用户名: 密码: 验证码:
浙北环太湖平原不同尺度土壤重金属污染评价与管理信息系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化进程的加快和工农业生产的迅猛发展,极大地促进了我国经济社会的快速发展;另一方面,大量工业“三废”、城市生活垃圾和污泥等污染物的排放与不恰当的处置,使重金属在土壤中不断积累、产生污染,含重金属农药和化肥的过量施用,也加重了土壤重金属的污染负荷,导致我国土壤环境的重金属污染日趋严重,因重金属污染造成的农产品安全问题和巨大的经济损失,引起了国内外的极大关注。浙北环太湖平原位于浙江北部、太湖南岸,素来享有“鱼米之乡”的美誉,是我国著名的农业生产基地。近年来,因重金属污染影响农产品的安全性而蒙受重大经济损失的事件时有发生。因此,开展浙北环太湖平原土壤重金属空间变异特征、污染状况、污染风险评价及防治对策措施研究,对该区域乃至浙江全省农业的可持续发展、确保农产品安全、提高人民的健康水平等都具有重要的意义。
     基于上述原因,本研究主要以浙北环太湖平原耕地土壤为对象,在野外调查取样和室内分析的基础上,应用地统计学和GIS技术相结合的方法,选择1:250000浙北环太湖平原(大尺度)、1:50000长兴县(中尺度)、1:10000雉城镇(小尺度)三个尺度,研究了6种土壤重金属(As、Cd、Cr、Cu、Hg和Pb)的空间变异特征,对重金属污染现状及其风险进行了评价,分析了浙北环太湖平原耕地土壤重金属污染的可能原因,探讨了相应的控制对策与措施,同时对小尺度上的采样策略作了研究,并在上述研究的基础上研制和开发了基于WebGIS的土壤环境质量管理信息系统,以期为保护耕地资源、保障食品安全和人体健康、以及区域、县市、乡镇三种尺度上耕地土壤污染的管理政策及对策措施的制定提供科学依据。研究取得了以下主要结果和结论:
     (1)土壤重金属在三个尺度上都呈现较大的空间变异特征,存在明显的地域差异,且受人为因素影响明显。具体结果为:在大尺度的浙北环太湖平原,土壤Hg、Cd、As和Cu等4种元素的变异较大,变异系数在25.19%~58.81%之间,其中Hg和Cd的变异系数高达58.81%和33.34%,Pb和Cr的变异系数分别为17.33%和17.43%;中尺度的长兴县以重金属Hg、Cd和As等3种元素的变异最为突出,其变异系数分别为54.85%、36.32%和29.60%,Cu、Pb和Cr的空间变异相对较小,变异系数在21.24%~22.85%之间;小尺度雉城镇土壤重金属Hg、As和Cd等3种元素的变异系数较大,达到54.02%、31.21%和26.08%,其中Hg的变异系数高达54.02%,
With the speeding up of urbanization process and the rapid development of industry and agriculture, socio-economic development of our country has been greatly promoted in recent years. However, the discharge and exudation of huge amount of "three industrial wastes", municipal solid wastes and sludge resulted in sever pollution of heavy metals in soil and water systems. Irrational application of pesticides and fertilizers also aggravated the accumulation of heavy metals in soils. The safety problem of agricultural products and enormous economic loss caused by pollution of heavy metals have resulted in great concerns both at home and abroad. The plain in northern Zhejiang Province around Taihu Lake (south of Taihu Lake) is one of the most famous area for agricultural production in China, especially for rice grain and fish production. However, great economic loss because of agricultural product safety problem caused by heavy metal pollution has happened from time to time in recent years. Therefore, for the sustainable agricultural development and the human health, it is necessary to study on the spatial variability of soil heavy metals and their pollution risks, and further to put forward the preventing and controlling countermeasures.Based on above reasons, this research mainly focused on the cultivated land of the plain in northern Zhejiang Province around Taihu Lake. Spatial variability of six heavy metals (As, Cd, Cr, Cu, Hg and Pb) under three different scales of 1:250000, 1:50000 and 1:10000 was investigated based on field investigation and lab analysis, and with combined geostatistics and GIS techniques. The pollution risks of these heavy metals were then assessed. Possible causes and the corresponding controlling countermeasures were also analyzed. Sampling strategies were further studied at the small scale. And the management information system of soil environmental quality on the basis of WebGIS was finely developed. It is expected that the study could provide scientific basis for conserving the farmland resources, insuring food safety and human health, and formulating farmland soil pollution management policies and countermeasures on regional (large) , county (medium) , and township (small) scales. The main results and conclusions are as follows:(1) The soil heavy metals in the study areas at three scales all presented great spatial variability and differentiated obviously from one another, which had been influenced by human activities. Specially, on the large scale (the plain of northern Zhejiang Province around TaiHu Lake) , the spatial variability of soil Hg, Cd, As and Cu
    was large, with the coefficient of variation (CVs) between 25.19%~58.81%, among which the CVs of Hg and Cd reached 58.81% and 33.34%, respectively. The CVs of Pb and Cr were relatively small, being 17.33% and 17.43%. On the medium scale (Changxing County) , Hg, Cd and As exhibited the greatest spatial variability, the CVs being 54.85%, 36.32% and 29.60%, respectively. Spatial variability of Cu, Pb and Cr was relatively small, with a range from 21.24% to 22.85%. On the small scale (Zhicheng township) , CVs of Hg, As and Cd were high, reached 54.02%, 31.21% and 26.08%, respectively. And the CVs of Cr, Pb and Cu were low, ranging from 18.07% to 22.31%.