用户名: 密码: 验证码:
稀土催化NCA和酯类单体开环聚合及聚合物降解性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚肽材料具有优异的生物相容性和出色的自组装能力,被广泛地用于生物医学领域的研究,如药物释放、组织工程等,并显示出巨大的应用前景。聚肽在这些领域的应用性能与聚肽分子链结构的精确性密切相关。但是,目前可用于催化单体NCA (amino acid-N-carboxyanhydride)活性/可控开环聚合制备聚肽的催化剂非常少且在各自的应用方面有局限性,需要探索开发其它的催化体系。本文主要研究了一系列稀土金属化合物,包括硼氢化稀土(Ln(BH4)3(THF)3)、三(双三甲基硅基氨基)稀土(Ln(NTMS)3)、异丙氧基稀土(Ln(OiPr)3)和三(2,6-二叔丁基4-甲基苯氧基)稀土(Ln(OAr)3)催化NCA开环聚合的特征及聚合机理,并在此基础上合成了具有不同功能端基结构的遥爪型聚肽。
     本文首次采用Ln(BH4)3(THF)3催化NCA开环聚合制备聚肽。Ln(BH4)3(THF)3(Ln=Sc、Y、La和Dy)是BLG (L-谷氨酸-γ-苄酯)NCA开环聚合的高效催化剂:以DMF为溶剂,在40℃、[BLG NCA]/[Y(BH4)3]=1160、[BLG NCA]=0.5mol/L的条件下反应24h,可以92%的收率得到M。为8.6×104Da、MWD为1.32的聚肽。所得聚肽的分子量(MW)和分子量分布(MWD)与稀土元素的种类及反应温度有关。聚合反应的动力学研究表明:硼氢化稀土催化BLG NCA开环聚合的动力学曲线呈较好的线性关系,可以通过投料比有效地控制聚合物的分子量。Ln(BH4)3(THF)3还可以有效地催化NCA嵌段共聚合成分子量分布窄(MWD<1.2)的嵌段共聚肽和无规共聚肽,有活性聚合的特征。聚合机理研究表明,在常温下Ln(BH4)3(THF)3可以通过两种方式催化NCA开环聚合。第一种是Ln(BH4)3(THF)3直接亲核进攻NCA的5-CO进行链引发和链增长,最终形成α-羟基-ω-氨基聚肽。第二种是Ln(BH4)3(THF)3夺取NCA单体3-NH上的质子,形成N-稀土金属化的NCA进行链引发,通过一种类似于缩聚的方式进行链增长,最终形成α-羧基-ω-氨基聚肽。通过降低反应温度的方法,可以有效地抑制第二种反应路径,从而得到只含有α-羟基-ω-氨基结构的聚肽。
     本文首次采用氨基稀土催化剂Ln(NTMS)3催化NCA开环聚合制备聚肽。Ln(NTMS)3(Ln=Sc、Y、La、Dy和Lu)是NCA开环聚合的高效催化剂:以DMF为溶剂,在40℃、[BLG NCA]/[Y((NTMS)3]=1040、[BLG NCA]=0.5mol/L的条件下反应24h,可以96%的收率得到M。为6.5×104Da, MWD为1.24的聚肽。所得聚肽的分子量和分子量分布与稀土元素的种类及反应温度有关。在该催化体系中可以通过投料比有效地控制聚合物的分子量。Ln(NTMS)3还可以有效地催化NCA嵌段共聚合成分子量分布窄(MWD<1.2)嵌段共聚肽和无规共聚肽,有活性聚合的特征。聚合机理研究表明,在引发过程中,Ln(NTMS)3同时夺取NCA的3-NH和4-CH质子,分别生成N-稀土金属化的NCA和C-稀土金属化的NCA,同时生成HDMS(六甲基二硅氮烷)。原位产生的HDMS催化NCA开环聚合最终形成α-酰胺基-ω-氨基聚肽。N-稀土金属化的NCA和C-稀土金属化的NCA分别异构化为更为稳定的异腈酸酯烷基羧酸稀土和烯酮氨基甲酸羧酸稀土化合物。在该体系中,我们首次报道了NCA上4-CH质子夺取的反应,证明了4-CH的酸性。该反应不仅提供了NCA在强碱存在的条件下发生消旋现象的直接证据,而且给出了另一种活化单体C-钇基化的NCA存在的证据,解释了强碱性催化剂可催化N-取代NCA聚合的原因。
     本文首次采用烷氧基和芳氧基稀土催化剂Ln(OR)3(R=iPr or Ar)催化NCA开环聚合制备聚肽。Ln(OR)3(R=iPr or Ar)是NCA开环聚合的高效催化剂:以DMF为溶剂,在40℃、[BLG NCA]/[Y(OAr)3]=760、[BLG NCA]=0.5mol/L的条件下反应24h,可以94%的收率得到Mn为8.8×104Da, MWD为1.33的聚肽。所得聚肽的分子量和分子量分布与反应温度有关。这两种催化体系可制备高分子量的聚肽,但分子量不能通过投料比控制。动力学研究表明,随着聚合反应时间的增加,产率和粘均分子量(Mv,LS)都急剧增加,但Mv,Ls的增加滞后于产率增加。聚合反应机理研究表明,在引发过程中,Ln(OR)3(R=iPr or Ar)夺取NCA单体上3-NH的质子,形成N-稀土金属化的NCA,该NCA引发其它的单体一种类似于缩聚的方式进行链增长,最终形成α-羧基-ω-氨基聚肽。在该催化体系中,还生成了端基为乙内酰脲和乙内酰脲酸的聚肽两种副产物。
     以La(OAr)3为催化剂,通过加入5~8mol%的2,2-dimethyl-trimethylene carbonate (DTC)单体与s-caprolactone (ε-CL)单体进行无规共聚合,成功制备了低结晶度的共聚酯PCD。将PCD和PCL均聚物制备成电纺膜和热压膜,并测试了结晶度。结果表明,在热压膜中,PCD的结晶度χc从PCL的45%降低至28%。在电纺膜中,PCD的结晶度χc从PCL的79%降低至40%。
     本文首次发现猪胰脂肪酶(PP酶)可以有效地催化PCD的降解,不能催化PCL的降解。对于PCD电纺膜,10天之内失重就达到80%;对于PCD热压膜,35天之内失重达到70%。研究结果表明,电纺膜的降解速度大于热压膜的降解速度;对于同一种膜,PCD的降解速度远远大于PCL。并通过实验结果,对上述的降解行为进行了解释。降解机理研究表明,PP酶催化PCD的降解采用的是表面侵蚀方式。以水杨酸为模型药物,对PCL和PCD进行了药物释放行为的研究。结果表明,PCD电纺膜显示了可控的药物释放行为,而PCL电纺膜则出现了药物的暴释现象。这两种体系药物释放行为的差异与聚合物结晶度有关。
     以La(OAr)3为催化剂,以PEG或MPEG为引发剂,成功地制备了两亲性的共聚酯MPECD和PECD。在相近的MW和EO含量的条件下,MPECD更脆,接触角更小,但两者蓄水能力相近。研究发现,PP酶可以有效地催化PCD、 PCD/PECD和PCD/MPECD电纺膜的降解。对于PCD电纺膜,7天之内失重达到92%;对于PCD/PECD和PCD/MPECD电纺膜,23天之内失重达到60%左右。机理研究表明,PP酶催化这三种膜的降解采用的是表面侵蚀机理。由于在PCD/PECD和PCD/MPECD电纺膜的表面上发生了PEG链段的富集过程,阻碍了PP酶与PCD链段的直接接触,使得PCD/PECD和PCD/MPECD电纺膜的降解速率低于PCD电纺膜。
With excellent biocompatible ability and distinguished self-assemble ability, polypeptide has been widely used in biomedical area such as drug release and tissue engineering, and shows great potential in these applications. The performance of polypeptide is closely related to its micro-structure. However, the available catalysts can be used to catalyze living/controlled ring opening polymerization (ROP) of NCA (amino acid-N-carboxyanhydride) to prepare polypeptide are quite rare, and these catalysts still have their limitations in their use. Exploring new catalytic systems is urgently needed. In this paper, we applied four rare earth complexes, i.e., rare earth tris(borohydride)(Ln(BH4)3(THF)3), rare earth tris[bis(trimethylsilyl)amide](Ln(NTMS)3), rare earth isopropoxide (Ln(OiPr)3) and rare earth tris(2,6-di-tert-butyl-4-methylphenolate)(Ln(OAr)3) to catalyze the ROP of NCA. Polymerization features and mechanisms are detailedly studied, and telechelic polypeptides are synthesized.
