用户名: 密码: 验证码:
利用两种大型海藻制备生物能源的探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质燃料乙醇和沼气都属于发展潜力巨大的生物质能源,大力发展生物质燃料乙醇和沼气对解决当今能源危机、环境污染问题和促进我国经济发展具有重要意义。
     本文就海带化工废弃物——海带渣糖化技术、浒苔糖化技术及初步酒精发酵技术、海带沼气发酵技术、浒苔沼气发酵技术进行了可行性研究。
     1、海带渣总糖含量为52.6%,海带渣总糖中葡萄糖含量占90.9%,另外还有少量的半乳糖、甘露糖和木糖,这说明海带渣是非常优良的能源生物质。
     2、海带渣糖化工艺采取稀硫酸预处理后纤维素酶酶解产糖工艺。海带渣最佳稀硫酸预处理条件为预处理温度121℃、硫酸浓度0.6%、预处理时间60 min,此时海带渣纤维素酶解产糖可达187.8 mg/g干藻。
     3、优化了预处理海带渣纤维素酶酶解产糖工艺。各因素对海带渣酶解产糖的影响依次为:pH>温度>时间>酶用量,海带渣纤维素酶解产糖的最佳条件为温度45℃、pH5.2、时间48小时、酶用量16 mg/g干藻,此时糖产量为238.9 mg/g干藻。
     4、浒苔总糖含量为67.2%,浒苔总糖主要有葡萄糖、木糖、葡萄糖醛酸和鼠李糖组成,其中葡萄糖和木糖可以做为酒精发酵的原料,这两种糖占总糖含量的51%。
     5、以鲜浒苔为原料研究了浒苔稀硫酸水解工艺和纤维素酶酶解工艺。发现浒苔酸水解产糖效果明显优于纤维素酶酶解。
     6、以干浒苔为原料研究了浒苔酸解工艺。硫酸水解干浒苔产糖能力优于盐酸、磷酸和马来酸,水解时间为60 min、硫酸浓度为1.8%的时候可用于酒精发酵的糖(葡萄糖和木糖)总产量达到最大值为230.5 mg/g干浒苔,占此条件下总还原糖产量的48.6%。同时发现干浒苔比鲜浒苔更易被硫酸水解产糖。
     7、初步研究了浒苔酒精发酵工艺。初步工艺中酒精产量较低、测得酒精在发酵液中浓度为0.23%(v/v),后续工作中需要对酒精发酵工艺进行优化。
     8、海带与牛粪比例为4:1(w/w)是海带与牛粪联合厌氧消化的最佳比例,此时产气时间最长,达到37天,总产气量最高,达到13600 mL。
     9、在海带与牛粪联合厌氧消化中,增加接种量到15 g(干重)时发酵周期为39天,总产气量为14630 mL,TS产气量为152.4 mL/gTS,接种量为21 g(干重)时发酵周期为36天,总产气量为14090 mL,TS产气量为138.1 mL/gTS,可见适当增加接种量可促进产气量的增加。
     10、浒苔与牛粪比例为4:2(w/w)是浒苔与牛粪联合厌氧消化的最佳比例,此时产气时间为33天,总产气量最高达到6785 mL。
     11、在浒苔与牛粪联合厌氧消化中,增加接种量到7.5 g(干重)时发酵周期为38天,总产气量为7470 mL,TS产气量为155.6 mL/gTS,接种量为10.5 g(干重)时发酵周期也为38天,总产气量为7020 mL,TS产气量为137.6 mL/gTS,可见增加接种量可促进产气量的增加。
Feng Dawei (Marine Pharmacy) Directed by prof. Qin Song
     Fuel ethanol and biogas are both kinds of promising bio-energy. It’s important to develop fuel ethanol and biogas to solve the energy crisis and environmental crisis, and it’s also meaningful to develop the economy of our country.
     Studies below were included: saccharification of Laminaria residue(waste of Laminaria industry); saccharification and preliminary ethanol fermentation of Enteromorpha; biogas fermentation of Laminaria; biogas fermentation of Enteromorpha.
     1, The content of total sugars of Laminaria residue was 52.6%. The polysaccharides of Laminaria residue was composed of 90.9% glucose and a little galactose, mannose and xylose. Laminaria residue was proved to be good material of energy biomass.
