用户名: 密码: 验证码:
碱度对厌氧折流板反应系统启动及优势种群形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用七格室厌氧折流板反应器作为试验装置,以人工配制的糖蜜废水作为试验用水,在进水COD1000mg/L,容积负荷0.8 kg/m3·d,停留时间30h,温度35±1℃,污泥接种量15~25gMLSS/L的条件下,分别采用投加和不投加NaHCO3进行进水碱度调节的方式启动反应器,着重研究碱度对厌氧折流板反应器的启动、运行以及优势种群的形成的影响;确定产氢产乙酸菌群的空间生态位并研究其在厌氧处理体系中的重要作用。
     试验表明,不进行进水碱度调节的情况下,反应体系对外界条件的变化敏感,无法实现微生物种群的高度分离,污泥活性低,无法形成颗粒污泥,最终启动失败。
     在进行碱度调节的条件下,随进水COD浓度增加而提高进水碱度,最终在进水COD4000 mg/L,容积负荷3.2 kg/m3·d,进水碱度2000 mg/L(以CaCO3计)的条件下,反应器启动成功,COD去除率为93%,进入稳定期,反应器发酵类型以丙酸型发酵为主。启动第40天开始出现颗粒污泥,第90天左右,各格室颗粒污泥成熟。前三个格室的污泥结合成2mm左右、结构相对松散的灰褐色的絮团,中间夹有白色凝胶状物质,后两个格室的颗粒污泥主要为椭球形或球形的亮黑色颗粒,粒径为1.5mm左右,第四、五格室的颗粒污泥主要为扁椭圆盘状,粒径为1.5mm左右。各格室种群分离良好,前三个格室为水解发酵段,第四格室为过渡段,第五格室为产氢产乙酸菌群与产甲烷菌群大量繁殖的场所,第六、七格生存的主要是产甲烷菌群。
     试验证明:接种污泥中水解酸化菌群和产甲烷菌群的活性先于产氢产乙酸菌群恢复,然而去除效率的突跃却始于产氢产乙酸菌群活性的提高,产甲烷菌活性总是伴随产氢产乙酸菌活性的提高而提高,产氢产乙酸阶段是位于产甲烷阶段之前的限速步骤。产氢产乙酸阶段和产甲烷阶段,哪个是厌氧反应过程中的首要限速步骤取决于水解酸化阶段末端发酵产物的组成。
     在运行稳定期逐步降低进水碱度,结果表明碱度在1500mg/L以上时,COD去除率均保持在90%以上。随着反应体系pH值的降低,水解酸化段后移,水解酸化段末端产物的组成发生变化。SSCP图谱从微观角度证明了在一定范围内,第五格室中的优势种群组成稳定,不受碱度下降的影响。
In this dissertation, An Anaerobic Baffled Reactor (ABR) with seven compartments was employed as experimental equipment and the molasses wastewater was elected as experimental objective. Under the condition of inlet COD up to 1000 mg/L, organic load up to 0.8 kg/m3·d, Hydraulic Retention Time (HRT) up to 30 h, temperature around 35±1℃, sludge inoculation between 15 and 25 gMLSS/L, the effects of alkalinity on the start-up and operation of the reactor, and formation of predominant community in ABR was investigated. The alkalinity of inlet water was adjusted by the addition of NaHCO3. In the experiment, we determined the spatial niche of acedogenic hydrogenogens and studied its important function in anaerobic treatment system.
     The experimental results suggested that the reactor system was sensitive to environmental changes without the regulation of inlet water alkalinity. And the microbial community was not highly separated. The failure of formation of granular activated sludge, due to the low activity of sludge, led to the failure of the start-up.
