用户名: 密码: 验证码:
Ag及Ag/ZnO纳米材料的绿色合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Green Preparation and Applications of Ag and Ag/ZnO Nanomaterials
  • 作者:卢伟伟
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2009
  • 导师:王键吉
  • 学科代码:070304
  • 学位授予单位:兰州大学
  • 论文提交日期:2009-05-01
摘要
由于具有区别于块状材料的独特性质,纳米材料在催化、电子器件、信息存储、光学器件、生物传感、微区成像以及医药等方面具有巨大的应用潜力。近年来在通过控制纳米粒子的尺寸和形貌来调节其性质并应用于某些领域方面取得了巨大的进步。但随着对环境保护的日益关注,寻求更加绿色、高效的纳米材料合成方法仍然是一项具有挑战性的工作。
     本文采用相对绿色的方法,分别合成了三角形Ag纳米片、Ag/ZnO纳米棒和Ag/ZnO中空微球。在制备过程中,应用了新型绿色溶剂离子液体和生物相容材料如抗坏血酸、酪氨酸和海藻酸钠等。并且所制备的材料在抗菌、表面增强拉曼散射(surface enhanced Raman scattering,SERS)检测和光催化降解环境污染物等方面表现出了优异的性能。本文各章的主要内容如下:
     第1章,简要综述了纳米材料绿色合成的研究进展,主要包括绿色溶剂、生物合成和绿色制备工艺三个方面。
     第2章,利用[C_6mim][PF_6]-H_2O体系制备了三角形Ag纳米片,并利用XRD、TEM和SAED等手段对其结构进行了表征,最后对三角形Ag纳米片的抗菌性能和作为SERS活性基体检测4-氨基硫酚进行了研究。结果表明,降低Ag~+的还原速度而使得合成过程受动力学控制是成功合成三角形Ag纳米片的决定因素;结构表征证实,Ag纳米片的上下两个底面为{111}面,晶体结构中面缺陷的存在导致了SAED中1/3{422}衍射斑点的存在,而其表面的明暗条纹则是由纳米片的弯曲变形引起的;由于大量高活性{111}面的存在,所制备的Ag纳米片表现处了良好的抗菌性能,其最小抑菌浓度(minimuminhibition concentration,MIC)值对格氏阴性的Escherichia coli和格氏阳性的Staphylococcus aureus分别为15和20μg/mL;以Ag纳米片作为SERS活性基体,可检测到溶液中浓度仅为10~(-7)M的4-氨基硫酚,电磁场增强和电子转移都对SERS信号的增强起到重要的作用。
     第3章,采用水热合成的方法制备了Ag/ZnO复合纳米棒,利用XRD、SEM、FEM和XPS等对其结构进行了表征,并对其抗菌活性和光催化降解橙黄G的性能进行了研究。结果表明,酪氨酸不仅是Ag~+离子的还原剂而且是Ag/ZnO纳米棒的结构导向剂,制备过程中酪氨酸的浓度和加入氨水的体积对样品的形貌影响较大。结构表征显示,Ag/ZnO为有侧面的纳米棒并且Ag纳米粒子镶嵌在ZnO的表面。在Ag/ZnO纳米棒光催化降解橙黄G的过程中,由于Ag纳米粒子作为电子池有效地阻止了光致电子-空穴的复合,从而大大提高了Ag/ZnO纳米棒的光催化性能。而在抗菌过程中,由于金属Ag和半导体ZnO之间的强相互作用,使得Ag纳米粒子带部分正电荷,此外由于ZnO纳米棒起到Ag纳米粒子载体的作用,而使Ag/ZnO复合材料表现出协同的高效抗菌性能。
     第4章,采用水热合成的方法制备了3D的Ag/ZnO中空微球,对其结构进行了表征,并研究了海藻酸钠和氨水的加入量对3D中空微球形成的影响,最后对其光催化降解橙黄G的性能进行了研究。结构表征显示,3D的Ag/ZnO中空微球是由Ag/ZnO纳米棒沿着其生长方向垂直于微球表面而定向排列所组成的,Ag纳米粒子除了起到分离电子-空穴的作用外,还起到调节ZnO表面羟基含量的作用。因此,在合适的Ag含量时,Ag/ZnO中空微球表现出良好的光催化降解性能。
     第5章,总结了本文主要研究成果和存在的不足,并就下一阶段将要开展的研究工作进行了展望。
Due to a range of fascinating properties,nanocrystals have been applied in catalysis,electronics,information storage,photonics,sensing,imaging,medicine and among others.In recent years,much success have been made to control the poperties of nanomaterials with aprropriate size and shape for efficient utilization in some fields.However,with the increasing concern to the enviromental,it still remains a great challenge to develop the facile,clean and high-yield synthesis methods for nanomaterials.
     In this paper,some greener methods have been developed to synthesize the nanocystals of triangular Ag nanoplates and Ag/ZnO nanocomposites.In the preparation process,the green solvent of ionic liquids and the biocompatible materials such as ascorbic acid,tyrosine and sodium alginate have been used. Fouthermore,their enviromental applications in anti-bacteria,SERS detection and degradation of dye pollutants are also studied.The main contents of each chapter are as follows.
     Chapter 1.The progress in the green preparation of nanomaterials,such as the use of green solvent,the biopreparion and the clean process,are reviewed.
     Chapter 2.The triangular Ag nanoplates were prepared from a [C_6mim][PF_6]-H_2O two phase systerm.Then the structures of the prepared Ag nanoplates were characterized by XRD,TEM,and SAED.Finally,their antibacterial activities for both Escherichia coli and Staphylococcus aureus were evaluated and their applications as active substrate for SERS detection of 4-ATP were also examined.The results show that,the slow reduction of Ag~+made the process kinetically controlled for formation of triangular Ag nanoplates.The observations from TEM and SAED suggested that the upper and lower bases were bound by{111}planes and the l/3{422}spots were originated from the planar defects.However,the dark bands on the surface in TEM observation were from the bending countour.Due to the increase of the {111}active planes,the Ag nanoplates showed a better antibacterial effect than Lee-meisal Ag,and the MIC values for Escherichia coli and Staphylococcus aureus were found to be 15 and 20μg/mL,respectively.As the SERS active substrates,the Ag nanoplates can detect 4-ATP at the concentration of 10~(-7)M,and the SERS signals envolved the mechanism of the electromagnetic enhancement and the chemical effects of charge transfer.
     Chapter 3.The ID Ag/ZnO nanorod were prepared though a facile one-pot hydrothermal method.The prepared samples were structurally characterized by XRD,SEM,TEM,and XPS.Then,their photocatalytic performance for degradation of Orange G and their antibacterial activities were evaluated, respectively.It was shown that the added tyrosine served both as a reducing agent of Ag+ion and as a shape conductor for the formation of ZnO faceted nanorods, and that the concentration of tyrosine and the volume of the added ammonia solution significantly influence the final morphology of the products.The structure characterizations indicated that the Ag nanoparticles were embedded in the ZnO nanorods.In the photocatalytic process under UV irradiation,Ag nanoparticles on the ZnO surface may serve as electron sinks,promoting the separation of photogenerated electron-hole pairs,and thus increased their photocatalytic activity. While in antibacterial tests,the nanocomposites showed enhanced and synergistic antibacterial activities for both gram-negative and gram-positive bacteria,due to the strong interaction between metallic Ag and semiconductor ZnO.
     Chapter 4.Firstly,the Ag modified three-dimensional(3D)ZnO hollow microspheres were prepared through a facile one-step hydrothermal method.Then the as-prepared samples were structurally characterized by XRD,FESEM, HRTEM and XPS.The influence of deposited Ag on the electronic structure and surface property of ZnO had been emphasized.Finally,the photocatalytic performance of the prepared Ag/ZnO samples with different Ag contents for the degradation of Orange G was systematically explored.The structural characterizations showed that the wall of the hollow microsphere is composed of oriented nanorods,which were aligned with their growth axes perpendicular to the surface of the microsphere.In addition to the effects of enhanced separation of the photogenerated electron-hole pairs,Ag deposits with appropriate contents also increased the surface hydroxyl contents of ZnO microspheres.This facilitated the trapping of the photoinduced electrons and holes to form more active hydroxyl radicals,and thus enhanced the photocatalytic efficiency of ZnO.
引文
[1]J A Dahl,B L S Maddux,et al.Toward greener nanosynthesis,Chemical Reviews 2007 107:2228-2269.
    [2]M Avalos,R Babiano,et al.Greener media in chemical synthesis and processing,Angewandte Chemie-International Edition 2006 45:3904-3908.
    [3]T Welton,Room-temperature ionic liquids solvents for synthesis and catalysis,Chemical reviews 1999 99:2071-2083.
    [4]Y Zhou,Recent advances in ionic liquids for synthesis of inorganic nanomaterials,Current Nanoscience 2005 1:35-42.
    [5]J D Holmes,D M Lyons,et al.Supercritical fluid synthesis of metal and semiconductor nanomaterials,Chemistry-a European Journal 2003 9:2144-2150.
    [6]P S Shah,S Husain,et al.Nanocrystal arrested precipitation in supercritical carbon dioxide,Journal of Physical Chemistry B 2001 105:9433-9440.
    [7]J Chen,S K Spear,et al.Polyethylene glycol and solutions of polyethylene glycol as green reaction media,Green Chemistry 2005 7:64-82.
    [8]D S Jacob,A Joseph,et al.Rapid synthesis in ionic liquids of room-temperature-conducting solid microsilica spheres,Angewandte Chemie-International Edition 2005 44:6560-6563.
    [9]E R Parnham,E A Drylie,et al.Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents,Angewandte Chemie-International Edition 2006 45:4962-4966.
    [10]E R Parnham and R E Morris,1-alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves,Chemistry of Materials 2006 18:4882-4887.
    [11]E R Parnham and R E Morris,Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure,Journal of Materials Chemistry 2006 16:3682-3684.
    [12]E R Parnham and R E Morris,Ionothermal synthesis of zeolites,metal-organic frameworks,and inorganic-organic hybrids,Accounts of Chemical Research 2007 40:1005-1013.
    [13]E R Parnham,A M Z Slawin,et al.Ionothermal synthesis of beta-NH_4AlF_4 and the determination by single crystal X-ray diffraction of its room temperature and low temperature phases,Journal of Solid State Chemistry 2007 180:49-53.
    [14]E R Parnham,P S Wheatley,et al.The ionothermal synthesis of SIZ-6-a layered aluminophosphate,Chemical Communications 2006:380-382.
    [15]E R Parnham and R E Morris,The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks,Journal of the American Chemical Society 2006 128:2204-2205.
    [16]R E Morris,A Burton,et al.SSZ-51-A New Aluminophosphate Zeotype:Synthesis,Crystal Structure,NMR,and Dehydration Properties,Chemistry of Materials 2004 16:2844-2851.
    [17]S I Zones,R J Darton,et al.Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis,Journal of Physical Chemistry B 2005 109:652-661.
    [18]R E Morris,Modular materials from zeolite-like building blocks,Journal of Materials Chemistry 2005 15:931-938.
    [19]Z J Lin,Y Li,et al.Hydrogen-bond-directing effect in the ionothermal synthesis of metal coordination polymers,Dalton Transactions 2008:3989-3994.
    [20]Z J Lin,A M Z Slawin,et al.Chiral induction in the ionothermal synthesis of a 3-D coordination polymer,Journal of the American Chemical Society 2007 129:4880.
    [21]Z J Lin,D S Wragg,et al.Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions,Chemical Communications 2006:2021-2023.
    [22]Z J Lin,D S Wragg,et al.Anion control in the ionothermal synthesis of coordination polymers,Journal of the American Chemical Society 2007 129:10334.
    [23]H J Ma,Z J Tian,et al.Effect of water on the ionothermal synthesis of molecular sieves,Journal of the American Chemical Society 2008 130:8120.