     Ln(BH4)3(THF)3has been firstly used to catalyze the ROP of NCA. The results show that Ln(BH4)3(THF)3(Ln=Sc, Y, La and Dy) are efficient catalysts for ROP of BLG (γ-benzyl-L-glutamate) NCA. In40℃,[BLG NCA]/[Y(BH4)3]=1160,[BLG NCA]=0.5mol/L, PBLG (poly(γ-benzyl-L-glutamate)) could be obtained in92%yield with the number average molecular weight (Mn) of8.6×104Da and molecular weight distribution (MWD) of1.32after24h in DMF. Molecular weights (MWs) and MWDs are varied with the rare earth metals and reaction temperature. The kinetic study exhibits a liner relationship indicating a controlled polymerization behavior of this polymerization system. Block and random copolypeptides with narrow MWD (MWD<1.2) can also been synthesized by Ln(BH4)3(THF)3. Polymerization mechanism study shows that Ln(BH4)3(THF)3catalyzes the ROP of NCA through two modes at room temperature. One is nucleophilic attack at the5-CO of NCA by Ln(BH4)3(THF)3to initiate the polymerization, and after propagation and termination, α-hydroxyl-ω-aminotelechelic polypeptide is formed. The other is that Ln(BH4)3(THF)3deprotonates the3-NH group of NCA, leading to a N-rare earthlated NCA which is served as an initiation center and finally affords a α-carboxylic-ω-aminotelechelic polypeptide. By decreasing the reaction temperature, the second reaction mode can be effectively depressed and polypeptide with hydroxyl group can be exclusively synthesized.
     Ln(NTMS)3has been firstly used to catalyze the ROP of NCA. The results show that Ln(NTMS)3(Ln=Sc, Y, La, Dy and Lu) are efficient catalysts for ROP of BLG NCA. In40℃,[BLG NCA]/[Y((NTMS)3]=1040,[BLG NCA]=0.5mol/L, PBLG with the Mn of6.5×104Da and MWD of1.24could be obtained in96%yield after24h in DMF. MWs and MWDs are varied with the rare earth metals and reaction temperature. The MWs can be efficiently tuned by the feeding ratios. Block and random copolypeptides with narrow MWD (MWD<1.2) can also been synthesized by Ln(NTMS)3. Polymerization mechanism study shows that in the initiation step, Ln(NTMS)3not only deprotonates the3-NH but also deprotonates the4-CH group of NCA, forming N-rare earthlated NCA and C-rare earthlated NCA respectively along with hexamethyldisilazane (HMDS). The in situ HDMS is responsible for further chain growth and finally produces the α-amide-ω-aminotelechelic polypeptide, while N-rare earthlated NCA and C-rare earthlated NCA are isomerized into more stable rare earth α-isocyanato carboxylate and rare earth ketenyl carbamate respectively. In this system, we firstly report deprotonation reaction at4-CH of NCA, proving the acidity of4-CH in NCA. This result not only provides a direct proof for racemization phenomenon of NCA in strong base environment but also sheds light on strong base-catalyzed N-substituted NCA polymerization.
     Ln(OR)3(R=iPr or Ar) have been firstly used to catalyze the ROP of NCA. The results showed that Ln(OR)3(Ln=Y, La and Dy) were efficient catalysts for ROP of BLG NCA. In40℃,[BLG NCA]/[Y(OAr)3]=760,[BLG NCA]=0.5mol/L, PBLG with the Mn of8.8×104Da and MWD of1.33could be obtained in94%yield after24h. The two systems are especially useful to prepare high MW polypeptides; however, the MWs can not be tuned by the feeding ratios. The kinetic study showed that both yields and MWs were increased dramatically with the reaction time, but the MW's increasing rate was slower than that of the yield. Polymerization mechanism shows that in the initiation step, Ln(OR)3(R=iPr or Ar) depronates the3-NH of NCA, forming N-rare earthlated NCA. N-rare earthlated NCA serves as the truly initiation center and is responsible for further chain growth and produces α-carboxylic-ω-aminotelechelic polypeptide after termination. In these two systems, polypeptides with the hydantoinic end and hydantoic acid end are also found as by-products.
     Low crystalline copolyester PCD has been synthesized by random copolymerization of ε-caprolactone (CL) with5~8mol%of2,2-dimethyl-trimethylene carbonate (DTC) in the presence of La(OAr)3as the catalyst. PCD, as well as PCL homopolymer, are fabricated into electrospun mats (EMs) and compression molding films (CMFs) and measured for their crystallinity. The results indicate that in EMs, the crystallinity of PCD has been decreased to40%in comparison with79%for PCL while in CMFs, the corresponding crystallinity is decreased to28%compared to45%for PCL.
     It is found for the first time that porcine pancreatic lipase (PP lipase) can effectively catalyze the degradation of PCD while it shows no detectable effect on PCL. For PCD EM, the weight loss reached80%within10days while it is70%for PCD CMF within35days. The degradation rates of EMs are faster than CMFs, and PCD's degradation rate is much faster than PCL. Based on the experimental results, the above degradation behaviors have been explained. Degradation mechanism study shows in PCD degradation catalyzed by PP lipase, surface erosion is the main degradation mode. Salicylic acid is used as a model drug to test the drug release behavior of PCD. It is found PCD EM showed a controlled drug release behavior in comparison with PCL EM which exhibited a burst-release behavior. This difference is closely related with the crystallinity of the two polymer samples.
