用户名: 密码: 验证码:
东海赤潮高发区营养盐结构及对浮游植物优势种演替的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,我国沿岸水质日益恶化,有害赤潮出现的次数和频率不断增加。其中长江口及其临近海域已成为我国赤潮危害最为严重的海域之一,被称为我国东海有害赤潮高发区。在引发赤潮的众多环境因子中,营养盐结构组成与浮游植物关系十分密切,是影响浮游植物种群演替的重要因子。
     本论文从东海赤潮高发区营养盐结构水平及分布情况入手,首先分析了调查海区营养盐结构一年中的月际变化趋势,对调查海区四季大面分布状况进行了分析,并选取2005年春、夏季大规模赤潮过程营养盐结构数据,对该海区赤潮过程中营养盐结构水平及分布状况进行了更进一步分析,以此对该海区营养盐结构时空变化情况有了一定的掌握;之后对该海区营养盐结构在浮游植物优势种演替过程中所起的作用进行了初步分析,并选取2005年东海大规模赤潮生消及演替过程,从更为精细的时间尺度对上述分析进行验证;最后利用甲藻赤潮前后典型断面营养盐、营养盐结构的变化情况,对该海区营养盐补充机制进行了初步探讨。该研究为查明东海赤潮发生机理提供了科学依据,具有一定的理论意义。主要工作及结论如下:
     1、利用2002-2007年13个航次重复调查区域航次数据,统计分析了东海赤潮高发区营养盐结构月际变化趋势,研究结果表明:调查海区氮磷比月际变化呈现出明显的“三峰”演变的态势,氮硅比呈现出“先上升,之后回落,再上升”的趋势,而硅磷比月际变化则表现出“单峰”态势。整体来看,4月上旬,调查海区DIN/P、DIN/Si出现高值峰,Si/P处于较低水平;5月中下旬调查海区DIN/P、Si/P皆出现全年较高水平,之后开始迅速回落,DIN/Si继4月上旬的高峰值出现之后至6月中下旬,一直呈现出下降趋势;10月初,调查海区DIN/P、DIN/Si再次呈现出高峰态势,而Si/P对应处于全年低值水平。
     2、比较了2002-2003年春、夏、秋、冬四季营养盐结构大面分布特征,结果表明:调查海区四季DIN/P、Si/P等值线基本呈现由近岸向远海逐渐降低的趋势,其中DIN/P等值线分布基本与海岸线平行,而Si/P高值区主要集中于长江口和杭州湾外区域;DIN/Si大面分布四季变化情况较为复杂:春季整体呈现近岸高外海低的分布趋势,夏季呈现出外海高、杭州湾口较低的分布趋势,秋季DIN/Si整体表现为南部海域高于北部海域,冬季表现为北部海域高于南部海域。
     3、对调查海区2005年大规模赤潮过程中营养盐结构状况进行了分析:硅藻赤潮爆发前期,调查海区表层、中层DIN/P、DIN/Si、Si/P平均水平差异不大,明显大于底层平均水平;硅藻赤潮消散期/甲藻赤潮爆发前期,表层、中层各项比值差值不大,但与底层平均水平间的差异较硅藻赤潮爆发前期有明显增大的趋势,表中层海域DIN/P、DIN/Si、Si/P波动幅度较硅藻赤潮前期明显加大;甲藻赤潮消散期,DIN/P表层与中底层间差异明显加大,Si/P表中层与底层间差异明显加大,DIN/Si整体水平较前一阶段有所下降,各层间差值变化不明显。
     4、利用营养盐相对限制法则并结合限制浮游植物生长的阈值,对调查海区02-03年四季表层水体营养盐限制情况进行了统计分析:春季、冬季表层水体营养盐水平不会对该海域浮游植物的生长产生限制作用;而夏季、秋季硅藻赤潮后期调查海区部分站位出现硅限制。其中夏季调查海区出现硅限制的区域集中在外海侧,秋季出现硅酸盐限制的区域则缩小至调查海区南部外海侧。
     5、通过对2002-2007年调查海区叶绿素a和营养盐结构的月际变化比较可知,调查海区氮磷比、氮硅比随硅藻的生长而升高,随甲藻的生长而降低,硅磷比随硅藻的生长而降低,随甲藻的生长而升高。低的氮磷比或较高浓度的磷酸盐将更有利于硅藻的生长,而高的氮磷比或较高浓度的氮盐将更有利于甲藻的生长;硅酸盐对硅藻的生长非常重要,低的氮硅比或较高浓度的硅酸盐将更有利于硅藻在与甲藻竞争中占据优势。上述结论与通过选取2005年赤潮过程中各航次重复调查区域,以天为时间尺度所做营养盐结构变化趋势得出的结论是一致的,这在一定程度上证明了上述分析的正确性。
     6、对典型断面2005年甲藻赤潮前后盐度、营养盐及营养盐结构变化情况进行了比较:调查海区表层主要受长江冲淡水等陆源淡水补给作用的影响,外海底层主要受台湾暖流高盐水补给作用的影响,陆源补给作用对调查海区北部的影响强于南部,台湾暖流对调查海区南部的补给作用强于北部。长江冲淡水等陆源对硅酸盐、氮盐补给程度较高,其次是磷酸盐;台湾暖流对调查海区底层磷酸盐补给程度最高,对氮盐和硅酸盐的补给作用不明显;底层沉积物释放作用可能也是该海区硅酸盐补给的重要来源之一。
With the fast development of economy, human factors increasingly do harm to the environment resulting to the water quality deterioration and the frequent red tide which has been increasing in frequency. Changjiang estuary and the adjacent area are the worst endangered area which is called the high frequent harmful algae blooms occurrence areas in East China Sea. Content of N、P、Si and their structure are closely related to the phytoplankton among many environment factors causing the red tide, which are the important factors influencing the plankton community and its succession.