    [24]H Park,Y S Choi,et al.1D and 3D ionic liquid-aluminum hydroxide hybrids prepared via an ionothermal process,Advanced Functional Materials 200717:2411-2418.
    [25]A Vecchi,B Melai,et al.Microwave-enhanced ionothermal CuAAC for the synthesis of glycoclusters on a calix[4]arene platform,Journal of Organic Chemistry 2008 73:6437-6440.
    [26]L Wang,Y P Xu,et al.Structure-directing role of amines in the ionothermal synthesis,Journal of the American Chemical Society 2006 128:7432-7433.
    [27]Y P Xu,Z J Tian,et al.Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves,Angewandte Chemie-International Edition 2006 45:3965-3970.
    [28]X Y Zhang,H Q Chen,et al.Preparation of fluorinated aluminophosphate molecular sieve with hexagonal nanoflake morphology by ionothermal method,Chemistry Letters 2007 36:1498-1499.
    [29]E R Cooper,C D Andrews,et al.Molecular Sieves:From Basic Research to Industrial Applications,PtsA and B,2005 247-254.
    [30]R E Morris,Ionic liquids and microwaves-Making zeolites for emerging applications,Angewandte Chemie-International Edition 2008 47:442-444.
    [31]L A Villaescusa,P Lightfoot,et al.Synthesis and structure of fluoride-containing GeO_2analogues of zeolite double four-ring building units,Chemical Communications 2002 2002:2220-2221.
    [32]C P Tsao,C Y Sheu,et al.Ionothermal synthesis of metal oxalatophosphonates with a three-dimensional framework structure:Na_2M_3(C_2O_4)_3(CH3PO_3H)_2(M=Fe-Ⅱ and Mn-Ⅱ),Inorganic Chemistry 2006 45:6361-6364.
    [33]R Cai,M Sun,et al.Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as Corrosion-Resistant Coatings,Angewandte Chemie International Edition 2008 47:525-528.
    [34]E A Drylie,D S Wragg,et al.Ionothermal Synthesis of Unusual Choline-Templated Cobalt Aluminophosphates,Angewandte Chemie International Edition 2007 46:7839-7843.
    [35]H Zhu,J F Huang,et al.Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors,Chem.Mater 2006 18:4473-4477.
    [36]N Recham,L Dupont,et al.Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications,Chemistry of Materials 2009 21:1096-1107.
    [37]R Cai,M Sun,et al,Ionothermal Synthesis of Zirconium Phosphates and Their Catalytic Behavior in the Selective Oxidation of Cyclohexane,Angewandte Chemie International Edition 2009 48:2206-2209.
    [38]E R Cooper,C D Andrews,et al.Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues,Nature 2004 430:1012-1016.
    [39]Y P Xu,Z J Tian,et al.Ionothermal synthesis of silicoaluminophosphate molecular sieve in N-alkyl imidazolium bromide,Chinese Journal of Catalysis 2005 26:446-448.
    [40]M Antonietti,D B Kuang,et al.Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures,Angewandte Chemie-International Edition 2004 43:4988-4992.
    [41]Y Zhou and M Antonietti,A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure,Chemical Communications 2003:2564-2565.
    [42]Y Zhou and M Antonietti,Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique,Advanced Materials 2003 15:1452-1455.
    [43]Y Zhou and M Antonietti,Synthesis of very small TiO_2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates,Journal of the American Chemical Society 2003 125:14960-14961.
    [44]Y Zhou and M Antonietti,A series of highly ordered,super-microporus,lamellar silicas prepared by nanocasting with ionic liquids,Chemistry of Materials 2004 16:544-550.
    [45]Y Zhou,J H Schattka,et al.Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique,Nano Letters 2004 4:477-481.
    [46]S D Miao,Z J Miao,et al.Synthesis of mesoporous TiO2 films in ionic liquid dissolving cellulose,Microporous and Mesoporous Materials 2006 95:26-30.
    [47]B Smarsly,D Kuang,et al.Making nanometer thick silica glass scaffolds:an experimental approach to learn about size effects in glasses,Colloid and Polymer Science 2004 282:892-900.
    [48]B G Trewyn,C M Whitman,et al.Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents,Nano Letters 2004 4:2139-2143.
    [49]C J Adams,A E Bradley,et al.The synthesis of mesoporous materials using novel ionic liquid templates in water,Australian journal of chemistry 2001 54:679-681.
    [50]K Zhu,F Pozgan,et al.Ionic liquid templated high surface area mesoporous silica and Ru-SiO2,Microporous and Mesoporous Materials 2006 91:40-46.
    [51]T W Wang,H Kaper,et al.Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica,Langmuir 2007 23:1489-1495.
    [52]K S Yoo,T G Lee,et al.Preparation and characterization of mesoporous TiO2 particles by modified sol-gel method using ionic liquids,Microporous and Mesoporous Materials 200584:211-217.
    [53]N Y Yu,L M Gong,et al.Ionic liquid of[Bmim]~+Cl~-for the preparation of hierarchical nanostructured rutile titania,Journal of Solid State Chemistry 2007 180:799-803.
    [54]J M Du,Z M Liu,et al.Synthesis of mesoporous SrCO_3 spheres and hollow CaCO_3 spheres in room-temperature ionic liquid,Microporous and Mesoporous Materials 2005 83: 145-149.
    [55]N Zilkova,A Zukal,et al.Synthesis of organized mesoporous alumina templated with ionic liquids,Microporous and Mesoporous Materials 2006 95:176-179.
    [56]H Park,S H Yang et al.Facile route to synthesize large-mesoporous gamma-alumina by room temperature ionic liquids,Chemistry of Materials 2007 19:535-542.
    [57]B Lee,H M Luo,et al.Synthesis and characterization of organic-inorganic hybrid mesoporous silica materials with new templates,Chemical Communications 2004:240-241.
    [58]D Kuang,T Brezesinski,et al.Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates,Journal of the American Chemical Society 2004 126:10534-10535.
    [59]T Brezesinski,C Erpen,et al.Mesostructured crystalline ceria with a bimodal pore system using block copolymers and ionic liquids as rational templates,Chemistry of Materials 200517:1683-1690.
    [60]T Jesionowski,M Pokora,et al Preparation and characterization of functionalized precipitated silica SYLOID(R) 244 using ionic liquids as modifiers,Surface and Interface Analysis 2004 36:1491-1496.
    [61]C H Liu,X Y Yu,et al.Preparation of mesoporous Al-MCM-41 with stable tetrahedral aluminum using ionic liquids as a single template,Materials Letters 2007 61:5261-5264.
    [62]L A Aslanov,M A Zakharov,et al.Preparation of mesoporous aluminum hydroxide and oxide in ionic liquids,Russian Journal of Inorganic Chemistry 2007 52:1511-1513.
    [63]S Dai,Y H Ju,et al.Preparation of silica aerogel using ionic liquids as solvents,Chemical Communications 2000:243-244.
    [64]A Jia,J Li,et al.Synthesis and characterization of nanosized micro-mesoporous Zr-SiO_2via Ionic liquid templating,Materials Science & Engineering C 2007:.
    [65]L Wang,X Chea et al.Lyotropic liquid crystalline phases formed in an ionic liquid,Chemical Communications 2004:2840-2841.
    [66]M A Firestone,J A Dzielawa,et al.Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid,Langmuir 2002 18:7258-7260.
    [67]J Bowers,C P Butts,et al.Aggregation Behavior of Aqueous Solutions of Ionic Liquids,Langmuir 2004 20:2191-2198.
    [68]J K Yuan,W N Li,et al.Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures,Journal of the American Chemical Society 2005 127:14184-14185.
    [69]X Y Yu,C H Liu,et al.Preparation of mesoporous molecular sieves Al-MSU-S using ionic liquids as template,Chinese Journal of Chemistry 2006 24:1282-1284.
    [70]L X Yang,Y J Zhu,et al.Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid,Journal of Physical Chemistry B 2006 110:6609-6614.
    [71]Y J Zhu,W W Wang,et al.Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids,Angewandte Chemie-International Edition 200443:1410-1414.
    [72]X L Hu and Y J Zhu,Morphology control of PbWO_4 nano-and microcrystals via a simple,seedless,and high-yield wet chemical route,Langmuir 2004 20:1521-1523.
    [73]Y Jiang and Y J Zhu,Microwave-assisted synthesis of nanocrystalline metal sulfides using an ionic liquid,Chemistry Letters 2004 33:1390-1391.
    [74]W W Wang and Y J Zhu,Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt,Inorganic Chemistry Communications 2004 7:1003-1005.
    [75]Y Jiang and Y J Zhu,Microwave-assisted synthesis of sulfide M_2S_3(M=Bi,Sb) nanorods using an ionic liquid,Journal of Physical Chemistry B 2005 109:4361-4364.
    [76]Y Jiang,Y J Zhu,et al.Rapid synthesis of Bi_2S_3 nanocrystals with different morphologies by microwave heating,Materials Letters 2006 60:2294-2298.
    [77]W W Wang and Y J Zhu,Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods,Materials Research Bulletin 2005 40:1929-1935.
    [78]Y Jiang,Y J Zhu,et al.Synthesis of Bi_2Se_3 nanosheets by microwave heating using an ionic liquid,Crystal Growth & Design 2006 6:2174-2176.
    [79]W W Wang and Y J Zhu,Synthesis of PbCrO_4 and Pb_2CrO_5 rods via a microwave-assisted ionic liquid method,Crystal Growth & Design 2005 5:505-507.
    [80]W W Wang,Y J Zhu,et al.Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers,Materials Letters 2006 60:609-612.
    [81]Y Jiang and Y J Zhu,Bi_2Te_3 nanostructures prepared by microwave heating,Journal of Crystal Growth 2007 306:351-355.
    [82]W W Wang,Y J Zhu,et al.Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles,Journal of Nanoparticle Research 2007 9:419-426.
    [83]D S Jacob,L Bitton,et al.Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides,Chemistry of Materials 2006 18:3162-3168.
    [84]A Thirumurugan,Use of ionic liquids in synthesis of nanocrystals,nanorods and nanowires of elemental chalcogens,Bulletin of Materials Science 2007 30:179-182.
    [85]I Mukhopadhyay and W Freyland,Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature,Langmuir 2003 19:1951-1953.
    [86]I Mukhopadhyay,C L Aravinda,et al.Electrodeposition of Ti from TiCl_4 in the ionic liquid 1-methyl-3-butyl-imidazolium bis(trifluoro methyl sulfone) imide at room temperature:study on phase formation by in situ electrochemical scanning tunneling microscopy,Electrochimica Acta 2005 50:1275-1281.
    [87]G T Wei,Z S Yang,et al.Aqueous-organic phase transfer of gold nanoparticles and gold nanorods using an ionic liquid,Journal of the American Chemical Society 2004 126:5036-5037.
    [88] Z H Li, J L Zhang. et al. Synthesis of LaCO_3OH nanowires via a solvothermal process in the mixture of water and room-temperature ionic liquid, Materials Letters 2005 59:963-965.
    [89] J Jiang, S H Yu, et al. Morphogenesis and crystallization of Bi_2S_3 nanostructures by an ionic liquid-assisted templating route: Synthesis, formation mechanism, and properties, Chemistry of Materials 2005 17: 6094-6100.
    [90] Y H He, D Z Li, et al. New synthesis of single-crystalline InVO_4 nanorods using an ionic liquid, Journal of the American Ceramic Society 2007 90: 3698-3703.
    [91] Z G Li, H L Zhang, et al. Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions, Colloids and Surfaces a-Physicochemical and Engineering Aspects 2006 286: 117-120.
    [92] S Y Gao, H J Zhang et al. Palladium nanowires stabilized by thiol-functionalized ionic liquid: seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction, Nanotechnology 2005 16: 1234-1237.
    [93] J Dupont, G S Fonseca, et al. Transition-metal nanoparticles in imidazolium ionic liquids:Recycable catalysts for biphasic hydrogenation reactions, Journal of the American Chemical Society2002 124: 4228-4229.