     Under the circumstance of alkalinity regulation; the alkalinity of inlet water was elevated with the increase of COD concentration. Finally with the inlet COD up to 4000 mg/L, organic load up to 3.2 kg/m3·d, and initial alkalinity up to 2000 mg/L, the reactor could be successfully started up and the removal rate of COD reached up to 93%. In steady stage, the main fermentation type of the system was propionic-acid type. The granular sludge appeared in the 40th day during start-up and became grown up in every compartment in 90 days. The sludge granules in the fore-three compartments were loose and brown flocculant microparticles around 2mm diameter and the middle of granules were filled with white gelatinous materials. While the sludge granules in the last two compartments were mainly made up of elliptical or global black bright granula with diameter around 1.5 mm. The sludge granules in the fourth and fifth compartments were mainly flat-elliptical and its diameter was around 1.5mm.
     The community in the reactor was separated sufficiently by different compartments when the reactor was started up by means of adjusting the
引文
1. B. Z. Wang, L. Wang, L. Y. Yang. Case Studies on Pond Eco-systems for Wastewater Treatment and Utilization in China [A].Global Water and Wastewater Technology[C]. London: World Market Research Center, 1999:64~71
    2. 胡纪萃. 废水厌氧生物处理理论与技术. 中国建筑工业出版社, 2003: 13~17
    3. 汪洪生. 现代废水厌氧处理应用技术进展. 污染防治技术. 2002, 15(4):15~20
    4. 沈耀良, 赵丹, 杨铨大, 等. 厌氧—好氧法处理渗滤液与城市污水混和废水的可行性. 污染防治技术. 2000, 13(2): 63~67
    5. 赵文玉, 吴振斌, 新型厌氧处理反应器的发展及应用. 四川环境. 2002, 21(1): 32~36
    6. 张希衡. 废水厌氧生物处理工程. 中国环境科学出版社, 1996: 10~30
    7. G. L. Schroepfer. The Anaerobic Contact Process as Applied to Packing House Wastes. Sewage and Ind Wastes. 1995, 27(4): 460~480
    8. 方芳, 龙腾锐. 厌氧生物滤池的研究及应用现状. 中国给水排水, 1999, (4):24~27
    9. 唐受印. 废水处理工程化学工业出版社, 1998: 295~301
    10. J. Iza. Anaerobic Fluidized Bed Reactors(AFBR): Performance and Hydraulic Behavior. Anaerobic Digestion. 1988,(2):155~163
    11. A. G. Lettinga. Use of Upflow Sludge Blanket(USB) Reactor Concept for Biological Wastewater Treatment. Biotech Bioeng. 1980, 22:699~734
    12. Mario T Kato. The Anaerobic Treatment of Low Strength Wastewater in UASB and EGSB Reactors.Water Science and Technology. 1997, 36(6):375~382
    13. L. A. Nuneu, B. Mart. Anaerobic Treatment of Slaughterhouse Wastewater in An Expanded Granular Sludge Bed (EGSB) Reactor. Water Science and Tech-nology. 1990, 40(8):99~106
    14. J. H. F. Pereboom. Methanogenic Granule Development Infull Scale Internal Circulation Reactors. Water Science and Technology. 1994, 30(8):9~21
    15. R .DagueR, G. C. Bunik, T. G. Ellis. Anaerobic Sequencing Batch Reactor Treatment of Dilate Wastewater Rat Psychrophilic Temperatures. Water Research. 1998, 70 (2): 155~160