     Poly[(ε-caprolactone-r-2,2-dimethyltrimethylene carbonate)-b-PEG-b-(ε-caprolactone-r-2,2-dimethyltrimethylene carbonate)](PECD) and poly[MPEG-b-(ε-caprolactone-r-2,2-dimethyltrimethylene carbonate)](MPECD) have been synthesized by using PEG and MPEG as the initiators and La(OAr)3as the catalysts. With similar MW and EO amount, MPECD is more brittle and has a smaller contact angle. It is found that PP lipase can effectively catalyze the degradations of PCD, PCD/PECD and PCD/MPECD EMs. For PCD EM, the weight loss reaches92%within7days while it is around60%for PCD/PECD or PCD/MPECD EMs within23days. A PEG segment enrichment process on the EM surface is detected, which prevents the contact of PP lipase with PCD segments in the PEG-involved EMs and further decreases the corresponding degradation rates. Surface erosion mechanism is proved in this degradation.
引文
[1]Kricheldorf, H. R. a-Aminoacid N-Carboxyanhydrides and Related Heterocycles, Springer-Verlag:Berlin,1987,1-213.
    [2]Kricheldorf, H. R. Polypeptides and 100 Years of Chemistry of a-Aminoacid N-Carboxyanhydrides. Angew Chem Int Ed 2006,45,5752-5784.
    [3]Deming, T. J. Polypeptide Materials:New Synthetic Methods and Applications. Adv Mater 1997,9,299-311.
    [4]Bellomo, E.G., Wyrsta, M. D., Pakstis, L., Pochan, D. J., Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials 2004,3,244-248.
    [5]Euliss, L, E., Grancharov, S. G, O'Brien, S., Deming, T. J., Stucky, G. D., Murray. C. B., Held, G. A. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media. Nano letter 2003,3,1489-1493.
    [6]Li, C., Yu, D, F., Newman, R. A., Cabral, F., Stephens, L. C., Hunter, N., Milas, L., Wallace, S. Complete Regression of Well-established Tumors Using a Novel Water-soluble Poly(L-Glutamic Acid)-Paclitaxel Conjugate. Cancer Res.1998.58. 2404-2409.
    [7]Kazunori, K., Glenn S., Kwon., Masayuki, Y, Teruo, O., Yasuhisa, S. Block Copolymer Micelles as Vehicles for Drug Delivery. J. Controlled Release 1993, 24,119-132.
    [8]Yang, C., Song, B., Ao, Y., Nowak, A. P., Abelowitz, R. B., Korsak, R. A., Havton, L. A., Deming, T. J., Sofroniew, M. V. Biocompatibility of amphiphilic diblock copolypeptide hydrogels in the central nervous system. Biomaterials 2009,30, 2881-2898.
    [9]Deming, T. J. Synthetic polypeptides for biomedical applications. Prog Polym Sci 2007,32,858-875.
    [10]Priv.-Doz. Dr. Erich Wunsch. Synthesis of Naturally Occurring Polypeptides, Problems of Current Research. Angew Chem Int Ed 1971,10(11),786-795.
    [11]Deming, T. J. Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization. Adv Polym Sci 2006.202.1-18.
    [12]Oya, M.. Katakai. R.. Nakai, H. A Novel Synthesis of a-Aminoacid N-Carboxyanhydrides. Chemistry Letters,1973,1143-1144.
    [13]Daly, W. H., Poche, D. The Preparation of N-Carboxyanhydrides of α-Amino Acids Using Bis(trichloromethyl)carbonate. Tetrahedron Lett 1988,29(46). 5859-5862.
    [14]Hirschmann, R., Schwam, H., Strachan, R. G., Schoenewaldt, E. F., Barkemeyer, H., Miller, S. M., Conn, J. B., Garsky, V., Veber, D. F., Denkewalter, R. G. Controlled Synthesis of Peptides in Aqueous medium. Ⅶ. Preparation and Use of Novel. Alpha.-amino acid N-carboxyanhydrides. J Am Chem Soc 1971,93(11), 2746-2754.
    [15]Kricheldorf, H. R. Notiz uber die Cyclisierung silylierter Aminoalkohole, Amino-phenole und Aminosauren mit Phosgen. Chem. Ber.1970,103(10), 3353-3355.
    [16]Kricheldorf, H. R., Lossow, C. V., Schwarz, G. Primary Amine-Initiated Polymerizations of Alanine-NCA and Sarcosine-NCA. Macromol Chem Phys 2004,205,918-924.
    [17]Kurtz, J., Fasman, G. D., Berger, A., Katchalski, E. Poly-hydroxy-L-proline. J Am Chem Soc 1958,80(2),393-397.
    [18]Randall, A. A. Use of Triethylamine in the Preparation of N-carboxy-L-Proline Anhydride. J. Chem. Soc 1962,374-375.
    [19]Gulin, O. P., Rabanal, F., Giralt, E. Efficient Preparation of Proline N-Carboxyanhydride Using Polymer-Supported Bases. Org. Lett.,2006,8(23), 5385-5388.
    [20]Curtius, T., Hochschwender, H., Meier, H., Lehmann, W., Benkeiser, A., Shenk, M., Nirbatz, W., Gaier. J., Miihlhausser. Transformation of Alkylated Malonic Acids into-Amino Acids. J. Prakt. Chem.,1930,125,211-302.
    [21]Boiteau. L.. Collet, H.. Lagrille, O., Taillades, J., Vayaboury, W., Giani, O., Schue, F., Commeyras, A. From Prebiotic Macromolecules to Synthetic Polypeptides:A New, Efficient Synthesis of α-Amino Acid N-Carboxyanhydrides (NCAs). Polym. Int.2002.51(10),1037-1040.
    [22]Vayaboury, W., Giani,O., Collet, H., Commeyras, A., Schue, F. Synthesis of Nε-protected-L-lysine and y-benzyl-L-glutamate N-carboxyanhydrides (NCA) by carbamoylation and nitrosation. Amino Acids,2004,27,161-167.
    [23]Kricheldorf, H. R., Lossow, C. V., Schwarz, G. Primary Amine and Solvent-Induced Polymerizations of L- or D,L,-Phenylalanine N-Carboxyanhydride. Macromol Chem Phys 2005,206,282-290.
    [24]Bikram, M., Ahn, C. H., Chae, S. Y., Lee, M., Yockman, J. W., Kim, S. W. Biodegradable Poly(ethylene glycol)-co-poly(L-lysine)-g-histidine Multiblock Copolymers for Nonviral Gene Delivery. Macromolecules 2004,37,1903-1916.
    [25]Waley, S. G, Watson, J. The Kinetics of the Polymerization of Sarcosine Carbonic Anhydride. Proc. R. Soc. London, Ser. A 1949,199,499-517.
    [26]Dorman, L. C., Shiang, W. R., Meyers, P. A. Purification of y-Menzyl-L-Glutamate N-Carboxyanhydrides by Rephosgenation. Synthetic Communication 1992,22(22),3257-3262.
    [27]Poche, D. S., Moore, M. J., Bowles, J. L. An Unconventional Method for Purification the N-Carboxyanhydride Derivatives of γ-Alkyl-L-Glutamates. Synthetic Communication 1999,29(5),843-854.
    [28]Kramer, J. R., Deming, T. J. General Method for Purification of α-Amino acid N-carboxyanhydrides Using Flash Chromatography. Biomacromolecules 2010, 11,3668-3672.