    [94] G S Fonseca, G Machado, et al. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids, Journal of Colloid and Interface Science 2006 301: 193-204.
    [95] G S Fonseca, J B Domingos, et al. On the kinetics of iridium nanoparticles formation in ionic liquids and olefin hydrogenation, Journal of Molecular Catalysis a-Chemical 2006 248: 10-16.
    [96] G S Fonseca, A P Umpierre, et al. The use of imidazolium ionic liquids for the formation and stabilization of Ir-0 and Rh-0 nanoparticles: Efficient catalysts for the hydrogenation of arenes, Chemistry-a European Journal 2003 9: 3263-3269.
    [97] G S Fonseca, E T Silveira, et al. Competitive hydrogenation of alkyl-substituted arenes by transition-metal nanoparticles: Correlation with the alkyl-steric effect, Advanced Synthesis & Catalysis 2005 347: 847-853.
    [98] G S Fonseca, J D Scholten, et al. Iridium nanoparticles prepared in ionic liquids: An efficient catalytic system for the hydrogenation of ketones, Synlett 2004: 1525-1528.
    [99] J Huang, T Jiang, et al. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid, Chemical Communications 2003: 1654-1655.
    [100] X D Mu, D G Evans, et al. A general method for preparation of PVP-stabilized noble metal nanoparticles in room temperature ionic liquids, Catalysis Letters 2004 97: 151-154.
    [101] C C Cassol, A P Umpierre, et al. The role of Pd nanoparticles in ionic liquid in the Heck reaction, Journal of the American Chemical Society 2005 127: 3298-3299.
    [102] A Corma, H Garcia, et al. Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling, Tetrahedron 2005 61: 9848-9854.
    [103]F Fernandez,B Cordero,et al.Palladium catalyzed Suzuki C-C couplings in an ionic liquid:nanoparticles responsible for the catalytic activity,Dalton Transactions 2007:5572-5581.
    [104]Z F Fei,D B Zhao,et al.Development of nitrile-functionalized ionic liquids for C-C coupling reactions:Implication of carbene and nanoparticle catalysts,Organometallics 2007 26:1588-1598.
    [105]A P Umpierre,G Machado,et al.Selective hydrogenation of 1,3-butadiene to 1-Butene by Pd(0)nanoparticles embedded in imidazolium ionic liquids,Advanced Synthesis &Catalysis 2005 347:1404-1412.
    [106]W Wojtkow,A M Trzeciak,et al.Pd colloid-catalyzed methoxycarbonylation of iodobenzene in ionic liquids,Journal of Molecular Catalysis a-Chemical 2004 224:81-86.
    [107]V Calo,A Nacci,et al.Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids,Journal of Organic Chemistry 2005 70:6040-6044.
    [108]J Le Bras,D K Mukherjee,et al.Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide:their use for hydrogenolysis-free hydrogenation of olefins,New Journal of Chemistry 2004 28:1550-1553.
    [109]V Calo,A Nacci,et al.Regio-and stereo-selective carbon-carbon bond formation in ionic liquids,Journal of Molecular Catalysis a-Chemical 2004 214:45-56.
    [110]V Calo,A Nacci,et al.Pd nanoparticle catalyzed Heck arylation of 1,1-disubstituted alkenes in ionic liquids.Study on factors affecting the regioselectivity of the coupling process,Organometallics 2003 22:4193-4197.
    [111]V Calo,A Nacci,et al.Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids,Organometallics 2004 23:5154-5158.
    [112]V Calo,A Nacci,et al.Pd nanoparticles catalyzed stereospecific synthesis of beta-aryl cinnamic esters in ionic liquids,Journal of Organic Chemistry 2003 68:2929-2933.
    [113]S A Forsyth,H Q N Gunaratne,et al.Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance beta-Lilial(R) 3-(4-t-butylphenyl)-2-methylpropanal,Journal of Molecular Catalysis a-Chemical 2005 231:61-66.
    [114]D B Zhao,Z F Fei,et al.Nitrile-functionalized pyridinium ionic liquids:Synthesis,characterization,and their application in carbon-Carbon coupling reactions,Journal of the American Chemical Society 2004 126:15876-15882.
    [115]C Chiappe,D Pieraccini,et al.Remarkable anion and cation effects on Stille reactions in functionalised ionic liquids,Advanced Synthesis & Catalysis 2006 348:68-74.
    [116]C X Mao,H Z Wang,et al.Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids-1.Platinum catalyzed selective hydrogenation of o-chloronitrobenzene,Journal of Catalysis 2007 250:25-32.
    [117]V Calo,A Nacci,et al.Palladium-nanoparticles catalyzed hydrodehalogenation of aryl chlorides in ionic liquids,Journal of Organometallic Chemistry 2007 692:4397-4401.
    [118] X Yang, Z F Fei, et al. Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: A versatile system for C-C cross-coupling reactions, Inorganic Chemistry 2008 47:3292-3297.
    [119] G N Ou, L Xu, et al. Enhanced stability of charged dendrimer-encapsulated Pd nanoparticles in ionic liquids, Chemical Communications 2008: 4210-4212.
    [120] J Durand, E Teuma, et al. Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C-C coupling, Catalysis Communications 2008 9:273-275.
    [121] P Dash, N A Dehm, et al. Bimetallic PdAu nanoparticles as hydrogenation catalysts in imidazolium ionic liquids, Journal of Molecular Catalysis a-Chemical 2008 286: 114-119.
    [122] C W Scheeren, G Machado, et al. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: Synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions, Inorganic Chemistry 2003 42: 4738-4742.
    [123] C W Scheeren, G Machado, et al. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids, Journal of Physical Chemistry B 2006 110: 13011-13020.
    [124] T J Geldbach, D B Zhao, et al. Biphasic hydrosilylation in ionic liquids: A process set for industrial implementation, Journal of the American Chemical Society 2006 128:9773-9780.
    [125] M Zou, X D Mu, et al. Selective hydrogenation of cinnamaldehyde by ionic copolymer-stabilized Pt nanoparticles in ionic liquids, Chinese Journal of Catalysis 2007 28:389-391.
    [126] X Z Xue, T H Lu, et al. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent, Electrochimica Acta 2005 50: 3470-3478.
    [127] E T Silveira, A P Umpierre, et al. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids, Chemistry-a European Journal 2004 10: 3734-3740.
    [128] L M Rossi, J Dupont, et al. Ruthenium dioxide nanoparticles in ionic liquids: Synthesis,characterization and catalytic properties in hydrogenation of olefins and arenes, Journal of the Brazilian Chemical Society 2004 15: 904-910.
    [129] L M Rossi, G Machado, et al. On the use of ruthenium dioxide in 1-n-butyl-3-methylimidazolium ionic liquids as catalyst precursor for hydrogenation reactions, Catalysis Letters 2004 92: 149-155.
    [130] N Yan, C Zhao, et al. One-step conversion of cellobiose to C-6-alcohols using a ruthenium nanocluster catalyst, Journal of the American Chemical Society 2006 128: 8714-8715.
    [131] C Zhao, H Z Wang, et al. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids: II. Rhodium-catalyzed hydrogenation of arenes, Journal of Catalysis 2007 250:33-40.
    [132] M H G Prechtl, M Scariot, et al. Nanoscale Ru(0) Particles: Arene Hydrogenation Catalysts in Imidazolium Ionic Liquids, Inorganic Chemistry 2008 47: 8995-9001.
    [133] J B Wang, F Y Ming, et al. Asymmetric hydrogenation of acetophenone and its derivatives catalyzed by ruthenium nanoparticles in ionic liquid media, Acta Physico-Chimica Sinica 2007 23: 1381-1386.
    [134] X D Mu, J Q Meng, et al. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: Long lifetime nanocluster catalysts for benzene hydrogenation, Journal of the American Chemical Society 2005 127: 9694-9695.
    [135] A J Bruss, M A Gelesky, et al. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins, Journal of Molecular Catalysis a-Chemical 2006 252:212-218.
    [136] B Leger, A Denicourt-Nowicki, et al. Rhodium Nanocatalysts Stabilized by Various Bipyridine Ligands in Nonaqueous Ionic Liquids: Influence of the Bipyridine Coordination Modes in Arene Catalytic Hydrogenation, Inorganic Chemistry 2008 47: 9090-9096.
    [137] B Leger, A Denicourt-Nowicki, et al. Synthesis of bipyridine-stabilized, rhodium nanoparticles in non-aqueous ionic liquids: A new efficient approach for arene hydrogenation with nanocatalysts, Advanced Synthesis & Catalysis 2008 350: 153-159.
    [138] X Yang, N Yan, et al. Biphasic hydrogenation over PVP stabilized Rh nanoparticles in hydroxyl functionalized ionic liquids, Inorganic Chemistry 2008 47: 7444-7446.
    [139] K S Kim, D Demberelnyamba, et al. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids, Langmuir 2004 20: 556-560.
    [140] K S Kim, S Choi, et al. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids, Journal of Materials Chemistry 2006 16: 1315-1317.
    [141] H Itoh, K Naka, et al. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation, Journal of the American Chemical Society 2004 126: 3026-3027.
    [142] P Bonhote, A P Dias, et al. Hydrophobic, highly conductive ambient-temperature molten salts, Inorganic Chemistry 1996 35: 1168-1178.
    [143] J L Anderson, J Ding, et al. Characterizing ionic liquids on the basis of multiple solvation interactions, Journal of the American Chemical Society 2002 124: 14247-14254.
    [144] Z H Li, Z M Liu, et al. Synthesis of single-crystal gold nanosheets of large size in ionic liquids, Journal of Physical Chemistry B 2005 109: 14445-14448.
    [145] H Kawasaki, T Yonezawa, et al. Fabrication of submillimeter-sized gold plates from thermal decomposition of HAuC14 in two-component ionic liquids, Chemistry Letters 200736: 1038-1039.
    [146] S Guo, F Shi, et al. Size-controllable synthesis of gold nanoparticles via carbonylation and reduction of hydrochloroauric acid with CO and H_2O in ionic liquids, Chemistry Letters 2005 34:830-831.
    [147] R Tatumi and H Fujihara, Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid, Chemical Communications 2005: 83-85.
    [148] L Y Wang, X Chen, et al. Controlled formation of gold nanoplates and nanobelts in lyotropic liquid crystal phases with imidazolium cations, Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007 293: 95-100.
    [149]D Batra,S Seifert,et al.Solvent-mediated plasmon tuning in a gold-nanoparticle-poly(ionic liquid) composite,Advanced Functional Materials 2007 17:1279-1287.
    [150]A I Bhatt,A Mechler,et al.Synthesis of Ag and Au nanostructures in an ionic liquid:thermodynamic and kinetic effects underlying nanoparticle,cluster and nanowire formation,Journal of Materials Chemistry 2007 17:2241-2250.
    [151]Y Jin,P J Wang,et al.Gold nanoparticles prepared by sonochemical method in thiol-functionalized ionic liquid,Colloids and Surfaces a-Physicochemical and Engineering Aspects 2007 302:366-370.
    [152]H S Schrekker,M A Gelesky,et al.Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles,Journal of Colloid and Interface Science 2007 316:189-195.
    [153]H J Ryu,L Sanchez,et al.Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods*,Angewandte Chemie International Edition 2008 47:7639-7643.
    [154]S M Chen,Y D Liu,et al.Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under gamma-irradiation,Nanotechnology 2005 16:2360-2364.
    [155]T Soejima and N Kimizuka,Ultrathin gold nanosheets formed by photoreduction at the ionic liquid/water interface,Chemistry Letters 2005 34:1234-1235.
    [156]J M Zhu,Y H Shen,et al.Photoinduced synthesis of anisotropic gold nanoparticles in room-temperature ionic liquid,Journal of Physical Chemistry C 2007 111:7629-7633.