     Beginning with the nutrient structure and distribution in the high frequent harmful algae blooms occurrence areas in East China Sea, we analyzed yearly inter-month variation of nutrient structure in this area, then analysis was done to study the distribution during the year, and made further research on nutrient structure level and distribution by using nutrient structure data from large-scale red tide in spring & summer in 2005, meaning to gather information of nutrient structure temporal and spatial variation in this area; and then preliminarily studied the function of nutrient structure on succession of phytoplankton predominant species, which was confirmed by large-scale Red Tide Generation, Succession and Vanishment in East China Sea in 2005, and this analysis was verified in more precise time scale; finally, prelimimary discussion was made on nutrient replenishment mechanism according to the variation of nutrient and nutrient structure in typical transects during the dinoflagellate red tide. It is reasonable to provide Red Tide occurrence mechanism in East China Sea with scientific foundation. Main research work and conclusions are listed:
     1. Through analyzing the nutrient structure inter-month variation of 13 cruises from 2002 to 2007, the inter-month variation of DIN/P shows a distinct tendency of“three peaks”, however, DIN/Si tends to rise, then drop, and then rise again, but Si/P has only one peak in its inter-month variation. On the whole, in early April, DIN/P and DIN/Si achieve their peak value, and Si/P is low; then in the middle and late May, both DIN/P and Si/P appear in high level, and then drop deeply, while DIN/Si continue dropping from early April to middle and late June; In the early October, DIN/P and DIN/Si show their high value again, while Si/P is still low at that time.
     2、According to distribution of nutrient structure data in 4 cruises in spring, summer, autumn and winter respectively between 2002–2003, Isoline of DIN/P at the surface, middle, and bottom indicate a tendency of decline from coast to offshore during the year, and the distribution of isolines parallels with coast line; Isoline of DIN/Si shows a complexity in tendency: it was decreased from coast to ocean in spring which was opposite in summer, DIN/Si is higher in south area than it in north in autumn, which is opposite in winter.