    [29]Blout, E. R., Karlson, R. H. Polypeptides. Ⅲ. The Synthesis of High Molecular Weight Poly-y-benzyl-L-glutamates. J Am Chem Soc 1956,78(5),941-946.
    [30]Zhang, X. W, Oddon, M., Giani, O., Monge, S., Robin, J. J. Novel Strategy for ROP of NCAs Using Thiols As Initiators:Synthesis of Diblock Copolymers Based on Polypeptides. Macromolecules 2010,43,2654-2656.
    [31]Hu, X., Wu, J., Xu, Z., Feng, L. Polymerization of y-Stearyl-a,L-Glutamate N-carboxyanhydride Using Rare Earth Coordination Catalysts. Chin J Polym Sci 2000,18,369-372.
    [32]Deming, T. J. Controlled Polymerization of α-Amino Acid-N-Carboxyanhydrides Using Transition Metal Initiators. Polym. Prepr.1996,37.435-436.
    [33]Deming, T. J. Transition Metal-Amine Initiators for Preparation of Well-Defined Poly(γ-benzyl-L-glutamate). J Am Chem Soc 1997,119,2759-2760.
    [34]Deming, T. J. Facile Synthesis of Block Copolypeptides of Defined Architecture. Nature 1997,390,386-389.
    [35]Castano, A. M., Echavarren, A. M. Reactivity of A Nickelacycle Derived from Aspartic Acid:Alkylations, Insertions, and Oxidations. Organometalics 1994. 13(6),2262-2268.
    [36]Goodwin, A. A., Bu, X., Deming, T. Reactions of α-amino acid-N-carboxyanhydrides (NCAs) with organometallic palladium(0) and platinum(0) compounds:structure of a metallated NCA product and its role in polypeptides synthesis. J Organomet Chem 1999,589,111-114.
    [37]Peng, Y. L., Lai, S. L., Lin, C.C. Preparation of Polypeptide via Living Polymerization of Z-Lys-NCA Initiated by Platinum Complexes. Macromolecules 2008,41,3455-3459.
    [38]Cheng, J., Deming, T. J. Screening of Optical Active Nickel Initiators for Enantioasymmetric Polymerization of γ-Benzyl Glutamate-N-Carboxyanhydride. Macromolecules 1999,32,4745-4747.
    [39]Seidel, S. W., Deming, T. J. Use of Chiral Ruthenium and Iridium Amido-Sulfonamidate Complexes for Controlled, Enantioselective Polypeptides Synthesis. Macromolecules 2003,36,969-972.
    [40]Curtin, S. A., Deming, T. J. Initiators for End-Group Functionalized Polypeptides via Tandem Addition Reactions. J Am Chem Soc 1999,121,7427-7428.
    [41]Bhaw-Luximon, A., Jhurry, D., Belleney, J., Goury. V. Polymerization of y-Methylglutamate N-Carboxyanhydride Using Al-Schiff's Base Complexes as Initiators. Macromolecules 2003.36,977-982.
    [42]Goury, V., Jhurry, D., Bhaw-Luximon, A., Novak, B. M., Belleney, J. Synthesis and Characterization of Random and Block Copolypeptides Derived from γ-Methylglutamate and Leucine N-Carboxyanhydrides. Biomacromolecules 2005, 6,1987-1991.
    [43]Lu, H., Cheng, J. Hexamethyldisilazane-Mediated Controlled Polymerization of α-Amino Acid N-Carboxyanhydrides. J Am Chem Soc 2007, 129, 14114-14115.
    [44]Lu, H., Cheng, J. N-Trimethylsilyl Amines for Controlled Ring-Opening Polymerization of Amino Acid N-Carboxyanhydrides and Facile End Group Functionalization of Polypeptides. J Am Chem Soc 2008, 130, 12562-12563.
    [45]Lu, H., Wang, J., Lin Y., Cheng, J. One-pot Synthesis of Brush-Like Polymers via Integrated Ring-Opening Metathesis Polymerization and Polymerization of Amino Acid N-Carboxyanhydrides. J Am Chem Soc 2009, 131, 13582-13583.
    [46]Aliferis, T., Latrou, H., Hadjichristidis, N. Living Polypeptides. Biomacromolecules 2004, 5, 1653-1656.
    [47]Dimitrov, I., Schlaad, H. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerization of N-carboxyanhydrides. Chem Commun 2003, 23, 2944-2945.
    [48]Knobler, Y., Bittner, S., Frankel, M. Reaction of N-Carboxy-α-Amino Acid Anhydrides with Hydrochlorides of Hydroxyamine, O-alkylhydroxylamines. and Amines; Synthesis of Amino-hydroxamic acids, amino-oxy-peptides. and α-amino-acid amides. J. Chem. Soc.,1964, 3941-3951.
    [49]Shoppee, C. W., Lack, R. E., Sternhell, S. Steroids. Part ⅩⅨ. The Structure of Digifolein and Digifologenin. J. Chem. Soc.,1963, 3281-3286.
    [50]Cottet, H., Vayaboury, W., Kirby,D., Giani, O.,Taillades, J., Schue. F. Nonaqueous Capillary Zone Electrophoresis of Synthetic Organic Polypeptides. Anal Chem 2003, 75, 5554-5560.
    [51]Vayaboury, W., Giani, O., Cottet, H., Deratani, A., Schue, F. Living Polymeirzaiotn of α-Amino Acid N-Carboxyanhydrides (NCA) upon Decreasing the Reaction Temperature. Macromol Rapid Commun 2004,25, 1221-1224.
    [52]Habraken, G. J. M., Peeters, M., Dietz, C. H. J. T., Koning, C. E., Heise, A. How controlled and versatile is N-carboxyanhydride (NCA) polymerization at 0℃? Effect of temperature on homo-, block- and graft (co)polymerization. Polym Chem 2010, 1,514-524.
    [53]Habraken, G. J. M., Wilsens, K. H. R. M., Koning, C. E., Heise, A. Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym Chem 2011.2.1322-1330.
    [54]Deming, T. J., Curtin, S. A. Chain Initiation Efficiency in Cobalt-and Nickel-Mediated Polypeptide Synthesis. J Am Chem Soc 2000,122,5710-5717.
    [55]Hadjichristidis, N., Latrou, H., Pitsikalis, M. Sakellariou, G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerizaiton of α-Amino Acid N-Carboxyanhydrides. Chem Rev 2009,109,5528-5578.
    [56]Goodman, M., Hutchison, J. The Mechanism of Polymerization of N-Unsubstituted N-Carboxyanhydrides. J Am Chem Soc 1966,88(15), 3627-3630.
    [57]Peggion, E., Terbojevich, M., Cosani, A., Colombini, C. Mechanism of N-Carboxyanhydride (NCA) Polymerization in Dioxane. Initiation by Caebon-14-Labeled Amines. J Am Chem Soc 1966,88(15),3630-3632.
    [58]Bamford, C. H., Block, H. The Initiation Step in the Polymerization of N-carboxy-a-Amino Acid Anhydrides. Part Ⅱ. Effects Related to the Structures of Amine Initiators. J. Chem. Soc.,1961,4992-4995.