     2, H2SO4 pretreatment of Laminaria residue before enzymatic hydrolysis by cellulase was investigated. When the Laminaria residue was pretreated by 0.6% sulfuric acid that the tempreture was 121℃and the hydrolyzing time was 60 min, the yield of glucose was 187.8 mg/g dry sample after enzymatic hydrolysis by cellulase.
     3, The enzymatic hydrolysis process of pretreated Laminaria residue by cellulase was optimized. The optimal condition was as following: temperature 45℃, pH 5.2, hydrolyzing time 48h, enzyme loading 16 mg/g dry sample, the yield of glucose after enzymatic hydrolysis was 238.9 mg /g dry sample.
     4, The content of total sugars of Enteromorpha was 67.2%. The polysaccharides of Enteromorpha was composed of glucose, xylose, glucuronic acid and rhamnose. Glucose and xylose were good material for ethanol fermentation. They accounted for 51% of total sugars of Enteromorpha.
     5, The processes of acid hydrolysis and enzymatic hydrolysis for fresh Enteromorpha was studied. The process of acid hydrolysis was proved to be much better than enzymatic hydrolysis.
     6, The process of acid hydrolysis for dry Enteromorpha was studied. H2SO4, HCl, H3PO4 and malelic acid were used in this study. It was showed that H2SO4 is the best of the 4 kinds of acids. When the concentration of the sulfuric acid was 1.8% and the hydrolyzing time was 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was 230.5 mg/g dry sample which accounted for 48.6% of total reducing sugars. It was proved that the dry Enteromorpha was easier to be hydrolyzed by acid than the fresh one.
     7, The ethanol fermentation process of Enteromorpha was studied. The ethanol yield was low, the content of ethanol in the fermentative liquid was only 0.23%(v/v), The ethanol fermentation process should be optimized in the follow study.
     8, The best ratio for Laminaria and cattle manure anaerobic co-digestion was 4:1(Laminaria vs cattle manure, w/w). The biogas producing time was 37 days, the total biogas yield was as much as 13600 mL.
     9, When the inoculation increased to 15 g(dry basis) in the process of Laminaria and cattle manure anaerobic co-digestion, the biogas producing time was 39 days, the total biogas yield was 14630 mL, the TS biogas yield was 152.4 mL/gTS. When the inoculation increased to 21 g(dry basis), the biogas producing time was 36 days, the total biogas yield was 14090 mL, the TS biogas yield was 138.1 mL/gTS. The total biogas yield could be improved by the proper increase of inoculation.
     10, The best ratio for Enteromorpha and cattle manure anaerobic co-digestion was 4:2(Enteromorpha vs cattle manure, w/w). The biogas producing time was 33 days, the total biogas yield was as much as 6785 mL.
     11, When the inoculation increased to 7.5 g(dry basis) in the process of Enteromorpha and cattle manure anaerobic co-digestion, the biogas producing time was 38 days, the total biogas yield was 7470 mL, the TS biogas yield was 155.6 mL/gTS. When the inoculation increased to 10.5 g(dry basis), the biogas producing time was also 38 days, the total biogas yield was 7020 mL, the TS biogas yield was 137.6 mL/gTS. The total biogas yield could be improved by the proper increase of inoculation.
引文
[1]黄素逸.能源科学导论.北京:中国电力出版, 1999.
    [2]张焕芬.各种新能源应用对环境影响.新能源国际研讨会论文集. 2001.
    [3]肖军.生物质利用现状.安全与环境工程.2003, 10(1): 11-14.
    [4]但卫华.生物质与生物质工程.中国皮革. 2002, 3(10): 31-35.
    [5]孔宪文,李丽萍.发展生物质能可获得多方面的效益.节能. 2003, 2: 45-47.
    [6]张继泉,王瑞明.玉米秸秆同时糖化发酵生产燃料酒精的研究.纤维素科学与技术. 2001, 10(3): 35-39.
    [7]张继泉,孙玉英.玉米秸秆稀硫酸预处理条件的初步研究.纤维素科学与技术. 2002, 10(2): 32-36.