     3、According to analysis on nutrient structure during large-scale red tide in 2005, in the early period of Diatom Red Tide, the averages of DIN/P, DIN/Si and Si/P are approximate in the surface and middle layers, but much higher than that of in the bottom; In the early stage of Dinoflagellate Red Tide and Vanishing period of Diatom Red Tide, these three references are approach in the surface and middle layers, the divergence between the two layers and bottom is increasing largely compared with early stage of Diatom Red Tide, and the fluctuation range of these rates is larger in surface and middle water than that in the early Diatom Red Tide; In vanishing stage of Dinoflagellate Red Tide, the difference of DIN/P between surface and middle & bottom layers becomes larger and larger, so does the difference of Si/P between surface & middle and bottom, while DIN/Si is dropping on the whole, and the differences between layers is not significant.
     4、By principle of nutrient relative limiting, statistic analysis of nutrient structure in 2002-2003 suggests that, besides spring, DIN wouldn’t be the potential limiting factor generally; and phosphate is the potential limiting factor mainly deviating from the middle of research zone to coast, so is Silicate in outsea. Associated with Threshold Values that limiting the growth of phytoplankton, the analysis shows that nutrient level in surface water does not play a negative role in the growth of phytoplankton in spring & winter; and it is Si that becoming the limiting factor after Diatom Red Tide in some sites. In summer, Si limiting zone is in outsea, whereas it only happens in southern part of outsea in autumn.
     5、Through statistic analysis of the nutrient structure and Chl-a inter-monthly variations of 13 cruises from 2002 to 2007, DIN/P and DIN/Si increased with the growth of diatom and decreased with the growth of dinoflagellate,Si/P decreased with the growth of diatom, on the contrary, it increased with the growth of dinoflagellate.Low DIN/P and high phosphate would do good to the growth of the dinoflagellate,moreover,high DIN/P and high DIN are favor to the growth of dinoflagellate.Low DIN/Si and high silicate would be propitious to the growth of diatom for that silicate is important to diatom. The conclusion listed was confirmed with the day variation of nutrient structure in repeat investigation area in 2005 during the red tide, which proved validity of conclusion listed in a certain extent.
     6、According to the comparison of salinity, nutrient and nutrient structure in typical sections around onset of Dinoflagellates Red Tide in 2005, the surface water is mainly suffered by replenishment of land-based fresh water, such as Changjiang diluted water, and land-based replenishment is stronger in the north than in the south, the diluted water has more replenishment of Silicate and Nitrate, then Phosphate. However, in the bottom high-salty water from Taiwan warm current takes mainly effect, and the south part of research area is suffering more replenishment from Taiwan warm current, which bringing far more Phosphate than Nitrate and Silicate, and sediment release might be one of important sources of Silicate.