    [157]Y Kimura,H Takata,et al.Preparation of gold nanoparticles by the laser ablation in room-temperature ionic liquids,Chemistry Letters 2007 36:1130-1131.
    [158]L Z Ren,L J Meng,et al.Fabrication of gold nano-and microstructures in ionic liquids-A remarkable anion effect,Journal of Colloid and Interface Science 2008 323:260-266.
    [159]L Z Ren,L J Meng,et al.Fabrication of octahedral gold nanostructures using an alcoholic ionic liquid,Chemistry Letters 2008 37:106-107.
    [160]K I Okazaki,T Kiyama,et al.Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique,Chemical Communications 2008:691-693.
    [161]T Torimoto,K Okazaki,et al.Sputter deposition onto ionic liquids:Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles,Applied Physics Letters 200689:.
    [162]Z G Li,A Friedrich,et al.Gold microcrystal synthesis via reduction of HAuCl_4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride,Journal of Materials Chemistry 2008 18:1008-1014.
    [163]Y Gao,A Voigt,et al.Synthesis of single-crystal gold nano-and microprisms using a solvent-reductant-template ionic liquid,European Journal of Inorganic Chemistry 2008:3769-3775.
    [164]E Dinda,S Si,et al.Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium, Chemistry-a European Journal 2008 14: 5528-5537.
    [165] Y Wang and H Yang, Synthesis of CoPt nanorods in ionic liquids, Journal of the American Chemical Society 2005 127: 5316-5317.
    [166] H J Chen and S J Dong, Self-assembly of ionic liquids-stabilized Pt nanoparticles into two-dimensional patterned nanostructures at the air-water interface, Langmuir 2007 23:12503-12507.
    [167] P Migowski, G Machado, et al. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids, Physical Chemistry Chemical Physics 2007 9:4814-4821.
    [168] P Migowski, S R Teixeira, et al. Structural and magnetic characterization of Ni nanoparticles synthesized in ionic liquids, Journal of Electron Spectroscopy and Related Phenomena 2007 156: 195-199.
    [169] G Clavel, J Larionova, et al. Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids, Chemistry-a European Journal 2006 12: 3798-3804.
    [170] T Gutel, J Garcia-Anton, et al. Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: effect of the temperature and stirring, Journal of Materials Chemistry 2007 17: 3290-3292.
    [171] E Redel, R Thomann, et al. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)(6) precursors,Chemical Communications 2008: 1789-1791.
    [172] E Redel, R Thomann, et al. First correlation of nanoparticle size-dependent formation with the ionic liquid anion molecular volume, Inorganic Chemistry 2008 47: 14-16.
    [173] DSJSGMSTMNGEJD Morgana Scariot, Cobalt Nanocubes in Ionic Liquids:Synthesis and Propertiesl3, Angewandte Chemie International Edition 2008 47:9075-9078.
    [174] X G Ye and C M Wai, Making nanomaterials in supercritical fluids: A review, Journal of Chemical Education 2003 80: 198-204.
    [175] AI Cooper, Recent developments in materials synthesis and processing using supercritical CO2, Advanced Materials 2001 13: 1111-1114.
    [176] T Hasell, K J Thurecht, et al. Novel one pot synthesis of silver nanoparticle-polymer composites by supercritical CO_2 polymerisation in the presence of a RAFT agent, Chemical Communications 2007 2007: 3933-3935.
    [177] M Anand, P W Bell, et al. Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds, The journal of physical chemistry. B 2006 110: 14693.
    [178] S R Puniredd, S Weiyi, et al. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide, Journal of colloid and interface science 2007:.2265-2268
    [179] S R Puniredd, C M Yin, et al. Dendrimer-encapsulated Pt nanoparticles in supercritical medium:Synthesis,characterization,and application to device fabrication,Journal of Colloid And Interface Science 2009:.336-339
    [180]J C Liu,M Anand,et al.Synthesis and extraction of beta-D-glucose-stabilized Au nanoparticles processed into low-defect,wide-area thin films and ordered arrays using CO2-expanded liquids,Langmuir 2006 22:3964-3971.
    [181]K Esumi,S Sarashina,et al.Synthesis of gold nanopartieles from an organometallic compound in supercritical carbon dioxide,Langmuir 2004 20:5189-5191.
    [182]P S Shah,T Hanrath,et al.Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids,Journal of Physical Chemistry B 2004 108:9574-9587.
    [183]W E Stallings and H H Lamb,Synthesis of Nanostructured Titania Powders via Hydrolysis of Titanium Isopropoxide in Supercritical Carbon Dioxide,Langmuir 2003 19:2989-2994.
    [184]K J Ziegler,R C Doty,et al.Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water,Journal of the American Chemical Society 2001 123:7797-7803.
    [185]J C Liu,P Raveendran,et al.Synthesis of Ag2S quantum dots in water-in-CO2microemulsions,Chemical Communications 2004:2582-2583.
    [186]H Ohde,J M Rodriguez,et al.Synthesizing silver halide nanoparticles in supercritical carbon dioxide utilizing a water-in-CO2 microemulsion,Chemical Communications 2000:2353-2354.
    [187]J C Liu,P Raveendran,et al.Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions,Chemistry-a European Journal 2005 11:1854-1860.
    [188]X Dong,D Potter,et al.Synthesis of CuS nanoparticles in water-in-carbon dioxide microemulsions,Industrial & Engineering Chemistry Research 2002 41:4489-4493.
    [189]H Ohde,M Ohde,et al.Water-in-CO_2 microemulsions as nanoreactors for synthesizing CdS and ZnS nanoparticles in supercritical CO_2,Nano Letters 2002 2:721-724.
    [190]C A Johnson,S Sharma,et al.Nanoparticulate Metal Complexes Prepared with Compressed Carbon Dioxide: Correlation of Particle Morphology with Precursor Structure,Journal of the American Chemical Society 2005 127:9698-9699.
    [191]H Ohde,F Hunt,et al.Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion,Chemistry of Materials 2001 13:4130-4135.
    [192]E Gazit,Use of biomolecular templates for the fabrication of metal nanowires,Febs Journal 2007 274:317-322.
    [193]W J Crookes-Goodson,J M Slocik,et al.Bio-directed synthesis and assembly of nanomaterials,Chemical Society Reviews 2008 37:2403-2412.
    [194]C Tamerler and M Sarikaya,Molecular biomimetics:Utilizing nature's molecular ways in practical engineering,Acta Biomaterialia 2007 3:289-299.
    [195]H Colfen,Bio-inspired mineralization using hydrophilic polymers,Topics in Current Chemistry 2006 271:1-78.
    [196] V Kattumuri Gold Nanoparticles For Biomedical Applications: Synthesis,Characterization, In Vitro And In Vivo Studies. 2006:112-118
    [197] V K Sharma, R A Yngard, et al. Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science 2009 145: 83-96.
    [198] I W Eugenii Katz, Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis,Properties, and Applications, Angewandte Chemie International Edition 2004 43:6042-6108.
    [199] P Mohanpuria, N K Rana, et al. Biosynthesis of nanoparticles: technological concepts and future applications, Journal of Nanoparticle Research 2008 10: 507-517.
    [200] N R Jana, L Gearheart, et al. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods, Journal of Physical Chemistry B 2001 105: 4065-4067.
    [201] N R Jana, L Gearheart, et al. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications 2001: 617-618.
    [202] S H Chen and D L Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Letters 2002 2: 1003-1007.
    [203] B Lim, M Jiang, et al. Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions, Advanced Functional Materials 2009 19: .225-229
    [204] L Zhang, Y Shen, et al. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers, The journal of physical chemistry. B 2006 110:6615-6619.
    [205] L Zhang, Y H Shen, et al. Assembly of gold composite thin films by spontaneous reduction of subphase chloroaurate anions beneath vitamin E Langmuir monolayers,Materials Chemistry & Physics 2007 105: 25-30.
    [206] S Mandal, A Gole, et al. Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Bonds, Langmuir 2001 17:6262-6268.
    [207] S Mandal, P R Selvakannan, et al. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid, Journal of Chemical Sciences 2002 114:513-520.
    [208] Y Shao, Y Jin, et al. Synthesis of gold nanoplates by aspartate reduction of gold chloride,Chemical Communications 2004 2004: 1104-1105.
    [209] P R Selvakannan, S Mandal, et al. Capping of Gold Nanoparticles by the Amino Acid Lysine Renders Them Water-Dispersible, Langmuir 2003 19: 3545-3549.
    [210] P R Selvakannan, A Swami, et al. Synthesis of Aqueous Au Core - Ag Shell Nanoparticles Using Tyrosine as a pH-Dependent Reducing Agent and Assembling Phase-Transferred Silver Nanoparticles at the Air-Water Interface, Langmuir 2004 20: 7825-7836.
    [211] P R Selvakannan, S Mandal, et al. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid, Journal of Colloid and Interface Science 2004 269: 97-102.
    [212] S K Bhargava, J M Booth, et al. Gold Nanoparticle Formation during Bromoaurate Reduction by Amino Acids,Langmuir 2005 21:5949-5956.
    [213]N C Nayak and K Shin,Synthesis of L-Phenylalanine Stabilized Gold Nanoparticles and Their Thermal Stability,Journal of Nanoscience and Nanotechnology 2006 6:3512-3516.
    [214]J H Yang,L H Lu,et al.Glycyl glycine templating synthesis of single-crystal silver nanoplates,Crystal Growth & Design 2006 6:2155-2158.
    [215]Y N Tan,J Y Lee,et al.Aspartic acid synthesis of crystalline gold nanoplates,nanoribbons,and nanowires in aqueous solutions,Journal of Physical Chemistry C 2008112:5463-5470.
    [216]Y Shichibu,Y Negishi,et al.Extremely high stability of glutathionate-protected Au25clusters against core etching,Small 2007 3:835.
    [217]X Kou,S Zhang,et al.Glutathione-and cysteine-induced transverse overgrowth on gold nanorods,Journal of American Chemical Society 2007 129:6402-6404.
    [218]Q Wu,H Cao,et al.Biomolecule-Assisted Synthesis of Water-Soluble Silver Nanoparticles and Their Biomedical Applications,Inorganic Chemistry 2008 47:5882-5888.
    [219]J M Slocik and D W Wright,Biomimetic mineralization of noble metal nanoclusters,Biomacromolecules 2003 4:1135-1141.
    [220]Q Wu,H Cao,et al.Biomolecule-Assisted Synthesis of Water-Soluble Silver Nanoparticles and Their Biomedical Applications,Inorganic Chemistry 2008 47:5882-5888.
    [221]C Barglik-Chory,C Remenyi,et al.Adjustment of the Band Gap Energies of Biostabilized CdS Nanoparticles by Application of Statistical Design of Experiments,The Journal of Physical Chemistry B 2004 108:7637-7640.
    [222]H Qian,C Dong,et al.Facile one-pot synthesis of luminescent,water-soluble,and biocompatible glutathione-coated CdTe nanocrystals,Small 2006 2:747.
    [223]S Si and T K Mandal,Tryptophan-based peptides to synthesize gold and silver nanoparticles:A mechanistic and kinetic study,Chemistry-a European Journal 2007 13:3160-3168.
    [224]A Mantion,A G Guex,et al.Silver nanoparticle engineering via oligovaline organogels,Soft Matter 2008 4:606-617.
    [225]P Raveendran,J Fu,et al.Completely Green Synthesis and Stabilization of Metal Nanoparticles,Journal of the American Chemical Society 2003 125:13940-13941.
    [226]Y-H W H-S L Clifford Y.Tai,A green process for preparing silver nanoparticles using spinning disk reactor,AIChE Journal 2008 54:445-452.
    [227]T K Sarma and A Chattopadhyay,Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance,Langmuir 2004 20:3520-3524.
    [228]N Vigneshwaran,R P Nachane,et al.A novel “one-pot” synthesis of stable silver nanoparticles using soluble starch,Carbohydrate Research 2006 341:2012-2018.