(2) Based on the second level standards of "Environmental Quality Standard for Soils" (GB15618-1995 ) , the single factor method was used to assess the pollution risks of the studied heavy metals. The results showed that on the large scale, soil contents of Pb and Cr were lower than the standards, indicating no pollution risks. Soil As also maintained in a clean condition. However, both soil Cu and Cd exhibited slight pollution risks with overproof rates of 1.23% and 2.72% respectively. But soil Hg pollution was most serious with overproof rates as high as 10.87%. On the medium scale, soil contents of Cu, Pb and Cr were lower than the standards and had no pollution risks. Soil As was also clean. Soil Cd and Hg, however, showed different levels of risks with overproof rate of 4.06% for Cd and of 6.17% for Hg. On the small scale, soil was seriously polluted by Hg, with overproof rate of 9.80%. The other five heavy metals showed no pollution risks. These results confirmed that the cultivated land in plain of north Zhejiang Province around TaiHu Lake had been polluted by heavy metals to various extent. Specially, the pollution of Hg was most serious and could become the main limiting factor to the regional socio-economic development.(3) The risk assessment of soil heavy metal pollution and the analysis of pollution causes indicated that, on the large scale, the soil environment was polluted by Hg, Cd and Cu to various extent, and the distribution of high risk areas was found to have a good correlation with the distribution of cities and industrial and mining enterprises. Therefore, it is considered that the pollution risks of Hg, Cd and Cu in the study areas could be caused by increasing discharge and exudation of three industrial wastes and municipal solid wastes as the development of industrial and mining enterprises and urbanization. Also, excessive application of pesticides, fertilizers and the poultry manure with high Cu content could be related to soil pollution by heavy metals. On the medium scale, the distribution of Hg and Cd risk areas in Changxing County was also well correlated with the distribution of cities, industrial and mining enterprises, and the railways. And because
    the distribution was also closely related to the air pollution of Changxing by coal smoke, it was extrapolated that the deposition of pollutants in atmosphere was the main cause for the pollution of Hg and Cd. On the small scale, soil was polluted only by Hg, and Hg was thus the limiting factor of the soil quality. This was most possibly resulted from the secondary pollution of atmospheric deposition of pollutants emitted from thermal power plant, cement and fire-proof material producing enterprises.Based on above discussions, measures of the source control and integrated remediation were proposed for counteracting soil heavy metal pollution for each scale. On the large scale, emphasis should be given to macro level establishment and/or improvement of regulations and policies related to the prevention and control of soil heavy metal pollution. On the medium scale, both macro level management and micro level countermeasures should to emphasized to enhance the decision making ability of managing industrial and agricultural production and preventing and controlling pollution. Effective remediation measures should also be investigated and demonstrated. On the small scale, great emphasis should be given to application of practical countermeasures to prevent and remediate soil pollution, such as adjustment of cultivating systems and integration of physical, chemical and biological methods.(4) Sampling strategies were studied on the small scale of 1:10000. The results indicated that the predicting precision was nearly the same as that using 100% of initial samples (153 samples) even the samples were gradually reduced to 60% of the initial ones. Thus, it is considered that 60% of the initial sampling numbers was reasonable sampling density for similar studies. Using this sampling density, not only could the predicting precision of soil heavy metal be assured, but also could the cost be reduced.(5 ) The spatial variability of soil heavy metals in cultivated land of the study areas presented no scale regularity, which was mainly related to the influence of human activities. On the other hand, all six heavy metals in the study areas showed a medium spatial correlation in general. Therefore, it seemed appropriate to use geostatistics methods to predict the spatial distribution of soil heavy metals at the scales. The spatial distribution maps of soil heavy metals disclosed obviously their spatial distribution tendency. And the results were coincident well on all three scales. Therefore, based on the results on the large scale, the pollution situation of heavy metals can be qualitatively acquired, it is helpful for the decision making of macro level management. Based on the results on the medium scale, the distribution of pollutants can be understood in more detail and the possible causes can be analyzed, it is significant on county level for management of industrial and
