemisphere Winter. Mon Wea Rev,109:784-812.
    Wang B, Wu R G, Fu X H.2000. Pacific-East Asian teleconnection:How does ENSO affect East Asian Climate? J Climat,13:1517-1536
    Wang D, Wang C, Yang X Y, et al.2005. Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys Res Lett,32, LI6706, doi:10.1029/2005GL022952
    Wang H J, Yu E T, Yang S.2011. An exceptionally heavy snowfall in Northeast china:Large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteorol Atmos Phys,113: 11-25
    Wang J, Ikeda M.2000. Arctic oscillation and arctic sea-ice oscillation. Geophys Res Lett, 27(9):1287-1290
    Wettstein J J, Mearns L O.2002. The influence of the North Atlantic-Arctic Oscillation on mean, variance, and extremes of temperature in the northeastern United States and Canada. J Clim, 15(24):3586-3600
    Wu B Y, Wang J.2002a. Winter Arctic Oscillation Siberian high and East Asian winter monsoon. Geophysical Research Letters.29(19):Doi:10.1029/2002GL015373
    Wu BingYi, Su JingZhi, Zhang RenHe.2011. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chinese Sci. Bull,56:3220-3228, doi:10.1007/s1 1434-011-4696-4
    Wu Bingyi, Wang Jia.2002b. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asia winter monsoon and sea-ice extent. Adv Atmos Sci,19(2):298-320
    Wu Z W, Li J P, He J H, et al.2006.The occurrence of droughts and floods during the normal summer monsoons in the mid-and lower reaches of the Yangtze River. Geophys Res Lett,33, L05813, doi:10.1029/2005GL024487
    Yeh T C, Wetherald R T, Manabe S.1985.The effect of soil moisture on the short-term climate and hydrology change-A numerical experiment. Mon Wea Rev,112:474-490
    Zhao Zongci, Zhu Yanfeng, Jiang Ying.2008:Challenge on Prediction of East Asian Winter Monsoon as a Global Wanning. ISSCCE. Changchun, China
    安刚,廉毅,王琪.1998.近九十年吉林省松辽平原作物生长季气温变化的小波分析.气象学报,56(4):458-465
    陈汉耀.1957.1954年长江淮河流域洪水时期的环流特征.气象学报,28:1-12
    陈隆勋,周秀骥,李维亮.2004.中国近80年来气候变化特征及其形成机制.气象学报,62(5):634-646
    陈隆勋,朱乾根,罗会邦,等.1991.东亚季风.北京:气象出版社,362pp
    陈明轩,徐海明,管兆勇.2003.春季格陵兰海冰变化及与北大西洋涛动和北极涛动的联系.南京气象学院学报,26(4):433-446
    陈文,黄荣辉.2005.北半球冬季准定常行星波的三维传播及其年际变化.大气科学,29(1):137-146
    陈文,康丽华.2006.北极涛动与东亚冬季气候在年际尺度上的联系:准定常行星波的作用.大气科学,30(5):863-870
    陈文2002. El Nino和La Nina事件对东亚冬、夏季风循环的影响.大气科学,26(5):595-610,doi:10.3878/j.issn.1006-9895.2002.05.02
    丑纪范.1986.长期数值天气预报.北京:气象出版社,329pp
    丑纪范.2007.数值天气预报的创新之路—从初值问题到反问题.气象学报,65(5):673-682
    崔庭,吴古会,岑启林,熊方,杨玲.2011.2009-2010年黔西南州特大干旱成因分.贵州气象,35(2):26-29
    戴新刚,丑纪范,吴国雄.2002.印度季风与东亚夏季环流的遥相关关系.气象学报,60(5):544-552
    戴新刚,汪萍,丑纪范.2003.华北汛期降水多尺度特征与夏季风年代际衰变.科学通报,48(23):2483-2487
    邓伟涛,孙照渤.2006.冬季北极涛动与极涡变化分析.南京气象学院学报,29(5):613-695
    丁一汇,戴晓苏.1994.中国近百年来的温度变化.气象,20(12):19-26
    丁一汇,等.2003.气候系统的演变及其预测.北京:气象出版社,137pp
    丁一汇.1989.天气动力学中的诊断分析.北京:科学出版社,292pp
    丁一汇.2005.高等天气学.北京:气象出版社.585pp
    丁一汇.2007.序言.地理科学,27(增刊)
    东北低温科研协作组.1979.东北地区冷夏、热夏长期预报的初步研究.气象学报, 37(3):44-58
    范丽军,李建平,韦志刚,等.2003.北极涛动和南极涛动的年变化特征.大气科学,27(3):419-424.