    16. W. R. Ross, J. P. Barnard, N. H. K. Strohwald. Practical Application of ADUF Process to the Full-scale Treatment of Amaize Processing Effluent. Water Science and Technology.1992, 25(10): 27~39
    17. 凌代文, 刘聿太, 乐华爱, 等. 厌氧消化器中微生物生态学的研究. 微生物学报, 1992, 32(2):79~84
    18. M. P. Bryant. J Animal Science,1979,48(1):193~201
    19. 任南琪, 赵丹, 陈晓蕾. 厌氧生物处理丙酸产生和积累的原因及控制对策. 中国科. 1995, 15(6): 401~406
    20. J. G. Zeikus. Microbial Population in Digesters. Anaerobic Digestion Applied Science Publishers LTD. 1979:61~89
    21. A. Bachmann, V. L. Beard, P. L. McCarty. Performance Characteristics of the Anaerobic Baffled Reactor. Wat. Res. 1985, 19(1):99~106
    22. G. Lettinga, J. Ficid, J. Van Lier, et al. Advanced Anaerobic Wastewater Treatment in Near Future. Water Sci. Tech. 1997,35(10):5~12
    23. 黄永恒, 王建龙, 文湘华, 等. 折流式厌氧反应器的工艺特性及其运用. 中国给水排水. 1999,15(7):18~20
    24. A. Grobicki, D. C. Stuckey. The Role of Ormate in the Anaerobic Baffled Reactor . Wat. Res.. 1989, 23(12):1599~1602
    25. D. C. Stuckey. Anaerobic Digestion in Developing Countries: Advances in Fermen-tation. SCI Meeting at Chelsea College, London, 1983
    26. H. W. Young, J. C. Young. Hydraulic Characteristics of Ipflow Anaerobic Filters. J. Environ. Eng.. 1988, 114(3):621~638
    27. 郭静. ABR 反应器的性能及水力特性研究.中国给水排.1997,13(4):17~20
    28. 沈耀良. ABR 反应器的水力特征研究.中国给水排水. 2003,19(11):1~3
    29. S. Nachaiyasit, D. C. Stukey. Microbial Response to Environmental Changes in an Anaerobic Baffled Reactor. Antonie van Leeuwenhoek. 1995, 67(2):111~123
    30. A. Tilche, X. Yang. Light and Scanning Electron Microscope Observations on the Granular Biomass of Experimental SBAF and HABR Reactors. Proceedings of Gasmat Workshop, Netherlands, 1987:170~178
    31. X. Yang, G. Garuti, R. Farina,et al. Process Differences between A Dludge Bed Filter and An Anaerobic Baffled Reactor Treating Soluble Wastes. 5th international Symposium on Anaerobic Digestion. Bologne, Italy,1998:355~360
    32. 戴友芝. 厌氧折流板反应器处理有毒废水及其污泥特性的研究. 环境科学学报. 2000, 20(3):285~289
    33. 李雪清, 华玉芝. 厌氧折流板反应器处理高浓度有机废水. 河北建筑科技学院学报. 2003, 20(3):13~14
    34. A. Bachmann, V. L. Beard, P. L. McCarty. Performance Characteristics of the Anaerobic Baffled Reactor. Wat. Res.. 1985, 19(1):99~106
    35. J. Xing, R. Boopathy, A. Tilche. Model Evaluation of Hybrid Anaerobic Baffled Reactor Treating Acidified Wastewater. Biomass and Bioenergy. 1991, 1(5): 267~274
    36. R. Boopathy, A. Tilche. Pelletization of Biomass in A Hybrid Anaerobic Baffled Reactor Treating Acidified Wastewater. Bioresource Technol. 1992, 40(2): 101~107
    37. A. Orozco. Anaerobic Wastewater Treatment Using An Open Plug Flow Baffled Reactor at Low Temperature. 5th International Symposium on Anaerobic Digestion. Bologne, Italy, 1998: 759~762