    agricultural production and decision making for pollution control. Based on the results on the small scale, specific pollution status and its distribution can be understood in great detail. Also, the pollution causes can be identified, it is helpful for the selection of concrete countermeasures to control and remediate the pollution.(6) The attribute and spatial databases of soil heavy metals in cultivated land of the study areas were established for all three scales. And the management information system of soil environmental quality on the basis of WebGIS was developed. The system can be used to analyze heavy metal pollution status in the the study areas, predict the potential development tendency of pollution, and realize on screen demonstration of pollution status, online inquiry of pollution development tendency and announcement of real-time news. It can not only provide scientific support for decision making of controlling heavy metal pollution in the plain of northern Zhejiang province around Taihu Lake, but also promote control of soil heavy metal pollution all over Zhejiang Province or even China as a whole.
引文
Andrew, W.W., Cunter, B., Rodger, B.G., 1998. Geostatistical characterization of soil moisture patterns in Tarrawarra catchment. Journal of Hydrology. 205, 20-37.
    Antonio, P.M., 1996. Spatial variability patterns of phosphorus and potassium in notilled soils for two sampling scales. Soil Sci. Soc.Am. J. 60, 1743-1781.
    Arrouays, D., Martin, S., et al., 2000. Shortrange spatial variability of metal contents in soil on a one hectare agricultural plot. Communications in Soil Science and Plant Analysis. 31 (3-4), 387-400.
    Assadian, N.W., Esparra.L.C., et al., 1998. Spatial variability of heavy metals in irrigation alfalfa field in the upper Rio Grand River basin. Agricultural water management. 36, 141-156.
    Bacon, J.R., Berrow, M..L., Shand, C.A., 1992. Isotopic composition as an indicator of origin of lead accumulations in surface soils. Int. J. Environ. Anal. Chem. 46, 71-76.
    Bahri, A., Berndtsson, R.., 1996. Nitrogen source impact on the spatial variability of organic carbon and nitrogen in soil. Soil Sci. 16(5), 288-297.
    Biggar, J.W., Nielson, D.R., 1976. The spatial variability of the leaching characteristics of a field soil. Water Resour Res. 12, 78-84.
    Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Turco, R.F., Konopka, A.E., 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58, 1501-1511.
    Carnelo, L.G.L., de Miguez, S.R., Marban, L., 1997. Heavy metals input with phosphate fertilizers used in Argentina. Sci. Total Environ. 204, 245-250.
    Chang, Y.H., Scrimshaw, M. D., Emmerson, R.H.C., Lester, J.N., 1998. Geostatistical analysis of sampling uncertainty at the Tollesbury managed retreat site in Blackwater Estuary, Essex, UK: kriging and cokriging approach to minimise sampling density. Sci. Total Environ. 221, 43-57.
    Chien, Y.L., Lee, D.Y., Guo, H.Y., Houng, K.H., 1997. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Sci. 162, 291-297.
    Chung, C.K., Chong, et al., 1995. Sampling strategies for fertility on a stoy siltloam. Soil communication of soil science and plant analysis. 26 (5&6), 741-763.
    Clark, I., 1981. Practical geostatisties. London: Applied Science LTD.
    Cressie, C., 1990. The origins of kriging. Math Geol. 22(2), 239-252.
    Davis, J.G., Hossner, L.R., et al., 1995. Variability of soil chemical properties in two sandy, dunal soil of Niger. Soil Science. 159(5), 321-330.
    Di, H.J., Trangmar, B.B., et al., 1989. Use of Geostatistics in Designing Sampling Strategies for Soil Survey. Soil Sci. Soc. Am.J. 53, 1163-1167.
    Einax, J.W., Soldt, U., 1998. Multivariate geostatistical analysis of soil contaminations. Fresenius Journal of Analytica Chemistry. 361(1), 10-14.
    Fitzgerald, W. F., Is mercury increasing in the atmosphere ?The need for an atmosphere mercury network (AMNET). Water Air and Soil Poll. 80, 245-254.
    Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press. 19-22
    Goovaerts, P., 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma..89, 1-45.
    Gringarten, E., Deutsch, C.V., 2001. Teacher's aide: variogram interpretation and modeling. Math. Geol.33, 507-534.
    Hendershot, W.,H., Duquette, M., 1986. A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50, 605-608.
    Hua, X., Shan, Z., 1996. The production and application of pesticides and factors analysis of their pollution in environment in China. Adv. Environ. Sci. 4,33-45.
    Husson.o., Verburg,P.H., et al, 2000. Spatial variability of scid sulphate soils in the Plain of Reeds, Mekong delta, Vietnam. Geoderma. 97, 1-19.
    Isaaks, E.H., Srivastava, R.M., 1989. An introduction to applied geostatistics. New York:.Oxford Univ Press.
    Jose, A. A., Yong W., et al., 2000. Fine scale spatial variability of physical and biological soil properties in Kingston, Rhode Island. Geoderma. 98, 83-94.
    Journel, A.G, Gundeso, R., Gringarten, E., 1998. Stochastic modelling of a fluvial reservoir: a comparative review of algorithms. Journal of Petroleum Science and Engineering. 21(1-2),95-121.
    Journel, A.G, Huijbregts, C.J., 1991. Mining Geostatistics, 5th Eds. Dremic Press, London.
    Journel, A.G, Isaaks, E. H., 1984. Conditional indicator simulation: application to a Saskatchewan uranium deposit. Mathematical Geology. 16, 685-718.
    Journel, A.G, Huijbregts, C. J., 1978. Mining geostatistics. London: Academic Press UK.
    Juang, K.W., D.Y. Lee., Timothy, R. Ellsworth., 2001. Using rank order geostatistics for spatial Interpolation of highly skewed data in a heavy metal contaminated site. Journal of Environmental Quality. 30, 894-903.
    Julie, A., Cattle, Alex, et al., 2002. Kriging method evaluation for assessing the spatial distrbution of urban soil lead contamination. J. Environ .Qual. 31, 1576-1588.
    Junior, V.V., Carvalho, M.P., Dafonte, J., Freddi, O.S., Va'zquez, E.V., Ingaramo, O.E., 2006. Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil Till. Res.85,166-177.
    Kelly, J., Thornton, I., Simpson, PR., 1996. Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and nonindustrial areas of Britain. Appl. Geochem. 11,363-370.
    Kim, Kwansco., Bradford L, Barham., 2001. Measuring soil quality dynamics: A role for economist, and implications for economic analysis. Agricultural Economics. 25, 13-26.
    Klmplecr, D.E., Morel, J.L., 2001. Urban soil management: a growing concern. Soil Sci. 65(1), 31-40.
    Krige, D.G, 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Africa 52, 119-139.
    Krige, D.G, 1960. On the departure of ore value distributions from lognormal models in South African gold mines. J. S. Afr. Inst. Mining Metall. 61, 231-244.
    Larisa, Poszdnyakova, Renduo, Zhang., 1999. Geostatistical analysis of soil salinity in a large field.Precision Agriculture. 1 (2), 153-165.
    Lark, R.M., Ferguson, R.B., 2004. Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma 118, 39-53.
    Lee, C.K., Kaho, T., et al., 2000. Field information maps using geostatistics in the paddy field. 2000 ASAE Annual International Meeting, Milwaukee, Wisconsin, USA, 9-12 July 2000. ASAE Paper No. 00108.1-17.
    Lin, Y.P., Chang, T.K., Teng, T.P., 2001. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods. Environ. Geol. 41, 189-199.
    Lindqvist, C. O., et al., 1995 Mercury in the Swedish environment. Water Air and Soil Poll. 55,1-261.
    Liu, X.M., Wu, J.J., Xu, J.M., 2006. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Eviron. Pollut. (In press).
    Liu, X.M., Xu, J.M. 2006. Characterizing the Spatial Patterns and hazard assessment of Heavy Metals in Paddy Field by Geostatistics and GIS. Environmental Pollution (In press).
    Liu, X.M., Xu, J.M., Zhang, M.K., Huang, J.H., Shi, J.C., Yu, X.F., 2004. Application of geostatistics and GIS technique to characterize spatial variabilities of available micronutrients in paddy soils. Environmental Geology. 46, 189-194.
    Lottermoser, B. G, 1997. Natural enrichment of topsoils with chromium and other heavy metals, Port Macquarie, New South Wales, Astralia. Aust. Soil Res. 35(1), 1165-1176.