    [8]杨斌,高孔荣.甘蔗渣的糖化及转化为酒精的研究概况.食品与发酵工业. 1995, 6: 61-65.
    [9]王桂强.浅谈从生物质制取燃料液体乙醇工艺.辽宁化工. 1999, 28(5):271-276.
    [10]曲音波,高培基.开展生物质转化为酒精研究实现液态燃料可持续供应.中美清洁能源技术论坛.
    [11]孙义雄,王义甫.应用曲霉纤维纱酶提高出酒率的研究.酿酒.1991, 2: 18-21.
    [12] Kim Sung Bae, Lee Y. Y.. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute—acid pretreatment. Bioresource Technology. 2002, 83: 165-171.
    [13]张继泉,孙玉英,关凤梅,等.玉米秸秆稀硫酸预处理条件的初步研究.纤维素科学技术. 2002, 10: 2-6.
    [14] Tae Hyun Kim, Jun Seok Kim, Changshin Sunwoo. Pre-treatment of coin stover by aqueows ammonia. Bioresource Technology. 2003, 90: 39-47.
    [15] Bisaria V.S.,Ghose T.K.. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb. Technol., UK. 1981, 3(2): 90-104.
    [16] Hatakka A I.Retreatment of wheat straw by white-rot fungi for enzymatic saecharification of cellulose. Eur. J. Appl. Microhiol. Biotechnol. 1983, 18: 351-357.
    [17] J. C. du Preez. Process parameters and environmental factors affecting D-xylose fermentation by yeasts.Enzyme Microb.Technol..1994,16(11): 944-956.
    [18]于斌,齐鲁.木质纤维素生产燃料乙醇的研究现状.化工进展.2006, 25(3): 244-249.
    [19]钱名宇,杨秀山.燃料酒精生产中对木质纤维素稀酸水解液的脱毒处理.太阳能. 2005, 2: 49.
    [20]瞿礼嘉,顾红雅,胡苹,等.现代生物技术导论.北京:高等教育出版社,德国:施普林格出版社, 1998: 204-211.
    [21] Perez J., Oz - Dorado J Mun, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin. Industrial Microbiology. 2002, 5(1): 53-63 .
    [22]刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工. 2005, 25(3): 19-24.
    [23]李秋园,胡彩静,刘建军,等.利用木糖渣生产酒精的研究.食品与发酵工业. 2003, 29(5): 74-76.
    [24]王晨霞,方慧英,诸葛健.两步酸水解玉米芯条件及其酒精发酵的初步研究.食品与发酵工业. 2004, 30(4): 36-39.
    [25] M. Ballesteros, J. M. Oliva, M. J. Negro, et al.Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. World Journal of Microbiology and Biotechnology. 2002, 18: 559-561.
    [26]吕福英,阂航,陈美慈,等.一个高温厌氧直接转化纤维素成乙醇的高纯富集物.浙江大学学报(农业与自然科学版). 2000, 26(1): 56-60.
    [27] Wang P Y, Shopsis C, Schneider H.. Fermentation of a pentose by yeasts. Biochem. Bbiophs. Res.Commun..1980, 94(1): 248-254.
    [28]张聚宝,林影,向柱方,等.一株可利用甘蔗渣水解液发酵酒精的菌株筛选.生物加工过程. 2004, 2(3): 60-62.
    [29]张瑞泉,王瑞明,关凤梅,等.预处理玉米秸秆发酵生产燃料酒精的研究.广州食品工业科技. 2002, 18(3): 1-3.
    [30]吴思方,陈九武.固定化酵母载体材料的研究及应用.武汉食品工业学院学报. 1996, 3: 26-35.
    [31]夏黎明,丁红卫,余世袁.固定化增殖细胞发酵半纤维素糖类的研究.食品与发酵工业, 1994,(1): 1-5.
    [32]杨涛,马美湖.纤维素类物质生产酒精的研究进展.中国酿造. 2006(8): 11-15.
    [33] Mahesh S. Krishnan, Maria Blanco, Christopher K. Shattuck, et al. Ethanol production fromglucose and xylose by immobilized Zymomonas mobilis CP4 (pZB5). Applied Biochemistry and Biotechnology. 2000, (84-86): 525-541.