    38. 沈耀良, 王宝贞, 杨铨大, 等. 厌氧折流板反应器处理垃圾渗滤液混合废水.中国给水排水. 1999, 15(5):10~12
    39. 戴芝友.有毒物冲击负荷对厌氧折流板反应器的影响.中国环境科学. 2000, 20(1):40~44
    40. 陈洪斌,张国政,高廷耀. 厌氧折流板反应器处理豆制品废水的研究. 中国沼气. 1999, 17(1):12~16
    41. C. J. Holt, R.G. S. Matthew, E. Terzis. A Comparative Study Using the Anaerobic Baffled Reactor to Treat Aphenolic Wastewater. In:Proc. 8th International Conf. On Anaerobic Digestion,1997:40~47
    42. P. Weiland, A. Rozzi. The Start-up, Operation and Monitoring of Highrate Anaerobic Treatment Systems: Discusser. sreport. Wat Sci Tech. 1991, 24(8): 257 ~277
    43. M. Henze, P. Harremoes. Anaerobic Treatment of Wastewater in Fixed Film Reactors: Aliterature Review. Wat Sci Tech. 1983, 15(8~9):100~101
    44. N. Suyanee, C. D. David. The Effect of Shock Loads on the Performance of An Anaerobic Baffled reactor(ABR).1.Step Changes in Feed Concentration at Constant Retention Time. Wat. Res. 1997, 31(11):2737~2746
    45. N. Suyanee, C. D. David. The Effect of Shock Loads on the Performance of an Anaerobic Baffled Ractor(ABR). 2. Step and Transient Hydraulic Shocks atConstant Feed Strength. Wat. Res. 1997, 31(11):2747~2754
    46. K. Stamatelatou, V. Vavilin, G. Lyberatos. Performance of a Glucose Fed Periodic Anaerobic Baffled Reactor under Increasing Organic Loading Conditions: 1. Experimental Results. Bioresource Technology. 2003, 88(2): 131~136
    47. 孙剑辉, 张波, 彭云辉. 厌氧折流板反应器处理玉米秆纤维浆粕废水的研究.环境污染治理技术与设备. 2002, 3(9):83~85
    48. 贺嵩邡. 厌氧折流板反应器处理有机磷农药废水的研究. 工业用水与废水, 2002, 33(4):26~28
    49. 戴友芝. 厌氧折流板反应器对有毒有机物冲击负荷的适应性. 环境科学. 2000, 21(1): 94~97
    50. 徐金兰, 黄廷林, 王志盈. 厌氧折流板反应器处理难降解 PVA 废水. 中国环境科学. 2005, 25(1): 65~69
    51. 孙剑辉, 孙胜鹏, 张波. 厌氧折流板反应器处理硝基苯废水的研究. 工业水处理. 2005, 25(7):69~72
    52. 曹晓莹, 沈耀良. ABR 反应器处理甘草膦废水的研究.工业水处理. 2004, 24 (7): 28~29
    53. 曾国驱, 任随周, 许玫英, 等. ABR 结合 SBR 法处理印染废水的研究. 微生物学通报. 2005, 32(6):68~73
    54. 吴慧芳, 陆继来, 王世和, 等. ABR 水解/生物接触氧化处理印染废水. 中国给水排水. 2005, 21(10): 52-54
    55. 李建政, 任南琪, 王爱杰, 等. 二相厌氧生物工艺相分离优越性探讨. 哈尔滨建筑大学学报. 1998, 31(2):50
    56. 李建政. 连续流两相厌氧生物处理的生理生态学研究. 哈尔滨建筑大学硕士学位论文. 1997,6
    57. 李建政, 任南琪, 刘艳玲, 等. 重要废水高效生物处理技术的研究. 中国给水排水. 2000,16(6): 5~9
    58. Mylene Talabardon, Iean-paul Schwirzguebel, Paul Peringer. Anaerobic Thermo-philic Fermentation for Acetic Acid Production from Milk Ermeate. Journal of Biotechnology. 2000, 76:83~92
    59. Romana Tabassum, M Ibrahim Rajoka. Methanogenesis of Carbohydrates and Their Fermentation Products by Dystrophic Methane Production Bacteria Isolated from Freshwater Sediments. Bioresource Technology. 2000, 72:199~205
    60. Shigeki Uemura, Hideki Harada. Treatment of Sewage by a UASB Reactor under Moderate to Low Temperature Conditions. Bioresource Technology. 2000, 72: 275 ~282
    61. 刘双江, 胡纪萃, 顾夏声. 厌氧颗粒污泥形成过程的微生物学研究. 中国环境科学. 1992,12(6):405~4