引文
[1]GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. Glibert P. and Pitcher G. eds. Baltimore and Paris: SCOR and IOC. 2001.86
    [2]Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia,1993,32:79~99
    [3]Anderson D M,Garrison D J. Ecology and oceanography of harmful algal Blooms.Limnology and Oceanography,1997,42(5pt.2):1009~1305
    [4]周名江,朱明远,张经.中国赤潮的发生趋势和研究进展,生命科学,2001,13(2):53~59
    [5]周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探,应用生态学报,2003,14(7):1031~1038
    [6]曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2000,11(3):445~448
    [7]王汉奎,董俊德,等.三亚湾氮磷比值分布及其对浮游植物生长的限制.热带海洋学报,2002,21(1):33~38
    [8]袁骐,王云龙,沈新强.N和P对东海中北部浮游植物的影响研究.海洋环境科学,2005,24(4):6~10
    [9]欧美珊、吕颂辉,不同无机氮源对东海原甲藻生长的影响.生态科学,2006,25(1):28~31
    [10]国家海洋局.2000年中国海洋环境质量公报.2001. Http://www.soa.gov.cn
    [11]国家海洋局.2001年中国海洋环境质量公报.2002. Http://www.soa.gov.cn
    [12]国家海洋局.2002年中国海洋环境质量公报.2003. Http://www.soa.gov.cn
    [13]国家海洋局.2003年中国海洋环境质量公报.2004. Http://www.soa.gov.cn
    [14]国家海洋局.2004年中国海洋环境质量公报.2005. Http://www.soa.gov.cn
    [15]国家海洋局.2005年中国海洋环境质量公报.2006. Http://www.soa.gov.cn
    [16]国家海洋局.2006年中国海洋环境质量公报.2007. Http://www.soa.gov.cn
    [17]徐韧,洪君超,王桂兰,等.长江口及其邻近海域的赤潮现象.海洋通报,1994,13(5): 25~29
    [18]关道明,战旭文.我国近岸海域赤潮灾害及其防治.海洋环境科学,2003,22(2):60~63
    [19]孙冷,黄朝迎.赤潮及其影响.灾害学,1999,14(2):51~54
    [20]齐雨藻,中国沿海赤潮,第一版,北京,科学出版社,2003,146~178
    [21]洪君超,黄秀清,蒋晓山等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况.海洋与湖沼,1994,25(2):179~184
    [22]毛汉礼,任允武,万国铭.应用T-S关系定量地分析浅海水团的初步分析.海洋与湖沼, 1964, 6(1):1~23
    [23]沈志良.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼.1991, 22(6):540~546
    [24]沈志良,刘群,张淑美等.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,2001,32(5):465~473
    [25]Wong GTF,Gong GC,Liu K-K, et al.‘Excess nitrate’in the East China Sea. Estuary Coastal Shelf Sci, 1998, 46:411~418
    [26]王保栋,刘锋,战闰.黄海生源要素的生物地球化学研究评述.黄渤海海洋.2001, 19(2):99~106
    [27]朱建荣,肖成酞,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报,1998 a,20(5):13~22
    [28]蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究II.春季的营养限制情况.海洋学报,2001,23(3):57~66
    [29]蒲新明,吴玉霖.浮游植物的营养盐限制研究进展.海洋科学,2000,Vo1.128(2):27~30
    [30]王保栋,战闰,藏家业.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报,2002,24(1):53~58
    [31]王保栋.黄海和东海营养盐分布及其对浮游植物的限制.应用生态学报.2003, 14(7):1122~1126
    [32]孙霞,王保栋,王修林,等.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学,2004,28(8):28~32
    [33]管秉贤,陈上及.中国近海的海流系统.国家科委海洋组办公室编.全国海洋综合调查报告,1964
    [34]苏纪兰、袁业立,2004,中国近海水文,海洋出版社,北京,229~249
    [35]朱建荣,肖成酞,沈焕庭,等.黄海冷水团对长江冲淡水扩展的影响.海洋与湖沼,1998b,29(4):389~394
    [36]邹娥梅,郭炳火,汤毓祥,等.秋季南黄海水文特征及海水的混合与交换.海洋学报,1999,21(5):12~21
    [37]李徽翡.夏季东中国海环流及长江口上升流模拟:[硕士毕业论文].青岛,中国科学院海洋研究所.2000
    [38]王辉.东海和南黄海夏季环流的斜压模式.海洋与湖沼,1995a,27(1):73~78
    [39]王辉.东海和南黄海夏季环流的斜压模式.海洋与湖沼,1995b,17(2):21~26