    [34]白凤武.无载体固定化细胞的研究进展.生物工程进展. 2000, 20(2): 32-36.
    [35] Lebenu T.,Jouenne T.,Junter G.A.Continuous alcoholic fermentation of glucose /xylose mixtures by co-immobilized Saccharomyces cerevisiae and Candida shehatae. Applied Microbiology and Biotechnology. 1998, 50: 309-313.
    [36] Eva I Joachimsthal, Peter L. Characterization of a high-productivity recombinant strainof Zymomonas imobilis for ethanol production from glucose/ xylose mixtures. Applied Biochemistry and Biotechnology. 2000, (84-86): 343-355.
    [37] LESCHINE S.B.. Cellulose Degradation in Anaerobic Environments. Annu.Rev. Microbiol.. 1995, (49): 399-426.
    [38]夏祖璋.发达国家沼气装置概述.新能源. 1994, 6: 9-22.
    [39]黄志南译.世界沼气建设的研究概况.国外沼气资料.1981, 5: 1-6.
    [40]蔡磊.德国利物浦罐技术在大中型沼气工程中的应用.中国沼气. 1997, 15(2): 29-32.
    [41]刘英.德国沼气技术考察报告.中国沼气.2001, 4: 41-43.
    [42] G. K. Anderson, G. Yang. pH control in anaerobic treatment of industrial wastewaters. Journal of Environmental Engineering. 1992, 118 (4): 551–567.
    [43] Goel B., Pant D. C., Kishore V.V.N.. Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation. Bores Techno.2001, 80(2): 153-156.
    [44] Patick. Z.. Phyntoxic substance associated with the decomposition in soil plant residues, Soil Science. 1971, 111(1): 115-130.
    [45] Jens E. Schmidt, Birgitte K. Ahring. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering. 1996, 49(3): 229-246.
    [46] Chen R. L.. Shrinking-bed model for percolation process apple to dilute-acid pretreatment hydrolysis of cellulosic biomass. Appl-biochem-biotechnol. 1998, 70(1): 37-50.
    [47] Ghost S. et al.. Pilot-and full-scale two-phase anaerobic digestion of municipal sludge,Wat. Environ. Res. 1995, 67(2): 206-214.
    [48] Ghost S., Taylor D. C.. Kraft-mill biosolids treatment by conventional and biphasic fermentation. Wat. Sci. Tech. 1999, 40(11-12): 169-177.
    [49] Fox P., Pohland G.. Anaerobic treatment applications and fundamentals: substrate specificityduring phase separation. Water Environment Research. 1994, 66: 716-724.
    [50] Raynal J, Delgenes J. P., Mdletta R.. Two-phase anaerobic digestion of solid waste by a multiple liquefaction reactors process. Biores, Technol. 1998, 65: 97-103.
    [51] Chanakya H. N., et al. Two-phase anaerobic digestion of water hyacinth or urban garbage. Biores, Technol. 1992, 64: 123-131.
    [52]彭武厚.厌氧消化技术发展前景广阔.工业微生物.1997, 27(3): 32-36.
    [53]贺亮.试论21世纪我国沼气技术的走向.新能源. 1997, 19(2): 27-30.
    [54]李刚,欧阳峰.两相厌氧消化工艺的研究与进展.中国沼气. 2001, 19(2): 25-29.
    [55]管运涛,蒋展鹏.两相厌氧膜生物系统产气特性研究.中国沼气. 1999, 17(4): 32.
    [56]周岳溪,孔欣,郝丽芳,等.水葫芦加动物排泄物两相厌氧生物处理工艺.环境科学研究. 1996. 9(6): 6-10.
    [57]段文霞,牟树森.畜粪污染处理与利用研究.四川环境. 1994, 13(2): 27-31.
    [58]李亚新.微量金属元素对甲烷菌激活作用的动力学.中国沼气. 2000, 18(2): 116-118.
    [59]杨玉杰.升流式厌氧污泥层反应器动力学模型.生物工程学报. 1996, 12(4): 440-447.
    [60]倪龙兴,史俊,陈晓玲,等.厌氧菌酶动力学变化可能与细菌的代谢有关.第四军医大学学报. 1997, 18(4): 319-322.