    封国林,杨涵洧,张世轩,等.2012.2011年春末夏初长江中下游地区旱涝急转成因初探.大气科学,36(5):1009-1026,doi:10.38788j.issn.1006-9895.2012.11220.
    符淙斌,马柱国.2008.全球变化与区域干旱化.大气科学,32(4):752-760
    符淙斌.1980.北半球冬春冰雪面积变化与我国东北夏季气温的关系.气象学报,38(2):187-192
    葛全胜,张学珍,郝志新,等.2011.中国过去2000年温度变化速率.中国科学:地球科学,41(9):1233-1241. doi:10.1007/s11430-011-4257-3
    龚道溢,王绍武,朱锦红.2004.北极涛动对我国冬季日气温方差的显著影响.科学通报,2004,49(5):487-492
    龚道溢,王绍武.2003.近百年北极涛动对中国冬季气候的影响.地理学报,58(4):559-568
    龚道溢,朱锦红,王绍武.2002.长江流域夏季降水与前期北极涛动的显著相关.科学通报,4(1):546-549
    顾思南,杨修群.2006.北半球绕极涡的变异及其与我国气候异常的关系.气象科学,26(2):135-142
    郭渠,等.2008.我国西北地区气候变化与北极涛动的交叉小波分析.南京气象学院学报,31(6):811-818
    郭渠,孙卫国,程炳岩,等.我国西北地区气候变化与北极涛动的交叉小波分析.南京气象学院学报,2008,31(6):811-818.
    何春,何金海.2003.冬季北极涛动和华北冬季气温变化关系研究.南京气象学院学报,26(1):1-7
    何金海,吴志伟,江志红,等.2006b.东北冷涡的“气候效应”及其对梅雨的影响.科学通报.5(23):2803-2809
    何金海,吴志伟,祁莉.2006a.北半球环状模和东北冷涡与中国东亚夏季降水关系分析.气象与环境学报,22(1):1-5.
    胡秀玲,刘宣飞.东北地区冬季气温与北极涛动年代际关系研究.南京气象学院学报.2005,28(5):640-648
    胡永云.2006.关于平流层异常影响对流层天气系统的研究进展.地球科学进展,21(7):713-720
    黄荣辉,郭其蕴,孙安民.1997.中国气象灾害分布图集.北京:海洋出版社,99pp
    黄荣辉,孙凤英.1994.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响.大气科学,18(2):141-151
    黄荣辉,徐予红,周连童.1999.我国夏季降水的年代际变化及华北干旱化趋势.高原气象,18(4):465-476
    黄荣辉.1990a.引起我国夏季旱涝的东亚大气环流异常遥相关及其物理机制的研究.大气科学,14(1):108-116
    黄荣辉.1990b.ENSO及热带海-气相互作用动力学研究新进展.大气科学,14(2):234-241
    吉林省气象台.1980.造成东北区夏季(5-9月)持续低温的长期天气过程分析.大气科学,4(1):54-67
    吉林省气象台.1981.1000毫巴极涡和南压高压的活动与东北地区夏季低温的关系.气象学 报,39(4):483-492
    极涡和气温预报课题协作组.1989.北半球500hPa极涡特征性参量的计算与作用说明.见:吉林省气象科学研究所-科研报告,66:1-22
    琚建华,吕俊梅,任菊章.2006.北极涛动年代际变化对华北地区干旱化的影响.高原气象,25(1):74-81
    琚建华,吕俊梅,谢国清,黄中艳.2011.MJO和AO持续异常对云南干旱的影响研究.干旱气象,29(4):401-406
    琚建华,任菊章,吕俊梅.2004.北极涛动年代际变化对东亚北部冬季气温增暖的影响.高原气象,23(4):429-434