    [59]Ling, J., Huang, Y. Understanding the Ring-Opening Reaction of α-Amino Acid N-Carboxyanhydride in an Amine-Mediated Ling Polymerization:A DFT Study. Macromol Chem Phys 2010,211,1708-1711.
    [60]Goodman, M., Hutchison, J. Propagation Mechanism in Strong Base Initiated Polymerization of α-Amino Acid N-Carboxyanhydrides. J Am Chem Soc 1965, 87(15),3524-3525.
    [61]Thunig, Dieter., Semen, J., Elias, H. G. Carbon Dioxide Influence on NCA Polymerizations. Makromol. Chem.,1977,178(2),603-607.
    [62]Miller, E., Fankuchen, I., Mark, H. Polymerization in the Solid State. J. Appl. Phys.1949,20(6),531-533.
    [63]Bartlett, P. D., Dittmer, D. C. A Kinetic Study of the Leuchs Anhydrides in Aqueous Solution. Ⅱ. J Am Chem Soc 1957,79(9),2159-2160.
    [64]Bamford, C. H., Block, H., Pugh, A. C. P. The Polymerization of 3-Substituted Oxazolidine-2,5-diones. J. Chem. Soc.1961,2057-2063.
    [65]Goodman, M.. Arnon, U. The Mechanism of Strong-Base-Initiated Polymerization of N-Carboxyanhydrides. J Am Chem Soc 1964,86(16). 3384-3390.
    [66]Bamford, C. H., Block, H. The Initiation Step in the Polymerization of N-carboxy-α-Amino Acid Anhydrides. Part I. Catalysis by Tertiary Bases. J. Chem. Soc.1961,4989-4991.
    [67]Pickel, D. L., Politakos, N., Avgeropoulos, A., Messman, J. M. A Mechanistic Study of α-(Amino acid)-N-carboxyanhydride Polymerizaion:Comparing Initiation and Termization Events in High-Vacuum and Traditional Polymerization Techniques. Macromolecules 2009,42,7781-7787.
    [68]Idelson M.. Blout, E. R. Polypeptides. XVIII. A Kinetic Study of the Polymerization of Amino Acid N-Carboxyanhydrides Initiated by Stong Bases. J Am Chem Soc 1958,80(10),2387-2393.
    [69]Dewey, R. S., Schoenewaldt, E. F., Joshua, H., Paleveda Jr, W. J., Schwam. H., Barkemeyer, H., Arison, B. H., Verber, D. F., Denkewalter, R. G, Hirschmann, R. Synthesis of Peptides in Aqueous Medium. V. Preparation and Use of 2,5-Thiazolidinediones (NTA's). Use of the 13C-H Nuclear Magnetic Resonance Signal as Internal Standard for Quantitatives Studies. J Am Chem Soc 1968, 90(12),3254-3255.
    [70]Kricheldorf, H. R., Lossow, C. V, Schwarz, G. Tertiary Amine Catalyzed Polymerization of α-Amino Acid N-carboxyanhydrides:The Pole of Cyclization. J Polym Sci Part A:Polym Chem 2006,44,4680-4695.
    [71]Kricheldorf, H. R., Lossow, C. V., Schwarz, G. Cyclic Polypeptides by Solvent-Induced Polymerizations of α-Amino Acid N-carboxyanhydrides. Macromolecules 2005,38,5513-5518.
    [72]Wieland, T. Peptide Synthesis. Angew. Chem.1951,63,7-14.
    [73]Kricheldorf, H. R., Lossow, C. V., Schwarz, G, Fritsch, D. Chain Extension and Cyclization of Telechelic Polysarcosines. Macromol Chem Phys 2005,206. 1165-1170.
    [74]Kricheldorf, H. R., Lossow, C. V., Schwarz, G. Imidazole-Initiated Polymerizations of α-Amino Acid N-carboxyanhydrides-Simultaneous Chain-Growth and Step-Growth Polymerization. J Polym Sci Part A:Polym Chem 2005.43.5690-5698.
    [75]Simo. C., Cottet, H., Vayaboury, W., Giani. O., Pelzing, M., Cifuentes, A. Nonaqueous Capillary Electrophoresis-Mass Spectrometry of Synthetic Polymers. Anal Chem 2004,76,335-344.
    [76]Doty, P., Lundberg, R. D. Polypeptides. Xa. Additional Comments of the Amine-Initiated Polymerization. J Am Chem Soc 1957,79(9),2338-2339.
    [77]Aposhian, H. V., Lambooy, J. P. The in vivo Synthesis of Diethylriboflavin Phosphate. J Am Chem Soc 1955,77,6368.
    [78]Fontaine, L., Menard, L., Brosse, J. C., Sennyey, G, Sennyey, G., Senet, J. P. New Polyurethanes Derived from Amino Acids Synthesis and Characterization of α,ω-Diaminooligopeptides by Ring-opening Polymerization of Glutamate N-carboxyanhydrides. React Funct Polym 2001,47,11-21.
    [79]Simo, C., Cottet, H., Vayaboury, W., Giani, O., Pelzing, M., Cifuentes, A. Nonaqueous Capillary Electrophoresis-Mass Spectrometry of Synthetic Polymers. Anal Chem 2004,76,335-344.
    [80]Masaaki, I., Hiroyoshi, K. N-Formylation of Aliphatic Primary Amines with N,N-dimethylformamide Promoted by 2,3-dihydro-1,4-phthalazinedione. Chem Lett,1989, (11),2029-2030.
    [81]Handra, R. C., Rustgi, R. Biodegradable polymers. Prog Polym Sci 1998.23(7), 1273-1335.
    [82]陈枫。稀土催化己二酸酐和碳酸亚乙酯开环聚合及聚合物的降解和生物相容性研究。[博士学位论文]浙江杭州,浙江大学,2008年,1-117。
    [83]Rokicki, G. Aliphatic Cyclic Carbonates and Spiroorthocarbonates as Monomers. Prog. Polym. Sci.2000,25(2),259-342.
    [84]刘杰。生物降解聚酯作为抗癌药物和基因载体的研究。[博士学位论文]安徽合肥,华中科技大学,2010年,1-166。
    [85]Kricheldorf, H. R. Synthesis and Application of Polylactic acid. Chemophere 2001,43(6),49-54.
    [86]张国栋,杨纪元,冯新德。聚乳酸研究进展。化学进展,2000,12,89-102。
    [87]张昌辉,刘冬梅,王佳。脂肪族聚酯降解材料的研究进展。塑料工业,2010,38(11),1-12。
    [88]孟志芬。聚乳酸类材料的性能与应用。河南职业技术师范学院学报,2004,32(1),51-53。
    [89]艾合麦提·玉素甫,王振斌,朱良。可生物降解材料聚己内酯在医学上的应用进展。国际生物医学工程杂志,2005,28(1),19-23。
    [90]米红宇。聚己内酯的特性介绍及其应用前景。新疆石油学院学报,2002,14(4),72-74。
    [91]马进。超细粉煤灰填充聚丙烯的研究开发。中国塑料,2001,15(7),54-57。
    [92]赵三平,尹玥,冯增国。PCL-PEG-PCL嵌段共聚物的合成与性能。功能高分子学报,2002,14(1),67-71。
    [93]Zhu, K. J., Hendren, R. W., Jensen, K., Pit, C. G. Synthesis, Properties and Biodegradation of Poly(1,3-trimethylene carbonate). Macromolecules 1991,24(8). 1736-1740.