    [61]张建英,沈学优,方益萍.厌氧塘处理污水效果初探.杭州大学学报(自然科学版). 1996, 23(1): 45-48.
    [62]沈东升,徐向阳,冯孝善.厌氧污泥降解氯酚的驯化及其在驯化过程中的降解动力学,环境科学学报. 1996, 16(3): 309-316.
    [63]袁月祥,廖银章,刘晓风,等.有机垃圾发酵过程中的微生物研究.微生物学杂志. 2002, 22(1): 22-26.
    [64]周少奇.有机垃圾厌氧处理的微生物作用原理.华南理工大学学报(自然科学版). 1999, 27(9): 47-4948.
    [65]陈华林,周江敏,漆玉邦.非木材纤维纸浆中杂细胞的沼气发酵. 2001, 19(3): 15-19.
    [66]管运涛,蒋展鹏,祝万鹏,等.两相厌氧膜生物系统处理有机废水的研究.环境科学. 1998, 19(6): 56-59.
    [67]安景辉,卜城.厌氧反应过程中相状态的确定.中国沼气. 2001, 19(1): 11-15.
    [68]郭养浩. UASB反应器中影响污泥颗粒化的工程因素.生物工程学报. 1997, 13(1): 11-23.
    [69]郭小磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理.给水排水. 2000, 1: 25-46.
    [70]李清雪,郭静,王东云,等.厌氧浮动生物膜反应器处理高浓度有机废水.城市环境与城市科学. 1997, 12(3): 8-11.
    [71]张锡辉,白志俳.南疆界有机污染物共降解机理解析.上海环境科学. 2000, 19(7): 297-301.
    [72]张建民,李茹,贾红健.造纸黑液厌氧处理过程中颗粒污泥驯化条件的探索.工业水处理. 2000, 20(10): 21-23.
    [73]孙清,代替广,王君玲.固定化细胞技术在能源与环境工程上的应用.农村能源. 2002,102(2): 22-23.
    [74]李爱民,田淑媛.固定化光和细菌在厌氧折流板反应器中处理有机废水的试验研究.天津师范大学学报(自然科学版). 1994, 14(3): 53-57.
    [75]李海英.固定化微生物处理造纸漂白废水.工业用水与废水. 2001, 32(5): 19-22.
    [76]张旭,王宝贞,朱宏.厌氧消化体系的酸碱性及其缓冲能力,中国环境科学. 1997, 6: 492-495.
    [77]赵由才.生活垃圾资源化原理与技术.化学工业出版社, 2002.
    [78]北京市市政工程设计研究总院主编.《给水排水设计手册》第5册,北京:中国建筑工业出版杜, 1986.
    [79]陈洪章,陈继贞.汽爆工艺的研究.纤维素科学与技术. 1999, 7(2): 60-64.
    [80] Zootemeyer R. J., et al.. Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Wat. Res. 1982, 16(3): 313-321.
    [81] Crawford R. L.. Lignin biodegradation and transformation. New York: John Wiley&Sons. Inc., 1981, 46.
    [82]周奇迹.农业微生物.中国农业出版社, 2001: 10-28.
    [83]马溪平.厌氧微生物学.于污水处理.化学工业出版社, 2005.
    [84]陈文新.环境微生物学.北京农业大学出版社, 1989: 167-180.
    [85]杨彬然.环境微生物.中国环境科学出版社, 1990: 56-76.
    [86] J. E. Killilea, et al. Establishing procedure for design, operation and maintenance of sewage sludge anaerobic treatment plants. Water Science and Technology. 2000, 41(3): 305-312.
    [87] Lettinga G., Hulshoff Pol., Look W.. UASB-process design for various types of wastewaters.Wat.Sci.Tech.1991, 24(8): 87-107.
    [88] J. B. vanLier, et al. New perspectives in anaerobic digestion. Water Science and Technology. 2001, 43(1): 1-18.
    [89] C. P. Leslie Grady, Jr. Glen, T. Daigger. Henry C. Lim著.张锡辉,刘勇弟译.废水生物处理. 2003, 391-429.
    [90]卞有生.生态农业中废弃物的处理与再生利用.北京:化学工业出版社, 2000, 4: 86-100.
    [91]周孟津.沼气生产利用技术.中国农业大学出版社. 1999, 8: 9-15.