    康杜娟,王会军.2005.中国北方沙尘暴气候形势的年代际变化.中国科学D辑:地球科学,35(11):1096-1102
    科学技术部社会发展司中国21世纪议程管理中心.2011.适应气候变化国家战略研究.北京:科学出版社,115pp
    况雪源,张耀存,刘健.2008.对流层上层副热带西风急流与东亚冬季风的关系.高原气象,27(4):701-712
    郎咸梅.2008.中国华北春季沙尘天气频次的气候预测模型.中国科学D辑:地球科学,38(4):508-518 doi:ssn:1006-9267 cn:ll-3756/n
    李崇银,程胜,潘静.2006.冬季北半球平流层季节内振荡与对流层季节内振荡的关系.大气科学,30(5):744-7
    李崇银,顾薇,潘静.2008.梅雨与北极涛动及平流层环流异常的关联.地球物理学报,51(6):1632-1641
    李春,方之芳.2005.北极涛动与东北冬季温度的联系.高原气象,24(6):927-936
    李春,罗德海,等.2005.北极涛动年代际变化与华北夏季降水的联系.南京气象学院学报,28(6):755-762
    李建平.2005.北极涛动的物理意义及其与东亚大气环流的关系.海—气相互作用对我国气候变化的影响.北京:气象出版社,169-176
    李尚锋,沈柏竹,廉毅,曹玲.2010.东北典型冷、暖夏年的北太平洋地区海—气系统季节演变合成分析.吉林大学学报(地球科学版),40(S1):127-132
    李小泉,刘宗秀.1986.北半球及分区的500 hPa极涡面积指数.气象,2(增刊):69-75
    李琰,王亚非,魏东.2007.前期热带太平洋、印度洋海温异常对长江流域及以南地区6月降水的影响.气象学报,65(3):393-405
    李永华,卢楚翰,徐海明,等.2011.夏季青藏高原大气热源与西南地区东部旱涝的关系.大气科学,35(3):422-434
    李永华,徐海明,高阳华,等.2010.西南地区东部夏季旱涝的水汽输送特征.气象学报,68(6):932-943
    李永华,徐海明,刘德.2009.2006年夏季西南地区东部特大干旱及其大气环流异常.气象学报,67(1):122-132
    李勇,陆日宇,何金海.2007.影响我国冬季温度的若干气候因子.大气科学,31(3):505-514
    廉毅,安刚.1998.东亚季风、El Nino与中国松辽平原夏季低温关系初探.气象学报,56(6):724-735
    廉毅,沈柏竹,高枞亭,等.2003.东亚夏季风在中国东北区建立的标准、日期及其主要特征分析.气象学报,61(5):548-558
    廉毅,沈柏竹,高枞亭等.2005.中国气候过渡带干旱化发展趋势与东亚夏季风、极涡活动相关研究.气象学报,63(5):740-749
    林贤超,徐淑英.1989.东亚季风强弱变化及其对初夏我国东部地区降水的影响.地理研究,8(2):44-54
    林学椿,于淑秋,唐国利.2004.中国近百年温度序列.大气科学,19(5):525-534
    刘永强,丁一汇.1995.ENSO事件对我国季节降水和温度的影响.大气科学,19(2):200-208
    刘宗秀,廉毅,高枞亭,孙力,沈柏竹.2002.东北冷涡持续活动时期的北半球500hPa环流特征分析.大气科学,26(3):361-372
    刘宗秀,廉毅,沈柏竹,高枞亭,唐晓玲.2003.北太平洋涛动区500hPa高度场季节变化特征及其对中国东北区降水的影响.应用气象学报,14(5):553-561
    刘宗秀.1986.北半球极涡强度指数的计算及其与我国温度变化的关系.气象,2(增刊):84-89
    陆日宇.2003.华北汛期降水量年代际和年际变化之间的线性关系.科学通报,48(7):718-722.