    Manta, D.S., Angelone, M., Bellanca, A., Neri, R., Sprovieri, Mario., 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 300,229-243.
    Markus, J. A., McBratney, A. B., 1996. An urban soil study : Heavy metals in Glebe, Astralia. Aust. Soil Res. 34,453-456.
    Matheron, G, 1963. Principles of geostatistics. Econ. Geol. 58,1246-1266.
    McBratney, A.B., Webster, R., 1983. How many observations are needed for regional estimation of soil properties. Soil Sci. 135, 177-183.
    McGraph, D., Zhang, C.S., Carton, O., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines, area Ireland. Environ. Pollut. 127, 239-248.
    Mvbratney, A.B., Pringle, M.I., 1999. Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture. 1 (2), 125-152.
    Oliveira. J.J., Chaves.L.H.G, et al., 1999. Spatial variability of chemical properties in a salinesodic soil. Revista Brasileira de Ciencia do Solo. 23(4), 783-789.
    Pouyat, R. V, McDonnell M. J., 1991. Heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water Air and Soil Pollution. 57(8), 797-807.
    Rober, P.C., Rust, R.H., et al., 1995. Site-sperific management for agriculture system. ASA-CSSA-SSSA.
    Romic, M., Romic, D., 2003. Heavy metals distribution in agricultural topsoils in urban area. Environ. Pollut. 43, 795-805.
    Sichel, H.S., 1952. New methods in the statistical evaluation of mine sampling data. London Inst. Mining and Metall. Trans. 61,261-288.
    Souza, L.C.de, Queiroz, J.E., et al., 2000. Spatial variability of soil salinity in an alluvial soil of the semiarid region of Paraiba state. Pevista Brasileira.de. Engenharia Agricola.e. Ambiental. 4(1), 35-44.
    State Environmental Protection Administration of China. 1995. Chinese Environmental Quality Standard for Soils (GB 15618-1995). http://www.chinaep.net/hjbz/hjbzO17.htm.
    Steiger, B., Webster, R., Schulin, R., Lehmann, R., 1996. Mapping heavy metals in polluted soil be disjunctive kriging. Eviron. Pollut. 94,205-215.
    Tessier, A., CampbellPGC, Bisson M., 1979. Sequential extraction procedure for the speciation of paniculate trace metals. Anal Chem. 51(7), 844-851.
    Trangmar, B.B., Yost, R.S., Uebara G, 1985. Application of geostatistics to spatial studies of soil properties. Advanced Agronomy. 38,44-49.
    Turer, D., Maynard, J. B., Sansalone, J. J., 2001. Heavy metal contamination in soils of urban highways: comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132(3-4), 293-314.
    Vieira,S.R, Halfield, J.L., et al., 1983. Geostatistical theory and application to variability of some agronomical properties. Hilgardia.51(3), 1-75.
    Voegelin, A., Ulava, V.M., Kretzschmar, R., 2001. Reaction-based model describing competitive sorption and transport of Cd, Zn, and Ni in an acidic soil. Environmental Science and Technology. 35(8), 1651-1657.
    Wagenet. R. J., 1998. Scale issues agroecological research chains. Nutrient Cycling in Agroecosystems. 50, 23-34.
    Wang, X.J., Zhang, Z.P., 1999. A comparison of conditional simulation, kriging and trend surface analysis for soil heavy metal pollution pattern analysis. Journal of Environmental Science and Health. 34(1), 73-89.
    Webster, R., 1985. Quantitative spatial analysis of soil in the field. Advanced in soil science. 3, 1-70.
    Webster, R., Oliver, M.A., 2001. Geostatistics for Environmental Scientists. John Wiley & Sons Ltd, Chichester.
    White, J.G, Welch, R.M., Norvell, W.A., 1997. Soil zinc map of USA using geostatistics and geographic information system. Soil Sci. Sco. Am. J. 61,185-194.
    White, J.G, Welch, R.M., Norvell,W.A., 1997. Soil Zn map of the USA using geostatistics and geographic information systems. Soi Science Society of America Journal. 61, 185-194.
    Yang, H.D., Nong, S.W., Cai, S.M., 1995. Environmental Geochemistry of Sediments in Lake Dong Hu, Wuhan. Chinese Science Abstracts Series B 14,23.
    Zhang, C.S., Selinus, O., 1998. Statistics and GIS in environmental geochemistry-some problems and solutions. J. Geochem. Explor. 64,339-354.