    [229]A Panacek,L Kvitek,et al.Silver colloid nanoparticles:Synthesis,characterization,and their antibacterial activity, Journal of Physical Chemistry B 2006 110: 16248-16253.
    [230] Y Xie, R Ye, et al. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006 279:175-178.
    [231] P Palanisamy, Biosurfactant mediated synthesis of NiO nanorods, Materials Letters 2008 62: 743-746.
    [232] P Palanisamy and A M Raichur, Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique, Materials Science & Engineering C 2009 29:199-204.
    [233] S Singh, P Patel, et al. A direct method for the preparation of glycolipid-metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity, New Journal of Chemistry 2009 33: 646-652.
    [234] L Huang, M L Zhai, et al. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions, Journal of Colloid and Interface Science 2007 316: 398-404.
    [235] A Pal, K Esumi, et al. Preparation of nanosized gold particles in a biopolymer using UV photoactivation, Journal of colloid and interface science 2005 288: 396-401.
    [236] J Kasthuri, S Veerapandian, et al. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent, Colloids and Surfaces B: Biointerfaces 2009 68: 55-60.
    [237] J Xie, J Y Lee, et al. Identification of Active Biomolecules in the High-Yield Synthesis of Single-Crystalline Gold Nanoplates in Algal Solutions, Small 2007 3: 672.
    [238] N Duran, P D Marcato, et al. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, Journal of Nanobiotechnology 2005 3: 8.
    [239] A G Medentsev and V K Akimenko, Naphthoquinone metabolites of the fungi,Phytochemistry 1998 47: 935-959.
    [240] N Duran, M F S Teixeira, et al. Ecological-friendly pigments from fungi, Critical reviews in food science and nutrition 2002 42: 53-66.
    [241] D K Newman and R Kolter, A role for excreted quinones in extracellular electron transfer,Nature 2000 405: 94-97.
    [242] T Klaus, R Joerger, et al. Silver-based crystalline nanoparticles, microbially fabricated.National Acad Sciences 1999: 13611-13614.
    [243] Y Roh, R J Lauf, et al. Microbial synthesis and the characterization of metal-substituted magnetites, Solid State Communications 2001 118: 529-534.
    [244] P Yong, N A Rowson, et al. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307, Biotechnology and bioengineering 2002 80: .
    [245] B Nair and T Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains, Crystal Growth & Design 2002 2: 293-298.
    [246] M I Husseiny, M A El-Aziz, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa,Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 200767:1003-1006.
    [247]M Sastry,A Ahmad,et al.Biosynthesis of metal nanoparticles using fungi and actinomycete,Current Science 2003 85:162-170.
    [248]A Ahmad,S Senapati,et al.Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcus species,Nanotechnology 2003 14:824.
    [249]A Ahmad,S Senapati,et al.Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete,Thermomonospora sp,Langmuir 2003 19:3550-3553.
    [250]C T Dameron,R N Reese,et al.Biosynthesis of cadmium sulphide quantum semiconductor crystallites,Nature 1989 338:596-597.
    [251]M Kowshik,N Deshmukh,et al.Microbial synthesis of semiconductor CdS nanoparticles,their characterization,and their use in the fabrication of an ideal diode,Biotechnology and bioengineering 2002 78:583.
    [252]M Kowshik,S Ashtaputre,et al.Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3,Nanotechnology 2003 14:95-100.
    [253]M Gericke and A Pinches,Biological synthesis of metal nanoparticles,Hydrometallurgy 2006 83:132-140.
    [254]P Mukherjee,A Ahmad,et al.Bioreduction of AuCl_4~-Ions by the Fungus,Verticillium sp.and Surface Trapping of the Gold Nanoparticles Angewandte Chemie-International edition 2001 40:3585.
    [255]P Mukherjee,S Senapati,et al.Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum,ChemBioChem(Print) 2002 3:461-463.
    [256]N Vigneshwaran,N M Ashtaputre,et al.Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus,Materials Letters 2007 61:1413-1418.
    [257]C V Kumar and G L McLendon,Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate,Chemistry of Materials 1997 9:863-870.
    [258]S S Shankar,A Ahmad,et al.Geranium leaf assisted biosynthesis of silver nanoparticles,Biotechnology progress 19:1627.
    [259]V Bansal,D Rautaray,et al.Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum,Journal of Materials Chemistry 2004 14:3303-3305.
    [260]A Ahmad,S Senapati,et al.Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus,Trichothecium sp,Journal of Biomedical Nanotechnology 2005 1:47-53.
    [261]A Bharde,D Rautaray,et al.Extracellular biosynthesis of magnetite using fungi,Small 2006 2:135.
    [262]K C Bhainsa and S F D'Souza,Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus,Colloids and Surfaces B:Biointerfaces 2006 47:160-164.
    [263]S A Kumar,A A Ansary,et al.Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus,Fusarium Oxysporum,Journal of Biomedical Nanotechnology 2007 3:190-194.
    [264]V Bansal,D Rautaray,et al.Fungus-mediated biosynthesis of silica and titania particles,Journal of Materials Chemistry 2005 15:2583-2589.
    [265]V Kumar and S K Yadav,Plant-mediated synthesis of silver and gold nanoparticles and their applications,Journal of Chemical Technology and Biotechnology 2009 84:151-157.
    [266]S S Shankar,A Ahmad,et al.Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes,Journal of Materials Chemistry 2003 13:1822-1826.
    [267]J L Gardea-Torresdey,K J Tiemann,et al.Gold nanoparticles obtained by bio-precipitation from gold(Ⅲ)solutions,Journal of Nanoparticle Research 1999 1:397-404.
    [268]V Armendariz,M Jose-Yacaman,et al.HRTEM characterization of gold nanoparticles produced by wheat biomass,Revista mexicana defisica 2004 50:7-11.
    [269]S S Shankar,A Rai,et al.Biological synthesis of triangular gold nanoprisms,Nature materials 2004 3:482-488.
    [270]S S Shankar,A Rai,et al.Rapid synthesis of Au,Ag,and bimetallic Au core-Ag shell nanoparticles using Neem(Azadirachta indica) leaf broth,Journal of colloid and interface science 2004 275:496-502.
    [271]S Shiv Shankar,A Rai,et al.Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings,Chemistry of materials 2005 17:566-572.
    [272]B Ankamwar,M Chaudhary,et al.Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing,Synthesis and Reactivity in Inorganic,Metal-Organic,and Nano-Metal Chemistry 2005 35:19-26.
    [273]S P Chandran,M Chaudhary,et al.Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,Biotechnology Progress 2006 22:577-583.
    [274]K Ghule,A V Ghule,et al.Microscale size triangular gold prisms synthesized using Bengal gram beans(Cicer arietinum L.) extract and HAuCl_4 green biogenic approach,Journal of nanoscience and nanotechnology(Print) 2006 6:3746-3751.
    [275]J Huang,Q Li,et al.Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,Nanotechnology 2007 18:105104.
    [276]B Ankamwar,C Damle,et al.Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract,their phase transfer and transmetallation in an organic solution,Journal of nanoscience and nanotechnology(Print) 2005 5:1665-1671.
    [277]R G Haverkamp,A T Marshall,et al.Pick your carats:nanoparticles of gold-silver-copper alloy produced in vivo,Journal of Nanoparticle Research 2007 9:697-700.
    [278]E Rodriguez,J G Parsons,et al.Potential of Chilopsis linearis for gold phytomining:using XAS to determine gold reduction and nanoparticle formation within plant tissues, InternationalJournalofPhytoremediation 2007 9:133-147.
    [279] J L Gardea-Torresdey, E Rodriguez, et al. Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent, Analytical and bioanalytical chemistry 2005 382: 347-352.
    [280] N C Sharma, S V Sahi, et al. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials, Environmental science & technology 2007 41:5137.
    [281] M H Y N M K T T Masaharu Tsuji, Microwave-Assisted Synthesis of Metallic Nanostructures in Solution, Chemistry -A European Journal 2005 11: 440-452.
    [282] J A Gerbec, D Magana, et al. Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis, Journal of the American Chemical Society 2005 127: 15791-15800.
    [283] K S Suslick, T Hyeon, et al. Nanostructured Materials Generated by High-Intensity Ultrasound:  Sonochemical Synthesis and Catalytic Studies, Chemistry of Materials 1996 8:2172-2179.
    [284] N A Dhas and K S Suslick, Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals, Journal of the American Chemical Society 2005 127: 2368-2369.
    [285] M Sakamoto, M Fujistuka, et al. Light as a construction tool of metal nanoparticles:Synthesis and mechanism, Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2009 10: 33-56.
    [286] G Compagnini, A A Scalisi, et al. Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film, Physical Chemistry Chemical Physics 2002 4:2787-2791.
    [287] M Kawasaki and K Masuda, Laser Fragmentation of Water-Suspended Gold Flakes via Spherical Submicroparticles to Fine Nanoparticles, The Journal of Physical Chemistry B 2005 109: 9379-9388.
    [288] P J A Kenis, R F Ismagilov, et al. Fabrication inside Microchannels Using Fluid Flow,Accounts of Chemical Research 2000 33: 841-847.
    [289] K S Susick, S B Choe, etal. Sonochemical synthesis of amorphous iron, Nature 1991 353:414-416.
    [290] C-H Su, P-L Wu, et al. Sonochemical Synthesis of Well-Dispersed Gold Nanoparticles at the Ice Temperature, The Journal of Physical Chemistry B 2003 107: 14240-14243.
    [291] K Okitsu, M Ashokkumar, et al. Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency, The Journal of Physical Chemistry B 2005 109:20673-20675.
    [1]S Nie and S R Emory,Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,Science 1997 275:1102-1106.
    [2]Y W C Cao,R C Jin,et al.Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,Science 2002 297:1536-1540.
    [3]T A Taton,C A Mirkin,et al.Scanometric DNA Array Detection with Nanoparticle Probes,Science 2000 289:1757-1760.
    [4]C Burda,X B Chen,et al.Chemistry and properties of nanocrystals of different shapes,Chemical Reviews 2005 105:1025-1102.
    [5]M C Daniel and D Astruc,Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology,Chemical Reviews 2004 104:293-346.
    [6]K Kneipp,H Kneipp,et al.Ultrasensitive chemical analysis by Raman spectroscopy,Chemical Reviews 1999 99:2957-2961.
    [7]N L Rosi and C A Mirkin,Nanostructures in biodiagnostics,Chemical Reviews 2005 105:1547-1562.
    [8]M E Stewart,C R Anderton,et al.Nanostructured plasmonic sensors,Chemical Reviews 2008 108:494-521.
    [9]E Ozbay,Plasmonics:Merging photonics and electronics at nanoscale dimensions,Science 2006 311:189-193.
    [10]P K Jain,X Huang,et al.Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging,sensing,biology,and medicine,Accounts of Chemical Research 2008 41:1578-1586.
    [11]M A El-Sayed,Some interesting properties of metals confined in time and nanometer space of different shapes,Accounts of Chemical Research 2001 34:257-264.
    [12]K L Kelly,E Coronado,et al.The optical properties of metal nanoparticles:The influence of size,shape,and dielectric environment,Journal of Physical Chemistry B 2003 107:668-677.
    [13]K M Bratlie,H Lee,et al.Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Letters 2007 7: 3097-3101.
    [14] HDTOTKSS Chao Wang, A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of Oxygenl3, Angewandte Chemie International Edition 2008 47: 3588-3591.
    [15] N Tian, Z Y Zhou, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity, Science 2007 316: 732-735.
    [16] T Ahmadi, Z Wang, et al. Shape-controlled synthesis of colloidal platinum nanoparticles, Science 1996 272: 1924.
    [17] Y G Sun and Y N Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002 298:2176-2179.
    [18] C Burda, X B Chen, et al. Chemistry and properties of nanocrystals of different shapes,Chemical Reviews 2005 105: 1025-1102.