    [92]方德华.奶牛粪沼气发酵条件的初步研究.中国沼气. 1994, 12(4): 13-15.
    [93]李刚,杨立中,欧阳峰.厌氧消化过程控制因素及pH和Eh的影响分析.西南交通大学学报. 2001, 36(5): 518-522.
    [94]李晓岩,邢永杰,刘安波,等.常温中试升流式厌氧污泥层反应器污泥颗粒化过程研究.环境科学, 1990, 11(6): 22-25.
    [95]李刚,欧阳峰,杨立中.两相厌氧消化工艺的研究与进展.中国沼气. 2001, 19(2): 25-29.
    [96] Bernal M P, Navarro A F, Sanchez-Monedero M A,Roig A,Cegarra J. Infuence of sewage sludge compost stability and Maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem.. 1998, 30(3):305-313.
    [97] Braber K. Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass&Bioenergy. 1995, 9(1-5): 265-276.
    [98] James H, Hartiey, Tony D, James Saccharid. Accelerated hydrolysis of boronic acid imines. Tetrahedron Letters. 1999, 40(13): 2597-2600.
    [99] Adrie Veeken, Sergey Kalyuzhnyi, Heijo Scharff, Bert Hamelers. Effect of pH and VFA on hydrolysis of organic solid waste. Journal of environmental engineering.2000, 12(6): 1076-1081.
    [100] Rodriguez-Iglesias J, Castrillon L, Maranon E, Sastre H. Solid-state anaerobic digestion of unsorted municipal solid waste in a pilot-plant digester. Bioresource Technology. 1998, 63(1): 29-35.
    [101]徐曾符.沼气工艺学.北京:农业出版社, 1981: 67-95.
    [102]黄宗国.中国海洋生物种类与分布.北京:科学出版社, 1962.
    [103]张淑梅,李忠红.浅谈中国海藻开发利用.水产科学. 2001, 20(4): 35-37.
    [104]黄知清.海藻研究开发的发展概述.海洋技术. 2002, 21(3): 22-25.
    [105]彭卫民.采用裂解技术将湖泊浮游藻类用于燃料生产.环境污染治理技术与设备. 2000, l(3):24-28.
    [106] Weimin Peng, et al. Pyrolytic characteristics of microalgae as renewable energy Source determined by thermogranimetric analysis. Bioresource Technology. 2001, (80): 1-7.
    [107]曾呈奎,张德瑞,张峻甫.中国经济海藻志.北京:科学出版社, 1962.
    [108] Luning, K. and Pang, S.J. Mass cultivation of seaweeds: current aspects and approaches. Journal of Applied Phycology. 2003, 15(2-3): 115-119.
    [109] Tseng CK. Algal biotechnology industries and research activities in China. J. Appl. Phycol.. 2001, 13: 375-380.
    [110]李林,罗琼,张声华.海带中褐藻糖胶的组分分析.中国食品学报. 2001, 1(1): 46-49.
    [111]甘纯玑,谢苗.褐藻渣的开发利用.中国食物与营养. 2001, 3: 18-20.
    [112]陈悦,席与玲,李志萍.海带藻渣处理中絮凝条件的研究.青岛大学学报. 2003, 16(1): 20-23.
    [113] Tseng C K. Common Seaweeds of China.北京:科学出版社, 1983.
    [114]陈灿坤.浒苔加工技术研究项目技术总结报告(鉴定材料). 2006, (6).
    [115] Ohno M. Cultivation of the green alga,Monostroma and Enteromorpha“,Aonori”In: Ohno M. and Critehley A,T. (eds). Seaweed Cultivation and Marine Ranching. Kanagawa International Fisheriea Training Center(JICA), Yokosuka, Japan.1993, 7-15.
    [116] Briand X. Seaweed harvesting in Europe. In: Seaweed Resources in Europe, Guiry M. D., Blunden G.. (eds).wiley, Chichester, UK. 1991, 259-308.
    [117] Rusig A. M. and Cosson J. Plant regeneration from protoplasts of Enteromorpha intestinalis (Chlorophyta,Ulvophyceae) as seedstock for macroagal culture. Journal of Applied Psychology. 2001, 13: 103-108.