    Zhang, C.S., Zhang, S., Zhang, L.C., Wang, L.J., 1995. Background contents of heavy metals in sediments of the Changjiang River system and their calculation methods. J. Environ. Sci. 7, 422-429.
    Zhou, H.Y., Wong, M.H., 2000. Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Res. 34, 4234-4242.
    白军红,余国营,王国平.2001.地统计学在湿地土壤养分空间变异性研究中的应用.农业环境保护.20(5),311-314.
    白由路,李保国,胡克林.1999.黄淮海平原土壤盐分及其组成的空间变异特征研究.土壤肥料.3,22-26.
    白增森,吴家华,董云中等.1997.汾河流域土壤重金属垂直分布规律及地域差异.农业环境与发展.54(4),11-16.
    曹志洪.2001.解译土壤质量演变规律,确保土壤资源持续利用.世界科技研究与发展.23(3),28-32.
    长兴县环保局.2004.浙江省长兴生态县建设规划.10-25
    长兴县统计局.2003.长兴县2003年统计年鉴.124-130.
    陈浮,濮励杰等.2002.近20年太湖流域典型区土壤养分时空变化及驱动机理.土壤学报.39(2),236-244.
    陈怀满.2005.环境土壤学.北京:科学出版社.216.
    陈杰,陈晶中,檀满枝.2002.城市化对周边土壤资源与环境的影响.中国人口·资源与环境.12(2),70-74.
    陈述彭.2000.地理信息系统导论.北京:科学出版社.
    陈同斌.2005.土壤污染将成为中国的世纪难题.科技文萃,30~32.
    陈亚新,史海滨,魏占民等.2005.土壤水盐信息空间变异的预测理论与条件模拟.北京:科学出版社.16-25.
    陈玉成.1997.环境质最评价中的赋权技术.重庆环境科学.19(2),43-47.
    陈玉娟,温琰茂,柴世伟.2005.珠江三角洲农业土壤重金属含量特征研究.环境科学研究.18(3),76-77.
    段学军.2005.土壤重金属污染的微生物生态效应.中原工学院学报.16(1),1-4.
    房世波,潘剑君,成杰民等.2002.南京市郊蔬菜地土壤中重金属含量的时空变化规律.土壤与环境.11(4),339-342.
    付强.2002.基于RAGA的PPC模型在土壤质量变化评价中的应用研究.水土保持学报.16(5),108-111.
    高祥照等.2002.土壤养分与作物产量的空间变异特征与精确施肥.中国农业科学.35(6),660-666.
    龚健雅.2000.地理信息系统基础.北京:科学出版社.
    龚元石,聊超子,李保国.1998.土壤含水量和容重的空间变异及其分形特征.土壤学报. 35(1),10-15.
    龚元石,廖超子等.1998.土壤含水量和容重的空间变异及其分形特征.土壤学报.35(1),10-15.
    郭旭东,傅伯杰等.2000.基于GIS和地统计学的土壤养分空间变异特征研究.应用生态学报.11(4),555-563
    郭旭东,傅伯杰等.2002.河北省遵化平原土壤养分的时空变异特征-变异函数与Kriging差值分析.地理学报.55(5),555-566.
    国家环保总局.1990-1997.中国环境年鉴.北京:中国环境科学出版社.
    郝永红.2002.区域生态环境质量的灰色评价模型及其应用.环境工程.20(4),66-68.
    何锦林,谭红,赵亚民等.1999.贵州梵净山自然保护区大气汞的沉降.环境科学学报.19(2),164-169.
    候景儒,郭光裕.1993.矿床统计预测及地质统计学的理论与应用,北京:冶金工业出版社.
    候景儒,尹镇南等.1997.实用地质统计学.北京:地质出版社.31-72.
    湖州市土壤志编委会.1989.湖州土壤.杭州:浙江科学技术出版社.175-179.
    黄绍文,金继运.2002.土壤特性空间变异研究进展.土壤肥料.1,8-14.
    黄绍文,金继运等.2003.县级区域粮田土壤养分空间变异与分区管理技术研究.土壤学报.40(1),79-88.
    黄绍文.2001.土壤养分空间变异与分区管理技术研究.中国农业科学院博士学位论文.
    黄昌勇.1998.土壤学.北京:中国农业出版社.
    嘉兴市土壤志编委会.1989.嘉兴土壤.杭州:浙江科学技术出版社.132-135.
    姜勇,梁文举,闻大中.2003.沈阳郊区农业土壤中微量元素.北京:中国农业科学技术出版社.105-113.