    [19] Y X B L S S Younan Xia, Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angewandte Chemie International Edition 2009 48:60-103.
    [20] R C Jin, Y W Cao, et al. Photoinduced conversion of silver nanospheres to nanoprisms,Science 2001 294: 1901-1903.
    [21] R C Jin, Y C Cao, et al. Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 2003 425: 487-490.
    [22] C L Haynes and R P Van Duyne, Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy, The Journal of Physical Chemistry B 2003 107: 7426-7433.
    [23] Y Yang, S Matsubara, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties, Journal of Physical Chemistry C 2007 111:9095-9104.
    [24] X Q Zou and S J Dong, Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution, Journal of Physical Chemistry B 2006 110: 21545-21550.
    [25] M D Malinsky, K L Kelly, et al. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers, Journal of the American Chemical Society 2001123: 1471-1482.
    [26] A J Haes and R P Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society2002 124: 10596-10604.
    [27] K E Shafer-Peltier, C L Haynes, et al. Toward a glucose biosensor based on surface-enhanced Raman scattering, Journal of the American Chemical Society 2003 125:588-593.
    [28] C R Yonzon, E Jeoungf, et al. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer, Journal of the American Chemical Society 2004 126: 12669-12676.
    [29]Y A Sun and Y N Xia,Triangular nanoplates of silver:Synthesis,characterization,and use as sacrificial templates for generating triangular nanorings of gold,Advanced Materials 2003 15:695-699.
    [30]Y G Sun,B Mayers,et al.Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process,Nano Letters 2003 3:675-679.
    [31]C Xue,G S Metraux,et al.Mechanistic study of photomediated triangular silver nanoprism growth,Journal of the American Chemical Society2008 130:8337-8344.
    [32]A Callegari,D Tonti,et al.Photochemically grown silver nanoparticles with wavelength-controlled size and shape,Nano Letters 2003 3:1565-1568.
    [33]V Bastys,I Pastoriza-Santos,et al.Formation of silver nanoprisms with surface plasmons at communication wavelengths,Advanced Functional Materials 2006 16:766-773.
    [34]B Rodriguez-Gonzalez,I Pastoriza-Santos,et al.Bending contours in silver nanoprisms,Journal of Physical Chemistry 5 2006 110:11796-11799.
    [35]C Xue and C A Mirkin,pH-switchable silver nanoprism growth pathways,Angewandte Chemie-International Edition 2007 46:2036-2038.
    [36]M Maillard,P R Huang,et al.Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed Ag~+,Nano Letters 2003 3:1611-1615.
    [37]T C R Rocha and D Zanchet,Structural defects and their role in the growth of Ag triangular nanoplates,Journal of Physical Chemistry C 2007 111:6989-6993.
    [38]T C R Rocha and D Zanchet,Growth aspects of photochemically synthesized silver triangular nanoplates,Journal of Nanoscience and Nanotechnology 2007 7:618-625.
    [39]T C R Rocha,H Winnischofer,et al.Formation kinetics of silver triangular nanoplates,Journal of Physical Chemistry C 2007 111:2885-2891.
    [40]Y Y Yu,S S Chang,et al.Gold Nanorods:Electrochemical Synthesis and Optical Properties,Journal of Physical Chemistry B 1997 101:6661-6664.
    [41]B Nikoobakht and M A El-Sayed,Evidence for Bilayer Assembly of Cationic Surfactants on the Surface of Gold Nanorods,Langmuir 2001 17:6368-6374.
    [42]N R Jana,L Gearheart,et al.Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template~*,Appl.Phys.Lett 1998 73:108.
    [43]N R Jana,L Gearheart,et al.Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,Journal of Physical Chemistry B 2001 105:4065-4067.
    [44]N R Jana,L Gearheart,et al.Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,Chemical Communications 2001:617-618.
    [45]S H Chen and D L Carroll,Synthesis and characterization of truncated triangular silver nanoplates,Nano Letters 2002 2:1003-1007.
    [46]S H Chen,Z Y Fan,et al.Silver nanodisks:Synthesis,characterization,and self-assembly,Journal of Physical Chemistry B 2002 106:10777-10781.
    [47]S H Chen and D L Carroll,Silver nanoplates:Size control in two dimensions and formation mechanisms, Journal of Physical Chemistry B 2004 108: 5500-5506.
    [48] M Maillard, S Giorgio, et al. Silver nanodisks, Advanced Materials 2002 14:1084-+.
    [49] A Filankembo, S Giorgio, et al. Is the Anion the Major Parameter in the Shape Control of Nanocrystals ?, Journal of Physical Chemistry B 2003 107: 7492-7500.
    [50] V Germain, J Li, et al. Stacking faults in formation of silver nanodisks, Journal of Physical Chemistry B 2003 107: 8717-8720.
    [51] M Maillard, S Giorgio, et al. Tuning the size of silver nanodisks with similar aspect ratios:Synthesis and optical properties, Journal of Physical Chemistry B 2003 107: 2466-2470.
    [52] A Brioude and M P Pileni, Silver nanodisks: Optical properties study using the discrete dipole approximation method, Journal of Physical Chemistry B 2005 109: 23371-23377.
    [53] V Germain, A Brioude, et al. Silver nanodisks: Size selection via centrifugation and optical properties, Journal of Chemical Physics 2005 122: 8.
    [54] A Courty, A I Henry, et al. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals, Nature Materials 2007 6: 900-907.
    [55] D O Yener, J Sindel, et al. Synthesis of nanosized silver platelets in octylamine-water bilayer systems, Langmuir 2002 18: 8692-8699.
    [56] I Pastoriza-Santos and L M Liz-Marzan, Synthesis of silver nanoprisms in DMF, Nano Letters 2002 2: 903-905.
    [57] E C Hao, K L Kelly, et al. Synthesis of silver nanodisks using polystyrene mesospheres as templates, Journal of the American Chemical Society 2002 124: 15182-15183.
    [58] R He, X F Qian, et al. Preparation of polychrome silver nanoparticles in different solvents,Journal of Materials Chemistry 2002 12: 3783-3786.
    [59] L P Jiang, S Xu, et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings, Inorganic Chemistry 2004 43: 5877-5883.
    [60] Y Yang, S Matsubara, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties, Journal of Physical Chemistry C 2007 111:9095-9104.
    [61] T C Deivaraj, N L Lala, et al. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods, Journal of Colloid and Interface Science 2005 289: 402-409.
    [62] Y J Xiong, I Washio, et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions, Langmuir 2006 22: 8563-8570.
    [63] I Washio, Y J Xiong, et al. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates,Advanced Materials 2006 18: 1745-1749.
    [64] Y Xiong, I Washio, et al. Trimeric clusters of silver in aqueous AgNO_3 solutions and their role as nuclei in forming triangular nanoplates of silver, Angewandte Chemie-International Edition 2007 46: 4917-4921.
    [65]J P L F.Fievet,M.Figlarz,MSR Bulletin 1989 29:29.
    [66]M Figlarz,F Fievet,et al.Process for the reduction of metallic compounds by polyols,and metallic powders obtained by this process.1985 Patents.
    [67]F Fievet,J P Lagier,et al.Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process,The Journal of Materials Education 1983:79.
    [68]F Fievet,J P Lagier,et al.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,Solid State Ionics 198932:98-103.
    [69]Y Sun,B Gates,et al.Crystalline Silver Nanowires by Soft Solution Processing,Nano Letters.2002 2:165-168.
    [70]Y G Sun,Y D Yin,et al.Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone),Chemistry of Materials 2002 14:4736-4745.
    [71]Y D Yin,Y Lu,et al.Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica,Nano Letters 2002 2:427-430.
    [72]C Feldmann,Polyol-mediated synthesis of nanoscale functional materials,Solid State Sciences 2005 7:868-873.
    [73]Y J Xiong,A R Siekkinen,et al.Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide,Journal of Materials Chemistry 2007 17:2600-2602.
    [74]G S Metraux and C A Mirkin,Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness,Advanced Materials 2005 17:412-417.
    [75]Y Chen,C G Wang et al.Controllable colours and shapes of silver nanostructures based on pH:application to surface-enhanced Raman scattering,Nanotechnology 2007 18:33-39.
    [76]X C Jiang,Q H Zeng,et al.A self-seeding coreduction method for shape control of silver nanoplates,Nanotechnology 2006 17:4929-4935.
    [77]Q H Zeng,X C Jiang,et al.Growth mechanisms of silver nanoparticles:a molecular dynamics study,Nanotechnology 2007 18:2225-2229.
    [78]X C Jiang,Q H Zeng,et al.Thiol-frozen shape evolution of triangular silver nanoplates,Langmuir 2007 23:2218-2223.
    [79]X C Jiang and A B Yu,Silver nanoplates:A highly sensitive material toward inorganic anions,Langmuir 2008 24:4300-4309.
    [80]J H Yang,L H Lu,et al.Glycyl glycine templating synthesis of single-crystal silver nanoplates,Crystal Growth & Design 2006 6:2155-2158.
    [81]J H Zhang,H Y Liu,et al.Controlling the growth and assembly of silver nanoprisms,Advanced Functional Materials 2007 17:1558-1566.
    [82]J Song,Y Chu,et al.Room-temperature controllable fabrication of silver nanoplates reduced by aniline,Chemical Communications 2008:1223-1225.
    [83]I O Sosa,C Noguez,et al.Optical properties of metal nanoparticles with arbitrary shapes, Journal of Physical Chemistry B 2003 107: 6269-6275.
    [84] P Mulvaney, Surface Plasmon Spectroscopy of Nanosized Metal Particles, Langmuir 1996 12: 788-800.
    [85] J J Mock, M Barbic, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles, Journal of Chemical Physics 2002 116: 6755-6759.
    [86] E Hao, G C Scnatz, et al. Synthesis and optical properties of anisotropic metal nanoparticles, Journal of Fluorescence 2004 14: 331-341.
    [87] C Xue and C A Mirkin, pH-switchable silver nanoprism growth pathways, Angewandte Chemie-International Edition 2007 46: 2036-2038.
    [88] L J Sherry, R C Jin, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Letters 2006 6: 2060-2065.
    [89] Y Bae, N H Kim, et al. Anisotropic Assembly of Ag Nanoprisms, Journal of the American Chemical Society 2008 130: 5432-5433.
    [90] P Bonhote, A-P Dias, et al. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts&, Inorganic Chemistry 1996 35: 1168-1178.
    [91] A E Visser, R P Swatloski, et al. pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior, Green Chemistry 2000 2:1-4.
    [92] Z Zhang, R Hu, et al. Formation of a Porphyrin Monolayer Film by Axial Ligation of Protoporphyrin IX Zinc to an Amino-Terminated Silanized Glass Surface, Langmuir 2000 16: 1158-1162.
    [93] J E Millstone, S Park, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc 2005 127: 5312-5313.
    [94] X P Sun, S J Dong, et al. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route, Angewandte Chemie-International Edition 2004 43: 6360-6363.
    [95] C Lofton and W Sigmund, Mechanisms controlling crystal habits of gold and silver colloids, Advanced Functional Materials 2005 15: 1197-1208.
    [96] A I Kirkland, P P Edwards, et al. The structure, characterization, and evolution of colloidal metals, Annu. Rep. Prog. Chem. C 1990 87: 247-304.
    [97] Y J Xiong, J M McLellan, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties, Journal of the American Chemical Society2005 127: 17118-17127.
    [98] Z L Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies, Journal of Physical Chemistry B 2000 104: 1153-1175.
    [99] M Tsuji, M Hashimoto, et al. Microwave-assisted synthesis of metallic nanostructures in solution, Chemistry-a European Journal 2005 11: 440-452.
    [100] M Tsuji, N Miyamae, et al. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method, Crystal Growth & Design 2006 6: 1801-1807.
    [101] A I Kirkland, D A Jefferson, et al. Structural Studies of Trigonal Lamellar Particles of Gold and Silver, J. Proc. R. Soc. London, Sen A 1993 440: 589-609.