    [40]赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征.海洋与湖沼,2001,32(3):327~334
    [41]刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学,2000,19(1):68~75
    [42]郑锡建.东海南部黑潮流域溶解磷酸盐的分布特征.黑潮调查研究论文选(五).北京:海洋出版社,1993:372~379
    [43]项有堂,辛士河,王东衬,等.东海黑潮区海水无机氮的分布特征及其成因探讨.黑潮调查研究论文选(五).北京:海洋出版社,1993:363~370
    [44]张金良,于志刚,张经,等.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境化学,2000,19(4):353~356
    [45]刘昌岭,陈洪涛,任宏波,等.黄海及东海海域大气沉降(降水)中的营养元素.海洋环境科学.2003, 22(3):26~30
    [46]张国森,陈洪涛,张经,等.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报,2003,14(7):1107~1111
    [47]王颢.夏季台湾暖流的水文化学特性及其对东海赤潮高发区生源要素补充的初步研究:[硕士毕业论文].青岛,中国海洋大学.2007
    [48]叶仙森,张勇,项有堂.长江口海域营养盐的分布特征及其成因.海洋通报,2000,19(1):89~92
    [49]王正方,姚龙奎,阮小正.长江口营养盐分布与变化特征.海洋与湖沼,1983,14(4):324~332
    [50]陆赛英,葛人峰,刘丽慧.东海陆架水域营养盐的季节变化和物理输运的规律.海洋学报.1996, 18(5):42~51
    [51]SommerΜ. Comparative nutrient status and competitive interactions of two Antarctic diatoms (Corethron crophilμm and Talassiosira ant-arctica). J.Plankton.,1991,13:61~75
    [52]Nelson D M, Treguer P, Brzezinski M A,etal. Production and dissolution of biogenic silica in the ocean: revised global estimates, com-parison with regional data and relationship tobiogenic sedimentation. Global Biogeochemistry Cycle, 1995, 9: 359~372
    [53]Coale K H,et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 1996, 383: 495~501
    [54]Dugdale R C, Wilkerson F P and Minas H J. The role of a silicate pumping driving new production. Deep-Sea Res.Ⅰ, 1995, 42(5): 697~719
    [55]杨东方,李宏,张越美,等.浅析浮游植物生长的营养盐限制因子和方法.海洋科学,2000,24(12):47~50
    [56]杨东方,张经,陈豫,等.营养盐限制的唯一性因子探究,海洋科学,2001, 25(12):49~51
    [57]Redfield .A.C., Kerehum.B.H.,Reehards.F.A.The influence of organisms on the composition of seawater. In:Hill.M.N. (Ed),The Sea.Willey.1963,Vol.2.PP.26~77
    [58]Maestrini, S.Y., et al .Estuaries, 1997, 20(2):416~429
    [59]Harrison P.J.Hu M H. Yang Y P. Lu X, Phosphate limitation in estuarine and coastal waters of China,J. Exp. Mar. Bio. Eeol, 1986, 140:79~87
    [60]Quay Dortch, Terry E. Whitledge .Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 1992, 12(11):1293~1309
    [61]Dubravko Justi?,Nancy N, Rabalais, R. Eugene Turner and Quay Dortch. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 1995, 40(3):339~356
    [62]Mario Hoppema, Eberhard Fahrbach,Michel H.C.Stoll and Hein J.W.de Baar. Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production. Journal of Marine Systems, Volume 19, Issue 4, March 1999, Pages 219~233
    [63]张平,长江口营养盐结构变化研究:[硕士研究生毕业论文].青岛,中国科学院海洋研究所.2001
    [64]郭卫东,章小明,杨逸萍.中国近岸海域潜在性富营养化程度的评价.台湾海峡,1998,17(1):64~70
    [65]Escaravage S D. Response of phytoplankton communities to phosphorus input reduction in mesocosm experiments.J Exp Mar Biol Ecol, 1996, 188(1):55~79