    [94]Pego, A. P., Poot, A. A., Grijpma, D. W., Feijen, J. In vitro Degradation of Trimethylene Carbonate Based (Co)polymers. Macromol Bio Sci 2001,2, 411-419.
    [95]Carothers, W. H., Dorough G. L., Van Natta F. J. Studies on Polymerization and Ring Formation. X. The Reversible Polymerization of Six-membered Cyclic Esters. J Am Chem Soc 1932,54(2).761-772.
    [96]Yasuhiro, T., Ryoji, K. Crystal Structure of Poly(trimethylene carbonate). Macromolecules 2003,36(14),5139-5143.
    [97]Pego, A. P., Grijpma, D. W., Feijen, J. Enhanced Mechanical Properties of 1,3-Trimethylene Carbonate Polymers and Networks. Polymer 2003,44(21), 6495-6504.
    [98]Pego, A. P., Poot, A. A., Grijpma, D. W., Feijen, J. Physical Properties of High Molecular Weight 1,3-Trimethylene Carbonate and D,L-lactide Copolymers. J Mater Sci Mater Med 2003,14(9),767-773.
    [99]祝桂香,沈之荃。环碳酸酯开环聚合物制备、性能和应用研究进展。高分子通报,2004.2,1-5.
    [100]Sidoti, G., Capelli, S., Meille, S. V.. Alfonso, G. C. The Polymorphic Behaviour of Poly(2,2-dimethyltrimethylenecarbonate) and of Its Cyclic Monomer. Evidence for A High Entropy, Conformationally Disordered Modification. Polymer 1998,39(1),165-172.
    [101]Denchev, Z., Bojkova, A., Duchesne, A., Stamm, M., Fakirov, S., Keul, H.. Hocker, H. Sequential Reordering in Condensation Polymers,5. Preparation and Characterization of Copolymers via Transesterification of A Polycaprolactone/ Poly(2.2-dimethyltrimethylene carbonate) Blend. Macromol Chem Phys 1998, 199(10),2153-2164.
    [102]凌君。新型稀土催化剂催化开环聚合及Monte Carlo模拟研究。[博士学位论文]浙江杭州,浙江大学,2002年,1-131。
    [103]Matsuo, J., Sanda, F., Endo, T. Cationic Ring-opening Polymerization Behavior of An Aliphatic Seven-membered Cyclic Carbonate, 1,3-dioxepan-2-one. Macromol Chem Phys 1998,199(1),97-102.
    [104]Kricheldorf, H. R., Weegen-Schulz, B. Polymers of Carbonic Acid.11. Reactions and Polymerizations of Aliphatic Cyclocarbonates with Boron Halogenides. Macromolecules 1993,26(22),5991-5998.
    [105]Kricheldorf, H. R., Weegen-Schulz, B. Makromol. Chem. Rapid. Commun. 1993,14,405
    [106]Kricheldorf, H. R., Weegen-Schulz, B. Polymers of Carbonic Acid.15. Polymerization of Cyclotrimethylene Carbonate with TiC14 or SbC15 as Initiator. J. M. S. Pure Appl. Chem.1995, A32(11),1847-1862.
    [107]Takata, T., Lgarashi, M., Endo, T. Synthesis and Cationic Ring-openning Polymerization of A Cyclic Carbonate,5-Methylene-1,3-dioxan-2-one. J. Polym. Sci. Part A Polym. Chem.1991,29(5),781-784.
    [108]Albertson, A. C., Sjoling, M. Homopolymerization of 1,8-Dioxan-2-one to High Molecular Weight Poly(Trimethylene Carbonate). J. M. S. Pure Appl. Chem.1992, A29(1),43-54.
    [109]Kricheldorf, H. R., Weegen-Schulz, B. Polymers of Carbonic Acid:13. Polymerizaion of Cyclotrimethylenecarbonate with Tin Tetrahalides. Polymer 1995,36(26),4997-5003.
    [110]戴永波。稀土化合物引发1-甲基三亚甲基环碳酸酯开环聚合及机理研究。[硕士学位论文]浙江杭州,浙江大学,2011年,1-54。
    [111]Kricheldorf, H. R., Berl, M., Scharnagl, N. Poly(lactones).9. Polymerization Mechanism of Metal Alkoxide Initiated Polymerizations of Lactide and Various Lactones. Macromolecules 1988,21(2),286-293.
    [112]Kricheldorf, H. R., Kreiser-Saunders, I., Boettcher, C. Polylactones:13. Sn(II)octoate-initiated polymerizaiotn of L-lactide:A Mechanism Study. Polymer 1995,36(6),1253-1259.
    [113]Kricheldorf. H. R., Awe, J. Polymers of Carbonic Acid,5. Nematic Polyurethanes Derived from 4,4'-Dihydroxybiphenyl and 4,4'-Bipiperidine, Ethylene-4.4'-bipiperidine or Trimethylene-4,4'-bipiperidine. Makromol. Chem. 1989,190(10),2597-2680.
    [114]Shen, Y.. Shen, Z., Shen, J., Zhang, Y., Yao, K. Characteristics and Mechanism of s-Caprolactone Polymerization with Rare Earth Halide Systems. Macromolecules 1996,29(10),3441-3446.
    [115]Deng, X. M., Yuan, M. L., Xiong, C. D., Li, X. H. Polymerization of Lactides and Lactones. Ⅱ. Ring-opening Polymerization of ε-Caprolactone and DL-lactide by organoacid rare earth compounds. J. Appl. Polym. Sci.1999, 71(12),1941-1948.
    [116]Martin, E., Dubois, P., Jerome, R. Controlled Ring-opening Polymerization of s-Caprolactone Promoted by "in Situ" Formed Yttrium Alkoxides. Macromolecules 2000,33(5),1530-1535.
    [117]Shen, Y, Shen, Z., Zhang, Y, Yao, K. Novel Rare Earth Catalysts for the Living Polymerizaion and Block Copolymerization of ε-Caprolactone. Macromolecules 1996,29(26),8289-8295.
    [118]Stevels, W. M., Ankone, M. J. K., Dijkstra, P. J.. Feijen, J. A. Kinetics of L-lactide and s-Caprolactone Polymerization Using A Highly Efficient Catalyst System Based on Yttrium Tris(2.6-di-tert-butylphenolate). Polym. Prepr.1996. 37(2),190-191.
    [119]Stevels. W. M.. Ankone, M. J. K.. Dijkstra. P. J.. Feijen, J. A. Versatile and Highly Efficient Catalyst System for the Preparation of Polyesters Based on Lanthanide Tris(2,6-di-tert-butylphenolate)s and Various Alcohols. Macromolecules,1996,29(9),3332-3333.
    [120]Stevels, W. M., Ankone, M. J. K., Dijkstra, P. J., Feijen, J. A. Kinetics and Mechanism of L-Lactide Polymerization Using Two Different Yttrium Alkoxides as Initiators. Macromolecules,1996,29(19),6132-6138.