    [102] X Bai, L Zheng, et al. Synthesis and Characterization of Microscale Gold Nanoplates Using Langmuir Monolayers of Long-Chain Ionic Liquid, Cryst. Growth Des 2008 8:3840-3846.
    [103] Y Ding and Z L Wang, Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy, The Journal of Physical Chemistry B 2004 108: 12280-12291.
    [104] J-M Zhang, F Ma, et al. Calculation of the surface energy of FCC metals with modified embedded-atom method, Applied Surface Science 2004 229: 34-42.
    [105] B Wiley, Y G Sun, et al. Shape-controlled synthesis of metal nanostructures: The case of silver, Chemistry-a European Journal 2005 11: 454-463.
    [106] B Wiley, T Herricks, et al. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons, Nano Letters 2004 4: 1733-1739.
    [107] J L Elechiguerra, J Reyes-Gasga, et al. The role of twinning in shape evolution of anisotropic noble metal nanostructures, Journal of Materials Chemistry 2006 16:3906-3919.
    [108] C Besson, E E Finney, et al. A Mechanism for Transition-Metal Nanoparticle Self-Assembly, Journal of the American Chemical Society 2005 127: 8179-8184.
    [109] M A Watzky and R G Finke, Transition Metal Nanocluster Formation Kinetic and Mechanistic Studies. A New Mechanism When Hydrogen Is the Reductant: Slow,Continuous Nucleation and Fast Autocatalytic Surface Growth, Journal of the American Chemical Society 1997 119: 10382-10400.
    [110] J M Petroski, Z L Wang, et al. Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles, Journal of Physical Chemistry B 1998 102:3316-3320.
    [111] X Peng, L Manna, et al. Shape control of CdSe nanocrystals, Nature 2000 404: 59-61.
    [112] Y w Jun, Y y Jung, et al. Architectural Control of Magnetic Semiconductor Nanocrystals,Journal of the American Chemical Society 2002 124: 615-619.
    [113] T H Y X Jingyi Chen, Polyol Synthesis of Platinum Nanostructures: Control of Morphology through the Manipulation of Reduction Kinetics 13, Angewandte Chemie International Edition 2005 44: 2589-2592.
    [114] B Wiley, Y G Sun, et al. Polyol synthesis of silver nanostructures: Control of product morphology with Fe(Ⅱ) or Fe(Ⅲ) species, Langmuir 2005 21: 8077-8080.
    [115] Y Xiong, J Chen, et al. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size, Journal of the American Chemical Society 2005 127:7332-7333.
    [116] Y J Xiong, J Y Chen, et al. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size, Journal of the American Chemical Society 2005 127:7332-7333.
    [117]F Zeng,C Hou,et al.Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities,Nanotechnology 2007 18:055605.
    [118]S Shrivastava,T Bera,et al.Characterization of enhanced antibacterial effects of novel silver nanoparticles,Nanotechnology 2007 18:225103.
    [119]J R Morones,J L Elechiguerra,et al.The bactericidal effect of silver nanoparticles,Nanotechnology 2005 16:2346-2353.
    [120]P Gong,H M Li,et al.Preparation and antibacterial activity of Fe3O4@Ag nanoparticles,Nanotechnology 2007 18:285604.
    [121]C Aymonier,U Schlotterbeck,et al.Hybrids of silver nanoparticles with amphophilic hyperbranched macromolecules exhibiting antimicrobial properties,Chemical Communications 2002:3018-3019.
    [122]R W Y Sun,R Chen,et al.Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells,Chemical Communications 2005:5059-5061.
    [123]V A Oyanedel-Craver and J A Smith,Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment,Environmental Science & Technology 2008 42:927-933.
    [124]S K Gogoi,P Gopinath,et al.Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles,Langmuir 2006 22:9322-9328.
    [125]J L Elechiguerra,J L Burt,et al.Interaction of silver nanoparticles with HIV-1,J Nanobiotechnology 2005 3:6-12.
    [126]C Baker,A Pradhan,et al.Synthesis and antibacterial properties of silver nanoparticles,Journal of Nanoscience and Nanotechnology 2005 5:244-249.
    [127]J S Kim,E Kuk,et al.Antimicrobial effects of silver nanoparticles,Nanomedicine:nanotechnology,biology,and medicine 2007 3:95-101.
    [128]A Panacek,L Kvitek,et al.Silver colloid nanoparticles:Synthesis,characterization,and their antibacterial activity,Journal of Physical Chemistry B 2006 110:16248-16253.
    [129]S Pal,Y K Tak,et al.Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,Applied and Environmental Microbiology 2007 73:1712-1720.
    [130]X Wang,F Yang,et al.A study on the antibacterial activity of one-dimensional ZnO nanowire arrays:effects of the orientation and plane surface,Chemical Communications 2007 2007:4419-4421.
    [131]P C Lee and D Meisel,Adsorption and surface-enhanced Rman of dyes on silver and gold sols Journal of Physical Chemistry 1982 86:3391-3395.
    [132]P M Ajayan and L D Marks,Quasimelting and phases of small particles,Physical Review Letters 1988 60:585-587.
    [133]D W Hatchett and H S White,Electrochemistry of sulfur adlayers on the low-index faces of silver,J.Phys.Chem 1996 100:9854-9859.
    [134]F Zeng,C Hou,et al.Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities,Nanotechnology 2007 18:8.
    [135]M Osawa,N Matsuda,et al.Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver:Herzberg-Teller contribution,The Journal of Physical Chemistry 1994 98:12702-12707.
    [136]A Campion and P Kambhampati,Surface-enhanced Raman scattering,Chemical Society Reviews 1998 27:241-250.
    [137]M Kerker,Electromagnetic model for surface-enhanced Raman scattering(SERS) on metal colloids,Accounts of Chemical Research 1984 17:271-277.
    [138]C J Orendorff,L Gearheart,et al.Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,Physical Chemistry Chemical Physics 2006 8:165-170.
    [139]J A Creighton and D G Eadon,Ultraviolet visible absorption spectra of the colloidal metallic elements,Journal of the Chemical Society-Faraday Transactions 1991 87:3881-3891.
    [140]A M Michaels,J Jiang,et al.Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,Journal of Physical Chemistry B 2000104:11965-11971.
    [141]J Jiang,K Bosnick,et al.Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,Journal of Physical Chemistry B 2003 107:9964-9972.
    [142]V A Markel,V M Shalaev,et al.Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,Physical Review B 1999 59:10-10.
    [143]T Atay,J H Song,et al.Strongly Interacting Plasmon Nanoparticle Pairs:From Dipole?Dipole Interaction to Conductively Coupled Regime,Nano Letters 2004 4:1627-1631.
    [144]I Mrozek,C Pettenkofer,et al.Raman spectroscopy of carbon monoxide adsorbed on silver island films,Surface Science 1990 238:192-198.
    [145]S G Schultz,M Janik-Czachor,et al.Surface enhanced Raman spectroscopy:A re-examination of the role of surface roughness and electrochemical anodization,Surface Science 1981 104:419-434.
    [146]A Otto,T Bornemann,et al.Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver,Surface Science 1989 210:363-386.
    [147]D L Jeanmaire and R P Van Duyne,Surface raman spectroelectrochemistry:Part I.Heterocyclic,aromatic,and aliphatic amines adsorbed on the anodized silver electrode,Journal of Electroanalytical Chemistry 1977 84:1-20.
    [1]T Mokari,E Rothenberg,et al.Selective growth of metal tips onto semiconductor quantum rods and tetrapods,Science 2004 304:1787-1790.
    [2]P D Cozzoli,T Pellegrino,et al.Synthesis,properties and perspectives of hybrid nanocrystal structures,Chemical Society Reviews 2006 35:1195-1208.
    [3]H Gu,R Zheng,et al.Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles,Journal of the American Chemical Society 2004 126:5664-5665.
    [4]D M Schaadt,B Feng,et al.Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,Applied Physical Letter 2005 86:063106.
    [5]J s Choi,Y w Jun,et al.Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection,Journal of the American Chemical Society 2006 128:15982-15983.
    [6]T Mokari,C G Sztrum,et al.Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods,Nature Materials 2005 4:855-863.
    [7]A Dawson and P V Kamat,Semiconductor-metal nanocomposites.Photoinduced fusion and photocatalysis of gold-capped TiO_2(TiO_2/Gold) nanoparticles,Journal of Physical Chemistry B 2001 105:960-966.
    [8]A Roucoux,J Schulz,et al.Reduced transition metal colloids:A novel family of reusable catalysts?,Chemical Reviews 2002 102:3757-3778.
    [9]B J Wiley,Y C Chen,et al.Synthesis and optical properties of silver nanobars and nanorice,Nano Letters 2007 7:1032-1036.
    [10] A J Haes and R P Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, Journal of the American Chemical Society 2002 124: 10596-10604.
    [11] A Tao, F Kim, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy, Nano Letters 2003 3: 1229-1233.
    [12] C D Geddes, H Cao, et al. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging, Journal of Physical Chemistry A 2003 107: 3443-3449.
    [13] M H Huang, S Mao, et al. Room-temperature ultraviolet nanowire nanolasers, Science 2001 292: 1897-1899.
    [14] Q Wan, Q H Li, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Applied Physics Letters 2004 84: 3654-3656.
    [15] H Kind, H Q Yan, et al. Nanowire ultraviolet photodetectors and optical switches,Advanced Materials 2002 14: 158-160.
    [16] X Fang, Y Bando, et al. Inorganic semiconductor nanostructures and their field-emission applications, Journal of Materials Chemistry 2008 18: 509-522.
    [17] F Xu, P Zhang, et al. Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis,Surface Energy, and Photocatalytic Activity, Chemistry of Materials 2007 19: 5680-5686.
    [18] X L Wang, F Yang, et al. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface, Chemical Communications 2007:4419-4421.
    [19] K M Reddy, F Kevin, et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied Physics Letters 2007 90: 213902.
    [20] K Ghule, A V Ghule, et al. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study, Green Chemistry 2006 8: 1034-1041.
    [21] O Yamamoto, K Nakakoshi, et al. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide, Carbon 2001 39: 1643-1651.
    [22] J Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO,MgO and CaO) by conductimetric assay, Journal of Microbiological Methods 2003 54:177-182.
    [23] M R Hoffmann, S T Martin, et al. Environmental applications of semiconductor photocatalysis, Chemical Reviews 1995 95: 69-96.
    [24] A L Linsebigler, G Q Lu, et al. Photocatalysis on TiO_2 surfaces - principles, mechanisms,and selected results, Chemical Reviews 1995 95: 735-758.
    [25] X Z Li and F B Li, Study of Au/Au3~+-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environmental Science & Technology 2001 35:2381-2387.
    [26] V Subramanian, E Wolf, et al. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films , Journal of Physical Chemistry B 2001 105: 11439-11446.
    [27]C Y Wang,C Y Liu,et al.The surface chemistry of hybrid nanometer-sized particles-Ⅰ.Photochemical deposition of gold on ultrafine TiO_2 particles,Colloids and Surfaces a-Physicochemical and Engineering Aspects 1998 131:271-280.
    [28]F B Li and X Z Li,Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment,Applied Catalysis A:General 2002 228:15-27.
    [29]I M Arabatzis,T Stergiopoulos,et al.Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation,Journal of Catalysis 2003 220:127-135.
    [30]W Zhao,C Chen,et al.Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation:Influence of Platinum as a Functional Co-catalyst,Journal of Physical Chemistry B 2002 106:5022-5028.
    [31]S W Lam,K Chiang,et al.The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol,Applied Catalysis B-Environmental 2007 72:363-372.
    [32]S Jin and F Shiraishi,Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide,Chemical Engineering Journal 2004 97:203-211.
    [33]F B Li and X Z Li,The enhancement of photodegradation efficiency using Pt-TiO2 catalyst,Chemosphere 2002 48:1103-1111.