    [118] Dan A., Hiraoka M., Ohno M. et al. Observations on the effete of salinity and photon fluence rate on the induction of sporulation and rhizoid formation in the green alga Enteromorpha prolifera (muller) J. (Chlorophyta,Ulvales). Fisheries Science. 2002, 68: 1182-1188.
    [119] Mamatha B. S., Namitha K. K. Senthil A. et al. Studies on use of Enteromorpha in snack food. Food Chemistry. 2007, 101: 707- 713.
    [120] Harlin M. M. and Thome-MillerB. Nutrient of seagrass in a Rhode Island coastal lagoon,Marine Biology. 1981, 65: 221-229.
    [121] Sand-Jensen K. and Borum J. Interactions among phytoplankton, periphyton and macrophytes in temperate freshwaters and estuaries. Aquatie Botany.1991, 41: 137-175.
    [122] Valiela I., McClell J., Hauxwell J., et al. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr.. 1997, 42:1105-1108.
    [123]邹定辉,陈雄文.高浓度CO2对条浒苔(Enteromorpha clathrata)生长和一些生理生化特征的影响.海洋通报. 2002, 21(5): 38-45.
    [124] Hiraoka M., Ohno M., Kawaguchi S., et al.. Crossing test among floating Ulva thalli forming‘green tide’in Japan. Hydrobiologia. 2004, 512: 239-245.
    [125]张晓雯,毛玉泽,庄志猛,等.黄海浒苔绿潮的形态学观察及分子鉴定.中国水产科学.2008, 15(5): 822-829..
    [126]王晓坤,马家海,叶道才,等.浒苔(Enteromorpha prolifera)生活史的初步研究.海洋通报.2007, 26(5): 112-116.
    [127]林阿朋,王建伟,阎斌伦,等.浒苔(Enteromorpha prolifera)组织培养初步研究.生态科学. 2006, 25(4): 320-324.
    [128]王建伟,阎斌伦,林阿朋,等.浒苔(Enteromorpha prolifera)生长及孢子释放的生态因子研究.海洋通报. 2007, 26(2): 60-65.
    [129]周慧萍,朱海燕,陈琼华.浒苔多糖的分离、纯化和分析.生物化学杂志. 1995, 11(1): 91-94.
    [130]徐大伦,黄晓春,杨文鸽,等.浒苔营养成分分析.浙江海洋学院学报(自然科学版). 2003, 22(4): 318-320.
    [131]杨君,安利佳,王茜,等.石莼属(ulva)和浒苔属(Enteromorpha)绿藻的RAPD分析.海洋与湖沼. 2000, 31(4): 408-413.
    [132]秦松.第五届国际藻类学大会反映的藻类生物技术的最新进展.生物工程进展. 1995, 15(4): 2-7.
    [133] Noda H., Alllano H., Alashima K., et al. Antitumor activity of marine algae. Hydrobiologia.1990, 204/205: 577-584.
    [134] Christie AO, Evans LV. Periodicity in the liberation of gametes and zoospores of Enteromorpha intestinalis Link. Nature. 1962,193: 193-194.
    [135] Lee TF, Wichroski M. Polar regeneration in Enteromorpha prolifera. J. Phycol.. 1996, 32: 2.
    [136] Blomster J., Back S., Fewer DP., et al. Novel morphology in Enteromophology in Enteromorpha(UlvoPhyceae) forming green tides. American Jounal of Botany. 2002, 89(11): 1756-176.
    [137] Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006, 69: 627-642.
    [138] Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56:17-34.
    [139] Knauf M, Moniruzzaman M. Lignocellulosic biomass processing: A perspective. Internati- onal sugar journal. 2004, 106: 147-150.
    [140]王晨霞,方慧英,诸葛健.两步酸水解玉米芯条件及其酒精发酵的初步研究.食品与发酵工业. 2004, 30(4): 36- 39.
    [141] Mielenz J R. Ethanol production from biomass technology and commercialization status. Current Opinion in Microbiology. 2001, 4: 324–329.
    [142] Horn S J, Aasen I M, ?stgaard K. Ethanol production from seaweed extract. Journal of Industrial Microbiology & Biotechnology. 2000, 25: 249-254.