    [121]Stevels, W. M., Ankone, M. J. K., Dijkstra, P. J., Feijen, J. A. Kinetics and Mechanism of ε-Caprolactone Polymerization Using Yttrium Alkoxides as Initiators. Macromolecules,1996,29(26),8296-8303.
    [122]Ling, J., Shen, Z., Huang, Q. Novel Single Rare Earth Aryloxide Initiators for Ring-opening Polymerization of 2,2-Dimethyltrimethylene Carbonate. Macromolecules,2001,34(22),7613-7616.
    [123]Guillaume, S. M., Schappacher, M., Soum, A. Polymerization of s-Caprolactone Initiated by Nd(BH4)3(THF)3:Synthesis of Hydroxytelechelic Poly(s-caprolactone). Macromolecules 2003,36,54-60.
    [124]Palard, I., Soum, A., Guillaume, S. M. Rare Earth Metal Tris(borohydride) Complexes as Initiators for s-Caprolactone Polymerization:General Features and IR Investigations of the Process. Macromolecules 2005,38,6888-6894.
    [125]Palard, I., Soum, A., Guillaume, S. M. Unprecedented Polymerization of s-Caprolactone Initiated by a Single-Site Lanthanide Borohydride Complex, [Sm(η-C5Me5)2(BH4)(thf)]:Mechanistic Insights. Chem. Eur. J.2004,10, 4054-4062.
    [126]Palard, I., Schappacher, M., Belloncle, B., Soum, A., Guillaume, S. M. Unprecedented Polymerization of Trimethylene Carbonate Initiated by A Samarium Borohydride Complexs:Mechanistic Insights and Copolymerization with s-Caprolactone. Chem. Eur. J.2007,13,1511-1521.
    [127]Schappacher, M., Soum, A., Guillaume, S. M. Synthesis of Polyester-Polypeptide Diblock and Triblock Copolymers Using Amino Poly(s-caprolactone) Macroinitiators. Biomacromolecules 2006,7,1373-1379.
    [128]Bonnet, R, Cowley, A. R., Mountford, P. Lanthanide Borohydride Complexes Supported by Diaminobis(phenoxide) Ligands for the Polymerization of ε-caprolactone and L-and rac-Lactide. Inorg. Chem.2005,44,9046-9055.
    [129]Palard, I., Schappacher, M., Belloncle, B., Soum, A., Guillaume, S. M. Mini Review Ring-opening Polymerization of s-Caprolactone Initiated by Rare Earth Alkoxides and Borohydrides:A Compatrative Study. Polym. Int.,2006,55, 1132-1137.
    [130]Wu, G., Sun, W., Shen, Z. Facile One-pot Synthesis of End-capped Poly(ε-caprolactone)s by in situ Initiators from Carbonyl Compounds and Lanthanide Borohydrides. React. & Func. Polymers 2008,68822-830.
    [131]Gopferich, A. Mechanism of Polymer Degradation and Erosion. Biomaterials 1996.17(2),103-114.
    [132]Gopferich, A., Langer, R. Modeling of Polymer Erosion. Macromolecules 1993. 26(16),4105-4112.
    [133]董奇伟。聚乳酸降解性能研究。塑料制造2011,3,66-69。
    [134]Reeve, M. S., McCarthy, S. P., Gross, R. A. Preparation and Characterization of (R)-Poly(β-hydroxybutyrate)-poly(ε-caprolactone) and (R)-Poly(β-hydroxybutyrate)-poly(lactide) Degradable Diblock Copolymers. Macromolecules 1993,26(5).888-894.
    [135]Liu, L., Li, S., Garreau, H., Vert, M. Selective Enzymatic Degradation of Poly(L-lactide) and Poly(ε-caprolactone) Blend Films. Biomacromolecules 2000,1,350-359.
    [136]李勇进,王公善。生物降解性高分子材料。材料导报,1998,12(6),48-52。
    [137]Gan, Z., Liang, Q., Zhang, J., Jing, X. Enzymatic Degradation of Poly(ε-caprolactone) Film in Phosphate Buffer Solution Containing Lipases. Polymer Degradation and Stablity 1997,56(2),209-213.
    [138]Zhang. Z., Kuijer, R., Bulstra, S. K., Grijpma, D. W., Feijen, J. The in vivo and in vitro Degradation Behavior of Poly(trimethylene carbonate). Biomaterials, 2006.27(9),1741-1748.
    [139]刘志民,吴智华,牛艳华。生物降解性聚碳酸酯的研究进展。塑料工业,2004,3,22-25。
    [140]贺枫,程峰,冯俊,李龙,卓仁禧。嵌段共聚物PDTC-PEG-PDTC的降解和释药性能。武汉大学学报(自然科学版),2004,50(6),703-706。
    [141]Greiner, A., Wendorff, J. H. Electrospinning:A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed.2007,46,5670-5703.
    [142]陈正坚。P(LLA-co-CL)电纺膜用于药物控制释放的研究。[硕士学位论文]浙江杭州,浙江大学,2008年,1-48。
    [143]Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compo. Sci. Tech.2003,63,2223-2253.
    [144]Zhang, Y. Z., Ouyang, H. W., Lim, C. T., Ramakrishna, S., Huang, Z. M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. Part B 2005,72,156-165.
    [145]Doshi, J., Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrostatics 1995,35,151-160.
    [146]Demir, M. M., Yilgor, I., Yilgor, E., Erman, B. Electrospinning of Polyurethane Fibers. Polymer 2002,43,3303-3309.
    [147]Li, W. J., Laurencin, C., Caterson, E. J. Tuan, R. S., Ko, F. K. Electrospun Nanofibrous Structure:A Novel Scaffold for Tissue Engineering. Journal of Biomedical Materials Research,2002,60(4),613-621.
    [148]Kidoaki, S., Kwon, K., Matsuda, T. Mesoscopic Spatial Designs of Nano-and Microfiber Meshes for Tissue-engineering Matrix and Scaffold Based on Newly Devised Multtilayering and Mixing Electrospinning Techniques. Biomaterials, 2005,26(1),37-46.
    [149]Kenawy, E. R., Bowlin, G., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H., Wnek, G. E. Release of Tetracycline Hydrochloride from Electrospun Poly(ethylene-co-vinylacetate), Poly(lactic acid), and Blend. Journal of Controlled Release,2002,81,57-64.
    [150]Luu, Y. K., Kim, K., Hsiao, B. S., Chu, B., Hadjiargyrou, M. Development of A Nano structured DNA Delivery Scaffold via Electro spinning of PLGA and PLA-PEG Block Copolymers. Journal of Controlled Release,2003.89, 341-353.
    [151]沈之荃。稀土催化剂在高分子合成中的开拓应用。高分子通报,2005,4,1-12。
    [152]申有青。稀土催化环酯开环聚合研究。[博士学位论文]浙江杭州,浙江大学,1995年,1-235。
    [153]Sarel, S., Pohoryles, L. A. The Stereochemistry and Mechanism of Reversible Polymerization of 2,2-Disubstituted 1,3-Propanediol Carbonates. J Am Chem Soc 1958,80(17),4596-4599.