    马晓青,丁一汇,徐海明,等.2008.2004/2005年冬季强寒潮事件与大气低频波动关系的研究.大气科学,32(2):380-393
    庞子琴,郭品文.2010.不同年代际背景下AO与冬季中国东北气温的关系.大气科学学报,33(4):469-476
    气候变化国家评估报告编写委员会.2007.气候变化国家评估报告.北京:科学出版社,422pp
    钱维宏,张玮玮.2007.我国近46年来的寒潮时空变化与冬季增暖.大气科学,31(6):1266-1278
    任荣彩,向纯怡.2010.平流层极涡振荡与ENSO热带海温异常的时空联系.气象学报,68(3):285-295
    沈柏竹,李尚锋,廉毅.2008.初夏东北冷涡活动的谐波分析.吉林大学学报(地球科学版),38(S1):204-208
    沈柏竹,廉毅,李尚锋,等.2010.北半球对流中、上层及平流层极涡特征初步分析.吉林大学学报(地球科学版),40(S1):140-145
    沈柏竹,廉毅,杨涵洧,张世轩.2012.中国东北夏季温度年代际变化特征.地理科学,32(6):739-745
    沈柏竹,廉毅,张世轩,等.2012.北极涛动、极涡活动异常对北半球欧亚大陆冬季气温的影响.气候变化研究进展,8(6):434-439
    沈柏竹,林中达,陆日宇,廉毅.2011.影响东北初夏和盛夏降水年际变化的环流特征分析.中国科学:地球科学,41(3):402-412
    沈柏竹,刘实,廉毅,等.2011.2009年中国东北夏季低温及其与前期海气系统的联系.气象学报,2011,69(2):320-333
    沈柏竹,张世轩,杨涵洧,王阔,封国林.2012.2011年春夏季长江中下游地区旱涝急转特征分析.物理学报.61(10):109202
    施能,朱乾根,吴彬贵.1996.近40年东亚夏季风及我国夏季大尺度天气气候异常.大气科学,20(5):575-583
    施能.2002.气象科研与预报中的多元分析方法.北京:气象出版社,244pp
    孙建奇,王会军.2005.北极涛动与太平洋年代际振荡的关系.科学通报,50(15):1648-1653
    孙建琦,王会军.2006.东北夏季气温变异的区域差异及其大气环流和海表温度的关系.地球物理学报,49(3):662-671
    孙力,安刚,高枞亭,等.2002.1998年嫩江和松花江流域东北冷涡暴雨的成因分析.应用气象学报,13(2):156-162
    孙力,安刚.2001.1998年松嫩流域东北冷涡大暴雨过程的诊断分析.大气科学,25(3):342-354
    孙力,郑秀雅,王琪.1994.东北冷涡的时空分布特征及其与东亚大型环流系统之间的关系.应用气象学报,5(3):297-303
    孙林海,赵振国.2004.我国暖冬气候及其成因分析.气象,30(12)57-60
    所玲玲,黄嘉佑,谭本馗.2008.北极涛动对我国冬季同期极端气温的影响研究.热带气象学报,24(2):163-168
    唐慧芳,韩建刚.1994.1994年夏季我国灾害性天气概述.中国减灾,4(4):6-9
    唐明,邵东国,姚成林.2007.沿淮淮北地区旱涝急转的成因及应对措施.中国水利水电科学研究院学报,5(1):26-32
    陶诗言,等.1980.中国之暴雨.北京:科学出版社.225pp
    陶诗言,李吉顺,王昂生.1997.东亚季风与我国洪涝灾害.中国减灾,7(4):17-24
    陶诗言,徐淑英.1962.夏季江淮流域持久性旱涝现象的环流特征.气象学报,32(1):1-10
    陶诗言,张庆云.1998.亚洲冬夏季风对ENSO事件的响应.大气科学,22(4):399-406
    涂长望,黄士松.1994.中国夏季风之进退.气象学报,18:1-20
    王斌,李跃清.2010.2010年秋冬季西南地区严重干旱与南支槽关系分析.高原山地气象研究,30(4):26-35
    王会军,贺圣平.2012.ENSO和东亚冬季风之关系在20世纪70年代中期之后的减弱.科学通报,57(19):1713-1718
    王冀,江志红,等.2007.1957-2000年东北地区春季极端气温变化及其与北极涛动的关系.气候变化研究进展,3(1):41-45
    王敬方,吴国雄.1997.持续性东北冷夏的变化规律与相关特征.大气科学,21(5):523-532
    王绍武,龚道溢,陈振华.1990.近百年来中国的严重气候灾害.应用气象学报,10(增刊):43-54
    王胜,田红,丁小俊,等.2009.淮河流域主汛期降水气候特征及“旱涝急转”现象.中国农业气象,30(1):31-34
    王书裕.1995.农作物冷害的研究.北京:气象出版社,246pp