    62. 国家环境保护局. 水与废水监测分析方法. 第 3 版.中国环境科学出版社, 1997: 213~215
    63. 周律. 厌氧生物反应器的启动及其影响因素. 工业水处理. 1996,16(5):1~3
    64. 徐金兰, 王志盈, 高峰, 等. 有机负荷对 ABR 运行性能的影响. 中国给水排水, 2003, 19(10): 1~5
    65. 徐金兰, 王志盈, 高峰, 等. HRT 与有机负荷对 ABR 各隔室净化功能的影响分析. 西安建筑科技大学学报(自然科学版). 2004, 36(1):55~60
    66. 胡家骏, 周群英. 环境工程微生物学. 高等教育出版社. 1988: 91~100
    67. 张希衡. 废水厌氧生物处理工程. 中国环境科学出版社. 1996: 98~134
    68. 贺延龄. 废水的厌氧生物处理. 中国轻工业出版. 1998: 23~27
    69. A. Cohen, A. J. G Van., D. A. Van. Influence of Phase Separation on the Anaerobic Digestion of Glucose: Maximum COD Turnover Rate during Continuous. Water Re-search. 1980, 14: 1439~1448
    70. A. Cohen, J. M. Van Gemert, R. J. Zoetemeyer, et al. Main Characteristic and Stoichiometric Spects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Proc. Biochem. 1984, 19:228~237
    71. M. Denac, A. Miguel, I. J. Dunn. Modeling Dynamic Experiments on the Anaerobic Degradation of Molasses Wastewater. Biotechnol& Bioeng. 1998, 31:1~7
    72. G. Dinopoulou, T. Rudd, J. N. Lester. Anaerobic Acidogenesis of A Complex Wastewater. The Influence of Operational Parameters on Reactor Performance. Biotechnol& Bioeng. 1998, 31:958~964
    73. G. Fynn, M. Syafila. Hydrogen Tegulation of Acetogenesis from Glucose by Freely Suspended and Immobilized Acidogenic Cells in continuous Culture. Biotechnol Leu. 1990, 12:621~626
    74. S. R. Harper, F. G. Pohland. Recent Developments in Hydrogen Management during Anaerobic Biological Wastewater Treatment. Biotecnol & Bioeng. 1986, 28:585~602
    75. S. R. Harper, F. G. Pohland. Effects of Elevated Hydrogen Partial Pressures on Anaerobic Treatment of Carbohydrate. In: Belaich J P. et al, eds. Microbiology and Bio-chemistry of Strict Anaerobes Involed in Interspecies Hydrogen Transfer. New York: Plenum Press, 1990: 387~390
    76. B. Inanc, S. Master, S. Ide. Propionic Acid Accumulation and Controlling Factors in Anaerobic Treatment of Carbohydrate: Effects of H2 and pH. Wat Sci Tech. 1996, 34: 317~325
    77. H. F. Kaspar, K. Wuhrmann. Kinetic Parameters and Relative Turnovers of Some Important Catabolic Reactions in Digesting sludge. Appl Environ Microbiol. 1978, 36:1~7
    78. F. E. Mosey, X. A. Fernandes. Patterns of Hydrogen in Biogas from the Anaerobic Digestion of Milk-sugars. Wat. Sci. Tech. 1989, 21:187~196
    79. B. Schink, P. K. Thauer. Granular Anaerobic Sludge, In: Microbiology and Technology. Pudoc. Wageningen, The Netherlands. 1998, 5~17
    80. A. Cohen, J. M. van Gemert, R. J. Zoetemeyer. Main Characteristics and Stoichiometric Spects of Acidogenesis of Soluble Carbohydrate Containing Waste-water. Proc. Biochem. 1084: 19, 228~237
    81. 任南琪, 王宝贞. 有机废水发酵法生物制氢技术—原理与方法. 黑龙江科学技术出版社, 1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700