    [154]Taylor, M. D., Carter, C. P. Preparation of Anhydrous Lanthanide Halides. especially Iodides. J. Inorg. Nucl. Chem.1962,24,387-391.
    [155]Bradley, D. C., Ghotra, J. S., Alan Hart, F. Low co-ordination Numbers in Lanthanides and Actinide Compounds. Part I. The Preparation and Characterization of Tris{bis(trimethylsilyl)-amido}lanthanides. J Chem Soc Dalton Trans 1973,10,1021-1023.
    [156]Doty, P., Bradbury, J. H., Holtzer, A. M. Polypeptides. IV. The Molecular Weight, Configuration and Association of Poly-y-benzyl-L-glutamate in Various Solvents. J Am Chem Soc 1956,78(5),947-954.
    [157]Mitchell, J. C., Woodward, A. E., Doty, P. Polypeptides. XVI. The Polydispersity and Configuration of Low Molecular Weight Poly-γ-benzyl-L-glutamates. J Am Chem Soc 1956,79(15),3955-3960.
    [158]Gitsas, A., Floudas, G., Mondeshki, M., Spiess, H. W., Aliferis, T., Iatrou, H., Hadjichristidis, N. Control of Peptide Secondary Structure and Dynamics in Poly(y-benzyl-L-glutamate)-b-polyalanine Peptides. Macromolecules 2008,41, 8072-8080.
    [159]Lecommandoux, S.; Achard, M. F.; Langenwalter, J. F.; Klok, H. A. Self-Assemble of Rod-Coil Diblock Oligomers Based on α-Helical Peptides. Macromolecules 2001,34,9100-9111.
    [160]Caillol. S.; Lecommandoux. S.; Mingotaud. A. F.:Schappacher. M.; Soum. A.: Bryson. N.:Meyrueix. R. Synthesis and Self-Assembly Properties of Peptide-Polylactide Block Copolymers. Macromolecules 2003,36,1118-1124.
    [161]Bradley, D. C., Chudzynska, H., Frigo, D. M., Hammond, M. E., Hursthouse, M. B., Mazid, M. A. Pentanuclear Oxoalkoxide Clusters of Scandium, Yittrium, Indium and Ytterbium, X-ray Crystal Strucutures of [M5(μ5-O)(μ3-OPr')4(μ2-OPri)4(OPri)5] (M=In,Yb). Polyhedron 1990,9(5). 719-726.
    [162]Hogan, T., Sen, A. High-Yield, Radical-Initiated Oxidative Functionalization of Ethane by Perfluorocarboxylic Acid Anhydrides. Role of Metal Ions in Ctalytic Alkane Oxidations in the Presence of Perfluorocarboxylic Acid Anhydrides. J Am Chem Soc 1997,119(11),2642-2646.
    [163]Kricheldorf, H. R., Fehrle, M. N-(2-Nitrophenylsulfenyl)-α-Aminosaure-N-carbonsaure-anhydride. Chem Ber 1974,107(11),3533-3547.
    [164]Matsuura, K., Teiji, S. I. Studies on the Reaction mode of N-carboxy-α-amino Acid Anhydride with Organometallic Compounds. Makromol Chem 1967. 103(1),140-150.
    [165]Makino, T.. Inoue, S., Tsuruta, T. Polymerization Mechanism of N-Carboxy-a-amino Acid Anhydride by Organometallic Compounds. Ⅱ. Reaction with Organozinc Compounds. Makromol Chem 1970,131(1), 147-157.
    [166]Ling, J., Liu, J., Shen, Z., Hogen-Esch, T. E. Ring-opening Polymerization of ε-Caprolactone Catalyzed by Yttrium Trisphenolate in the Presence of 1,2-propanediol. Do Both Primary and Secondary Hydroxyl Groups Initiated Polymerization? J. Polym. Sci. Part A:Polym. Chem.2011,49(9),2081-2089.
    [167]Ling, J., Zhu, W., Shen, Z. Controlled Ring-opening Copolymerization of ε-Caprolactone with Trimethylene Carbonate by Scandium Tris(2,6-di-tert-butyl-4-methylpheolate). Macromolecules 2004,37(3),758-763.
    [168]Ling, J., Dai, Y., Zhu. Y., Sun, W., Shen, Z. Ring-opening Polymerization of 1-methyltrimethylene Carbonate by Rare Earth Initiators. J Polym Sci Part A: Polym Chem 2010,48(17),3807-3815.
    [169]Idelson, M., Blout, E. R. Polypeptides. XV. Infrared Spectroscopy and the Kinetics of the Synthesis of Polypeptides:Primary Amine Initiated Reactions. J Am Chem Soc 1957,79(15),3948-3955.
    [170]Hashimoto, Y., Imanishi, Y. Enantiomer Selection in the Reaction of N-methyl-a-amino Acid N-Carboxyanhydride and 3-Methyl-5-substituted Hydantoin:A Model Reaction for the Stereoselective Polymerization of α-amino Acid N-Carboxyanhydrids. Biopolymers 1980,19(3),655-668.
    [171]Zhu, G., Li, Y., Yin, J., Ling, J., Shen, Z. Thermal and Crystalline Properties of Random Copolymer of CL and DTC Prepared by La(OAr)3. J Therm Anal Cal 2004,77,833-837.
    [172]Fukuzaki, H., Yoshida, M., Asano, M., Kumakura, M., Mashimo, T.. Yuasa, H.. Imai, K., Hidetoshi, Y. Polymer 1990,31(10),2006-2014.
    [173]Mochizuki, M., Hirano, M., Kanmuri, Y., Kudo, K., Tokiwa, Y. J Appl Polym Sci 1995,55(2),289-296.
    [174]Gan, Z., Yu, D., Zhong, Z., Liang, Q., Jing, X. Enzymatic Degradation of Poly(s-caprolactone)/poly(DL-lactide) Blends in Phosphate Buffer Solution. Polymer 1999,40(10),2859-2862.
    [175]Cui, W., Li, X., Zhu, X., Yu, G., Zhou, S., Weng, J. Investigation of Drug Release and Matrix Degradation of Electrospun Poly(DL-lactide) Fibers with Paracetanol Inoculation. Biomacromolecules 2006,7(5),1623-1629.
    [176]Li, S., Liu, L., Garreau, H., Vert, M. Lipase-Catalyzed Biodegradation of Poly(s-caprolactoe) Blended with Various Polylactide-Based Polymers. Biomacromolecules 2003,4(2),372-377.
    [177]Hu, Y. Q., Zhu, K. J. Preparation, Characterization and Properties of Poly(2,2-dimethyl trimethylene carbonate -co- ε-caprolactone)-block-poly(ethylene glycol). J Biomater Sci Polymer Ed 2003,4(12),1363-1376.
    [178]He, F., Li, S., Vert, M., Zhuo, R. Enzyme-catalyzed Polymerization and Degradation of Copolymers Prepared from ε-Caprolactone and Poly(ethylene glycol). Polymer 2003,44(18),5145-5153.
    [179]Watanabe, J.. Kotera. H.. Akashi. M. Reflexive Interfaces of Poly(trimethylene Carbonate)-Based Polymers:Enzymatic Degradation and Selective Adsorption. Macromolecules 2007,40(24),8731-8736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700