    [143] Moen E, Horn S J, ?stgaard K. Alginate degradation during anaerobic digestion of Laminaria hyperborean stipes. Journal of Applied Phycology. 1997, 9: 157-166.
    [144] Moen E, Horn S J, ?stgaard K. Biological degradation of Ascophyllum nodosum. Journal of Applied Phycology. 1997, 9: 347-357.
    [145] Moxley G, Zhang Y H P. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy & Fuels. 2007, 21(6): 3684-3688.
    [146]庄新姝.生物质超低酸水解制取燃料乙醇的研究.浙江大学博士学位论文. 2005.
    [147] Meyer A, Raba C, Fischer K. Ion-pair RP-HPLC determination of sugars, amino sugars, and uronic acids after derivatization with p-aminobenzoic acid. Anal. Chem.. 2001, 73: 2377-2382.
    [148] Lin A P, Shen S D, Wang J W, Yan B L. Reproduction diversity of Enteromorpha prolifera. J Integrative Plant Biology. 2008, 50(5): 622-629.
    [149] Pérez-Lloréns J L, Brun F G, Andría J, Vergara J J. Seasonal and tidal variability ofenvironmental carbon related physico-chemical variables and inorganic C acquisition in Gracilariopsis longissima and Enteromorpha intestinalis from Los Toru?os salt marsh (Cádiz Bay, Spain). J Exp Mar Biol Ecol.. 2004, 304(2): 183-201.
    [150] Fletcher R L. The occurrence of‘‘green tides’’: a review. In: Schramm W and Nienhuis P H (eds.), Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Springer, Berlin, Germany. 1996, 7-43.
    [151] Sun S, Wang F, Li C L, et al. Emerging challenges: massive green algae blooms in the YellowSea.http://precedings.nature.com/documents/2266/version/1/files/npre20082266-1.pdf
    [152] M. Aguilera-Morales, M. Casas-Valdez, S. Carrillo-Domínguez, et al. Chemical composi- tion and microbiological assays of marinealgae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis. 2005, 18(1): 79-88.
    [153] Bimalendu R. Polysaccharides from Enteromorpha compressa: Isolation,purification and structural features. Carbohydrate Polymers. 2006, 66: 408-416.
    [154]何清,胡晓波,周峙苗,等.东海绿藻缘管浒苔营养成分分析及评价.海洋科学. 2006, 30(1): 34-38.
    [155]林文庭.浅论浒苔的开发与利用.中国食物与营养. 2007, (9): 23-25.
    [156]文新亚,李燕松,张志鹏,等.酶解木质纤维素的预处理技术研究进展.酿酒科技. 2006, (8): 97-100.
    [157]何北海,林鹿,孙润仓,等.木质纤维素化学水解产生可发酵糖研究.化学进展. 2007, 19(7/8): 1141-1146.
    [158]张毅民,杨静,吕学斌,等.木质纤维素类生物质酸水解研究进展.世界科技研究与发展. 2007, 29(1): 48- 54.
    [159] Sun Y, Cheng J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 2005, 96: 1599–1606.
    [160] Silverstein R A, Chen Y, Sharma-Shivappa R R, Boyette M D, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology. 2007, 98: 3000–3011.
    [161] Sun Y, Cheng J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 2005, 96: 1599–1606.
    [162]杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究.生物技术.2004, 14(5): 46-48.
    [163] Chattopadhyay K, Mandal P, Lerouge P, et al. Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales, Chlorophyta): Isolation and structural features. Food Chemistry. 2007, 104: 928-935.
    [164]张希衡.废水厌氧生物处理工程.北京:中国环境科学出版社,1996.
    [165] James H, Hartiey, Tony D, James Saccharid. Accelerated Hydrolysis of Boronic acid Imines. Tetrahedron Letters.1999,40(13):2597-2600.
    [166] Rodriguez-Iglesias J, Castrillon L, Maranon E, Sastre H. Solid-state anaerobic digestion of unsorted municipal solid waste in a pilot-plant digester. Bioresource Technology.1998, 63(1): 29-35.
    [167] Water J Wujcik. Anaerobic dry fermentation. Biotechnology Bioengineering Symp. 1980, 10: 43-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700