    金继运,白由路.2001.精准农业与土壤养分管理.北京:中国大地出版社.108-181.
    雷志栋,杨诗秀等.1985.土壤空间变异性初步研究.水利学报.9,10-21.
    李洪宁.2002.webGIS研究及其在城市环境中的应用.地球学报.23(2),189-202.
    李菊梅,李生秀.1998.几种营养元素在土壤中的空间变异.干旱地区农业研究.16(2),58-64.
    李小昱,雷延武等.2000.农田土壤特性的空间变异性及分形特征.干旱地区农业研究.18(4),61-65.
    李晓秀.1997.北京山区生态环境质量评价体系初探.自然资源.(5),31-35.
    李子忠.2000.不同尺度农田土壤水分和无机氮的空间变异性.中国农业大学博士论文.
    梁春祥,姚贤良.1993.华中丘陵红壤物理性质空间变异性研究.土壤学报.30(1),69-77.
    林玉锁,李波,张孝飞.2004.我国土壤环境安全面临的突出问题.自然生态保护.39-42.
    林忠辉.2000.磷肥杂质对土壤生态环境的影响.生态农业研究.8(2),47-50.
    刘桂建,杨萍月,王桂梁.2000.煤中微量元素在土壤环境中的迁移.地球学报.21(4),423-427.
    刘湘南,黄方,王平等.2005.GIS空间分析原理与方法.北京:科学出版社.185-200.
    刘杏梅,徐建民,章明奎.2003.太湖流域土壤养分空间变异特征分析—以浙江省平湖市为例.浙江大学学报.29(1),76-82.
    刘杏梅.2005.基于GIS和地统计学的不同尺度水稻田土壤养分时空变异及其机理研究.浙江大学博士学位论文.50-56.
    刘衍君,吴仁海.2002.人类活动对土壤环境的影响及对策.新疆环境保护.24(3),32-35.
    刘英华.2004.成都平原区土壤质量时空变异研究.四川农业大学硕士学位论文.6-10
    楼文高.2002.基于人工神经网络的三江甲原土壤质量综合评价与预测模型.中国管理科学.10(1),79-83.
    鲁春霞,谢高地,李双成等.2004.青藏铁路沿线土壤重金属的分布规律初探.生态环境.13(4),546-548.
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科技出版社.4.
    吕军,俞劲炎.1990.水稻土物理性质空间变异性研究.土壤学报.27(1),8-15.
    吕新.2004.地理信息系统及其在农业上的应用.北京:气象出版社.121-130.
    吕一河,傅伯杰.2001.生态学中的尺度及尺度转换方法.生态学报.21(12),2096-2105.
    骆永明,滕应,李清波等.2005.长江三角洲地区土壤环境质量与修复研究.土壤学报,42(4),570-576.
    牟树森,唐书源.1992.酸沉降地区土壤-蔬菜系统中汞污染问题.农业环境保护.11(2),57-60.
    聂俊华,李成元.1993.近代黄河三角洲土壤物理特性的空间变异性.山东农业大学学报.24(1),68-72.
    潘根兴,成杰民,高健琴等.2000.江苏吴县土壤环境中某些重金属元素的变化.长江流域资源与环境.9(1),51-55.
    钱秀红,徐建民,施加春等.2002.杭嘉湖水网平原农业非点源污染的综合调查和评价.浙江大学学报.28(2),147-150.
    秦耀东,李保国.1998.应用析取克立格方法估计区域地下水埋深分布.水利学报.8,28-32.
    秦耀东.1992.土壤空间变异研究中的定最分析.地球科学进展.7(1),44-49.
    秦耀东.1998.土壤空间变异研究中的半方差问题.农业工程学报.12,42-47.
    沈思渊.1989.土壤空间变异研究中地统计学的应用及其展望.土壤学进展.17(3),11-25.
    史海滨,陈亚新.1994.土壤水分空间变异的套合结构模型及区域信息估值.水利学报.7,70-77.
    宋鹭.1997.地下水环境质量评价方法.干早环境监测.11(1),8-10.
    孙波.1999.红壤退化中的土壤质量评价指标及评价方法.地理科学进展.18(2),118-128.
    孙洪泉.1990.地质统计学及其应用.北京:中国矿业大学出版社.
    陶澍,邓宝山.1993.深圳地区土壤汞含最分布及污染.中国环境科学.13(1),35-38.
    屠玉麟.2001.贵州省生态环境质量综合评价方法研究.贵州师范大学学报(自然科学版).19(3),7-10.张桃林,潘剑君,赵其国.1999.土壤质量研究进展与方向.土壤.31(1),1-7.