    王晓娟,龚志强,任福民,等.2012.1960-2009年中国冬季区域性极端低温事件的时空特征.气候变化研究进展,8(1):8-15
    魏凤英.2007.现代气候统计诊断与预测技术.北京:气象出版社,296pp
    吴国雄,刘还珠.1995.降水对热带海表温度异常的邻域响应Ⅰ.数值模拟.大气科学,19(4):422-434
    吴志伟,何金海,李建平,等.2006b.长江中下游夏季旱涝并存及其异常年海气特征分析.大气科学,30(4):570-577
    吴志伟,江志红,何金海.2006a.近50年华南梅雨、江淮梅雨和华北雨季早涝特征对比分析.大气科学,30(3),391-401
    吴志伟,李建平,何金海,等.2006c.大尺度大气环流异常与长江中下游夏季长周期旱涝急转.科学通报,51(14):1717-1724
    吴志伟.2006.长江中下游夏季风降水“旱涝并存、旱涝急转”现象的研究.南京信息工程大学,5-6
    武炳义,卞林根,张人禾.2004.冬季北极涛动和北极海冰变化对东亚气候变化的影响.极地研究,16(3):211-220
    武炳义,黄荣辉.1999.冬季北大西洋涛动极端异常变化与东亚冬季风.大气科学,23(6):641-651
    徐雨晴,苗秋菊,沈永平.2009.2008年:气候持续变暖,极端事件频发.气候变化研究进展,5(1):56-60
    严华生,杨小波,马振锋.2007.近60年全球大气环流经向模态的气候变化.地球物理学报,50(6):1658-1665
    杨涵洧,封国林,沈柏竹,支蓉.2012.中国夏季东北冷涡强度的定量化分析.大气科学,36(3):487-494
    杨辉,李崇银.2008.冬季北极涛动的影响分析.气候与环境研究,13(4):395-404
    杨蕾,陈文,黄荣辉.2005.关于北半球准定常行星波年际变化的资料分析和数值模拟.大气科学,29(5):682-696
    杨青,廉毅,何金海.2005.利用奇异值分解方法预测东北地区夏季气温.气象,31(3):31-35
    杨修群,谢倩,朱益民,等.2005.华北降水年代际变化特征及相关的海气异常型.地球物理学报,48(4):789-797
    叶笃正,严中伟.2008.全球变暖的有序适应问题.气象学报,66(6):855-856
    翟盘茂,刘静.2012.气候变暖背景下的极端天气气候事件与防灾减灾.中国工程科学,14(9):55-63
    张屏,汪付华,吴忠连,等.2008.淮北市旱涝急转型气候规律分析.水利水电快报,29(增刊):139-141
    张庆云,陶诗言.1998.亚洲中高纬度环流对东亚夏季降水的影响.气象学报,56(2):199-211
    张琼,刘平,吴国雄.2003.印度洋和南海海温与长江中下游早涝.大气科学,27(6):992-1006
    张世轩,支蓉,封国林,沈柏竹.2012.中国东部地区前冬季节来临早晚与夏季降水的关系探究.大气科学,36(3):564-578
    张天宇,陈海山,孙照渤.2007.欧亚秋季雪盖与北半球冬季大气环流的联系.地理学报,62(7):728-741
    张增平,沈柏竹,李尚锋,等.2011.北太平洋海气系统主要模态的年代际变化.扬州大学学报(自然科学版),14(4):31-37
    章名立,符淙斌,王铭如,等.1983.七十年代全球地面气温的初步研究(三)——我国东北冷、暖夏季年全球温度场分布.大气科学,7(1):23-31
    章少卿,于通江,李方友,等.1985.北半球极涡面积、强度的季节变化及其与中国东北地区气温的关系.大气科学,9(2):178-185
    章少卿.1990.我国东北低温与厄尔尼诺的关系/国家科学技术委员会.中国科学技术蓝皮书.第5号.气候.北京:科学技术文献出版社,311-316
    张宗婕,钱维宏.2012.中国冬半年区域持续性低温事件的前期信号.大气科学,36(6):1269-1279, doi:10.3878/j.issn.1006-9895.2012.11227
    赵南.2005.北极涛动或北半球环状模相关的纬向对称的正规模态.气象学报,63(6):857-863
    赵宗慈,王绍武,徐影,等.2005.近百年我国地表气温趋势变化的可能原因.气候与环境研究,10(4):808-817
    郑维忠,倪允琪.1999.热带和中纬度太平洋海温异常对东北夏季低温冷害影响的诊断分析研究.应用气象学报,12(4):394-401
    周浩,刘晓冉,程炳岩.2008.东亚地区水汽输送与重庆夏季早涝的联系,高原气象,27(6):1324-1332
    周仕鹏,徐华伟,孙恒鸿.2010.2009-2010年黔西南州特大干旱事件成因分析.贵州气象,34(增刊):25-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700