    [66]Billen G M. A nitrogen budget of the Scheldt hydrographical basin. Neth J Sea Res, 1985, 19:223~230
    [67]Jaclbsen A. Effects of increased concentration of nitrate and phosphate during a spring bloom experiment in mesocosm. J Exp Mar Biol Ecol, 1995, 187(2):239~251
    [68]郝建华,霍文毅.胶州湾增养殖海域营养状况与赤潮形成的初步研究.海洋科学.2000,24(4):37-41
    [69]国家海洋局,海洋监测规范,北京,海洋出版社(GB 17378.7-1998),1998, 3~25,55~59
    [70]GRASSHOFF K, KREMLING K, EHRHARDT M. Methods of Seawater Analysis.Third Edition. Weinheim:WILEY-VCH Verlag GmbH,1999:203~223
    [71]Z.-L.Shen. Historical Changes in Nutrient Structμre and its Influences on hyto-plantkon Composition in Jiaozhou Bay. Estuarine, Coastal and Science Shelf ,2001,52:211~224
    [72]Shen Zhiliang, Liu Qun, Wu Yulin, Yao Yun. Nutrient structure of seawater and ecological responses in Jiaozhou Bay, China. Estuarine, Coastal and Science Shelf, 2006, 69: 299~307
    [73]J.P. Riley and G.Skirrow, Vols.1and2, 1st ed., Chemical Oceanography, Academic Press, New York (1965)
    [74]Hak Gyoon Kim. Recent harmful algal blooms and mitigation strategies in Korea.Ocean Research,1997,19(2):185~192
    [75]Paerl H W,Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as "new" nitrogen and other nutrient sources.Limnol Oceanogr,1997,42(5):1154~1165
    [76]Zhu Mingyuan,Li Ruixiang,Mu Xueyan,Ji Rubao.Harmful algal blooms in China seas. Ocean Research,1997, 19(2):173~184
    [77]HODGKISS I J, HO K C. Are changes in N:P ratios in coastal waters the key to increased red tide blooms. Hydrobiologia, 1997, 352: 141-147
    [78]沈焕庭,等著.长江河口物质通量.北京,海洋出版社,2001,176P
    [79]张春雷,石晓勇,等.营养盐对东海赤潮优势藻种生长影响的船基围隔实验.海洋水产研究,2006,27(4):29~35
    [80]胡明辉,杨溢萍,徐春林,等.长江口浮游植物生长的磷酸盐限制.海洋学报, 1992,11(4):439~443
    [81]周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展,2006,21(7):673~682
    [82]张传松,王江涛,等.2005年春夏季东海赤潮过程中营养盐作用初探.海洋学报,2008(,待出版)
    [83]周伟华,霍文毅,袁翔城等.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报.2003, 14(7):1055~1060
    [84]杨登峰,赵卫红,李金涛,王江涛.磷酸盐对中肋骨条藻生长的影响.海洋科学集刊,2004,第46集:165~172
    [85]孙萍.东海围隔生态系统内浮游植物对营养盐的响应.[硕士研究生毕业论文].青岛,国家海洋局第一海洋研究所.2007
    [86]陈慈美,包建军,吴瑜端.纳污海域营养物质形态及含量水平与浮游植物增值竞争关系,海洋环境科学.1990, 9 (1): 6~12
    [87]毛汉礼,1995.毛汉礼著作选:150~162
    [88]Gu G-C,Hu F-X,Hu H.An analysis of high-concentration-salt water intrusion outside the Changjiang Estuary.Donghai Mar Sci.1994,12(3):1~11
    [89]胡佶,张传松,王修林,等.东海春季赤潮前后沉积物-海水界面营养盐交换速率的研究.环境科学,2007,28(7):1442~1449
    [90]石峰.营养盐在东海沉积物-海水界面交换速率和交换通量的研究.[硕士研究生毕业论文].青岛,中国海洋大学.2003
    [91]韩秀荣,王修林,孙霞,等.东海海域营养盐结构与赤潮发生关系的研究.应用生态学报,2003,14(7):1097~1101
    [92]刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼, 2002,33(3):332~340
    [93]LI M T, XΜK Q, WATANABE M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine、Coastal and Shelf Science, 2007, 71:3~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700