    汪憋华.1999.“精细农业”发展与工程技术创新.农业工程学报.15(1),1-8.
    王定勇,牟树森,青长乐.1998.大气Hg对土壤-植物系统累积的影响研究.环境科学学报.18(2),194-198.
    王建红,傅庆林等.1998.土壤空间变异理论在海涂土壤研究中的初步应用.浙江农业学报.10(5),230-234.
    王建红,吴玉卫等.1999.海涂土壤电导率的空间变异性研究.浙江农业大学学报.25(2),139-142.
    王江平.2002.入世后高浓度磷肥中镉的问题.磷肥与复肥.17(5),11-15.
    王文兴,童莉,海热提.2005.土壤污染物来源及前沿问题.生态环境.14(1),1-5.
    王新,周启星.2002.土壤Hg污染及修复技术研究.生态学杂志.21(3),43-46.
    王学锋,章衡.1995.土壤有机质的空间变异性.土壤.27(2),85-89.
    王学军,李本纲,陶澍.2005.土壤微量金属含量的空间分析.北京:科学出版社.5-11.
    王政权.1999.地统计学及其在生态学中的应用.北京:科学出版社.74-96.
    韦玉春,陈锁忠等.2005.地理建模原理与方法.北京:科学出版社.286-300.
    谢高地,陈沈斌等.2005.环境的空间连续变异与精确农业.北京:气象出版社.27-35.
    徐尚平,陶澎等.2000.内蒙土壤微量元素含量的空间结构特征.地理学报.55(3),338-344.
    许嘉林,杨居荣.1996.陆地生态系统中的重金属.北京:中国环境科学出版社.125.
    严加永,吕庆田,赵金花.2004.北京市土壤污染预警系统的设计与开发.地球学报.25(3),379-384.
    阎伍玖,吕成文.2000.芜湖城市郊区土壤重金属污染危害及其对策研究.土壤学报.37(1),136-141.
    余贵芬等.1998.重金属污染土壤治理研究现状.农业环境与发展.15(4),25-26.
    俞慎,何振立,黄昌勇.2003.重金属胁迫下土壤微生物和微生物过程研究进展.应用生态学报.14(4),618-622.
    张朝生,章申等.1998.长江水系沉积物重金属含量空间分布特征研究.地理学报.53(1),87-95.
    张辉,马东升.2001.城市生活垃圾向土壤释放重金属研究.环境化学.20(1),44-47.
    张建辉,何敏蓉等.1996.丘陵区土地湿度的空间变异性研究.土壤通报.27(2),61-62.
    张金屯,Pouyat R.1997.“城一郊一乡”生态样带森林土壤重金属变化格局.中国环境科学.17(5),410-413.
    张乃明,陈建军,常晓冰.2002.污灌区土壤重金属累积影响因素研究.土壤.34(2),90-93.
    张乃明,邢承玉,贾润山.1996.太原污灌区土壤重金属污染研究.农业环境保护.15(1),21-23.
    张仁铎,胡光道.1987.线性地质统计学,北京:地质出版社.
    张仁铎.2005.空间变异理论及应用.北京:科学出版社.49-51.
    张有山,林启美等.1998.大比例尺区域土壤养分空间变异定量分析.华北农学报.13(1),122-128.
    张玉龙,代国英等.1997.沈阳地区棕壤含水量空间变异规律的研究.沈阳农业大学学报.28(3),200-204.
    赵其国.1992.九十年代的土壤科学.土壤通报.23(1),4-8.
    赵其国.1996.现代土壤学与农业持续发展.土壤学报.33(1),1-12.
    赵文强.1988.地下水水质污染模糊综合评判法.水文地质工程地质.15(6),116-119.
    浙江省地质调查研究院.2004.浙江省农业地质环境调查报告.100-104.
    中国标准出版社第二编辑室.2003.中国环境保护标准汇编-环境质量与污染物排放.北京:中国标准出版社.
    中国环境监测总站.1990.中国土壤环境背景值.北京:中国环境科学出版社.265-267.
    周慧珍,龚子同.1996.土壤空间变异性研究.土壤学报.33(3),232-241.
    朱晓华.2001.层次分析法在区域生态环境质量评价中的应用研究.国土资源科技管理.(5),43-46.
    祝绊飞.2001.环境质量评价的研究与进展.中国公共卫生.17(6),567-568.
    邹长武.2002.大气环境质量分析与评价研究的新进展.四川环境.21(3),17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700