    [34]A Sclafani and J M Herrmann,Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania(anatase and rutile) in organic and aqueous media,Journal of Photochemistry and Photobiology a-Chemistry 1998 113:181-188.
    [35]X F You,F Chen,et al.A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide,Catalysis Letters 2005 102:247-250.
    [36]H Tada,K Teranishi,et al.Ag nanocluster loading effect an TiO_2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H_2O,Langmuir 2000 16:3304-3309.
    [37]V Vamathevan,R Amal,et al.Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,Journal of Photochemistry and Photobiology a-Chemistry 2002 148:233-245.
    [38]C M Wang,A Heller,et al.Palladium catalysis of O_2 reduction by electrons accumulated on TiO_2 particles during photoassisted oxidation of organic-compounds,Journal of the American Chemical Society 1992 114:5230-5234.
    [39]F Zeng,C Hou,et al.Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities,Nanotechnology 2007 18:055605.
    [40]S Shrivastava,T Bera,et al.Characterization of enhanced antibacterial effects of novel silver nanoparticles,Nanotechnology 2007 18:225103.
    [41]J R Morones,J L Elechiguerra,et al.The bactericidal effect of silver nanoparticles,Nanotechnology 2005 16:2346-2353.
    [42]P Gong,H M Li,et al.Preparation and antibacterial activity of Fe_3O_4@Ag nanoparticles,Nanotechnology 2007 18:285604.
    [43]C Aymonier,U Schlotterbeck,et al.Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties,Chemical Communications 2002:3018-3019.
    [44]R W Y Sun,R Chen,et al.Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells,Chemical Communications 2005:5059-5061.
    [45]V A Oyanedel-Craver and J A Smith,Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment,Environmental Science & Technology 2008 42:927-933.
    [46]S K Gogoi,P Gopinath,et al.Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles,Langmuir 2006 22:9322-9328.
    [47]J L Elechiguerra,J L Burt,et al.Interaction of silver nanoparticles with HIV-1,J Nanobiotechnology 2005 3:6-10
    [48]C Baker,A Pradhan,et al.Synthesis and antibacterial properties of silver nanoparticles,Journal of Nanoscience and Nanotechnology 2005 5:244-249.
    [49]Y J Xiong,A R Siekkinen,et al.Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide,Journal of Materials Chemistry 2007 17:2600-2602.
    [50]B S Xu,W S Hou,et al.Study on the heat resistant property of Ag/4A antibacterial agent,Journal of Biomedical Materials Research Part B Applied Biomaterials 2008 84B:394-399.
    [51]K Y Yoon,J H Byeon,et al.Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers,Environmental Science & Technology 2008 42:1251-1255.
    [52]Y H Zheng,L R Zheng,et al.Ag/ZnO heterostructure nanocrystals:Synthesis,characterization,and photocatalysis,Inorganic Chemistry 2007 46:6980-6986.
    [53]M Sastry,A Swami,et al.New approaches to the synthesis of anisotropic,core-shell and hollow metal nanostructures,Journal of Materials Chemistry 2005 15:3161-3174.
    [54]A Panacek,L Kvitek,et al.Silver colloid nanoparticles:Synthesis,characterization,and their antibacterial activity,Journal of Physical Chemistry B 2006 110:16248-16253.
    [55]A Dev,S K Panda,et al.Surfactant-Assisted Route to Synthesize Well-Aligned ZnO Nanorod Arrays on Sol-Gel-Derived ZnO Thin Films,Journal of Physical Chemistry B 2006 110:14266-14272.
    [56]X Zhou,Z X Xie,et al.Formation of ZnO hexagonal micro-pyramids:a successful control of the exposed polar surfaces with the assistance of an ionic liquid,Chemical Communications 2005:5572-5574.
    [57]E De la Rosa,S Sepulveda-Guzman,et al.Controlling the growth and luminescence properties of well-faceted ZnO nanorods,Journal of Physical Chemistry C 2007 111:8489-8495.
    [58]N S Ramgir,I S Mulla,et al.Micropencils and Microhexagonal Cones of ZnO,Journal of Physical Chemistry B 2006 110:3995-4001.
    [59]J F Moulder,W F Stickle,et al.1995 Handbook of X Ray Photoelectron Spectroscopy:A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data:Physical Electronics;Reissue edition.
    [60]X Wang,C J Summers,et al.Self-attraction among aligned Au/ZnO nanorods under electron beam,Applied Physics Letters 2005 86:013111.
    [61]A Wood,M Giersig,et al.Fermi level equilibration in quantum dot-metal nanojunctions,Journal of Physical Chemistry B 2001 105:8810-8815.
    [62]H Goto,Y Hanada,et al.Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO_2 particles,Journal of Catalysis 2004 225:223-229.
    [63]T M El-Morsi,W R Budakowski,et al.Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO_2:A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals,Environmental Science & Technology 2000 34:1018-1022.
    [64]C S Turchi and D F Ollis,Photocatalytic degradation of organic-water contaminants-mechanisms involving hydroxyl radical attack,Journal of Catalysis 1990 122:178-192.
    [65]M H Huang,S Mao,et al.Room-Temperature Ultraviolet Nanowire Nanolasers,Science 2001 292:1897-1899.
    [66]M Yin,Y Gu,et al.Zinc Oxide Quantum Rods,Journal of the American Chemical Society 2004 126:6206-6207.
    [67]R Viswanatha,S Chakraborty,et al.Blue-Emitting Copper-Doped Zinc Oxide Nanocrystals,Journal of Physical Chemistry B 2006 110:22310-22312.
    [68]Y Y Zhang and J Mu,One-pot synthesis,photoluminescence,and photocatalysis of Ag/ZnO composites,Journal of Colloid and Interface Science 2007 309:478-484.
    [69]Y Zheng,C Chen,et al.Luminescence and Photocatalytic Activity of ZnO Nanocrystals:Correlation between Structure and Property,Inorganic Chemistry 2007 46:6675-6682.
    [70]H Tahiri,Y A Ichou,et al.Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania,Journal of Photochemistry and Photobiology a-Chemistry 1998 114:219-226.
    [71]J Thiel,L Pakstis,et al.Antibacterial properties of silver-doped titania,Small 2007 3:799-803.
    [72]P K Stoimenov,R L Klinger,et al.Metal Oxide Nanoparticles as Bactericidal Agents,Langmuir 2002 18:6679-6686.
    [1]H Tada,K Teranishi,et al.Ag nanocluster loading effect an TiO_2 photocatalytic reduction of bis(2-dipyridyl)disulfide to 2-mercaptopyridine by H_2O,Langmuir 2000 16:3304-3309.
    [2]S Kim and W Choi,Dual photocatalytic pathways of trichloroacetate degradation on TiO2:Effects of nanosized platinum deposits on kinetics and mechanism,Journal of Physical Chemistry B 2002 106:13311-13317.
    [3]J S Lee and W Y Choi,Effect of platinum deposits on TiO_2 on the anoxic photocatalytic degradation pathways of alkylamines in water:Dealkylation and N-alkylation,Environmental Science & Technology 2004 38:4026-4033.
    [4]T Sano,N Negishi,et al.Photocatalytic degradation of gaseous acetaldehyde on TiO2 with photodeposited metals and metal oxides,Journal of Photochemistry and Photobiology a-Chemistry 2003 160:93-98.
    [5]Y H Zheng,L R Zheng,et al.Ag/ZnO heterostructure nanocrystals:Synthesis,characterization,and photocatalysis,Inorganic Chemistry 2007 46:6980-6986.
    [6]Y Y Zhang and J Mu,One-pot synthesis,photoluminescence,and photocatalysis of Ag/ZnO composites,Journal of Colloid and Interface Science 2007 309:478-484.
    [7]J Sun,L Gao,et al.Synthesizing and comparing the photocatalytic properties of high surface area rutile and anatase titania nanoparticles,Journal of the American Ceramic Society 200386:1677-1682.
    [8]A G Agrios and P Pichat,Recombination rate of photogenerated charges versus surface area:Opposing effects of TiO_2 sintering temperature on photocatalytic removal of phenol,anisole,and pyridine in water,Journal of Photochemistry and Photobiology a-Chemistry 2006 180:130-135.
    [9]A R Liu,S M Wang,et al.Low-temperature preparation of nanocrystalline TiO2photocatalyst with a very large specific surface area,Materials Chemistry and Physics 200699:131-134.
    [10]M Andersson,A Kiselev,et al.Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance,Journal of Physical Chemistry C 2007 111:6789-6797.
    [11]D S Kim and S Y Kwak,The hydrothermal synthesis of mesoporous TiO2 with high crystallinity,thermal stability,large surface area,and enhanced photocatalytic activity,Applied Catalysis a-General 2007 323:110-118.
    [12]H Yamashita,S Nishio,et al.Photo-induced super-hydrophilic property and photocatalysis on transparent Ti-containing mesoporous silica thin films,Catalysis Today 2006 111:254-258.
    [13]H Yamashita,Y Nishida,et al.Design of TiO2-SiC photocatalyst using TiC-SiC nano-particles for degradation of 2-propanol diluted in water,Catalysis Today 2007 120:163-167.
    [14]C S Turchi and D F Ollis,Photocatalytic degradation of organic-water contaminants-mechanisms involving hydroxyl radical attack,Journal of Catalysis 1990 122:178-192.
    [15]M R Hoffmann,S T Martin,et al.Environmental applications of semiconductor photocatalysis,Chemical Reviews 1995 95:69-96.
    [16]A L Linsebigler,G Q Lu,et al.Photocatalysis on TiO_2 surfaces-principles,mechanisms,and selected results,Chemical Reviews 1995 95:735-758.
    [17]C J Rhodes,Reactive radicals on reactive surfaces:Heterogeneous processes in catalysis and environmental pollution control,Progress in Reaction Kinetics and Mechanism 2005 30:145-213.
    [18]A Sclafani,L Palmisano,et al.Influence of the preparation methods of TiO_2 on the photocatalytic degradation of phenol in aqueous dispersion,Journal of Physical Chemistry 1990 94:829-832.
    [19]A Mills,C E Holland,et al.Photomineralization of salicylic acid-a kinetic study,Journal of Photochemistry and Photobiology a-Chemistry 1994 83:257-263.
    [20]K Chhor,J F Bocquet,et al.Comparative studies of phenol and salicylic acid photocatalytic degradation:influence of adsorbed oxygen,Materials Chemistry and Physics 2004 86: 123-131.
    [21]F Lu,W P Cai,et al.ZnO Hierarchical Micro/Nanoarchitectures:Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance,Advanced Functional Materials 2008 18:1047-1056.
    [22]X Wang,C J Summers,et al.Self-attraction among aligned Au/ZnO nanorods under electron beam,Applied Physics Letters 2005 86:013111.
    [23]L Q Jing,Z L Xu,et al.The preparation and characterization of ZnO ultrafine particles,Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2002 332:356-361.
    [24]Y Du,M S Zhang et al.Structural and optical properties of nanophase zinc oxide,Applied Physics a-Materials Science & Processing 2003 76:171-176.
    [25]N S Ramgir,I S Mulla,et al.Micropencils and Microhexagonal Cones of ZnO,Journal of Physical Chemistry B 2006 110:3995-4001.
    [26]A Sclafani and J M Herrmann,Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania(anatase and rutile)in organic and aqueous media,Journal of Photochemistry and Photobiology a-Chemistry 1998 113:181-188.
    [27]X F You,F Chen,et al.A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide,Catalysis Letters 2005 102:247-250.
    [28]H Tahiti,Y A Ichou,et al.Photocatalytic degradation of chlorobenzoic isomers in aqueous suspensions of neat and modified titania,Journal of Photochemistry and Photobiology a-Chemistry 1998 114:219-226.
    [29]I M Arabatzis,T Stergiopoulos,et al.Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation,Journal of Catalysis 2003 220:127-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700