用户名: 密码: 验证码:
以鱼类和浮床植物为核心的水质改善措施对热带水库浮游动物群落结构的影响:大型实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解水库自然放养鱼类和开展生态方法改善水库水质的可能性,根据水库鱼类放养情况和生态特征,在甘村水库进行大型围隔实验,对显岗水库进行局部大水面放养殖结构调整,在大镜山水库实施浮床植物为核心的水质改善措施。本论文以浮游动物为对象,了解实验和自然条件下,鱼类放养殖模式和以浮床植物为主体的生态工程措施下浮游动物群落结构的变化和响应。
     于2007年3月至5月在甘村水库进行大型围隔实验,实验设置鲢、鳙生物量比为7:3、3:7和无鱼三个实验组,每组三个平行。围隔中鲢、鳙混养密度与水库养殖密度相同,为16.7g m~3,以每周一次的频率采样,共9次采样。分析比较了鲢、鳙混养对浮游动物群落的影响。有鱼围隔与无鱼围隔中共检到轮虫33种、枝角类6种和桡足类5种。轮虫主要以热带地区常见的角突臂尾轮虫(Brachionus angularis)、剪形臂尾轮虫(B.forficula)、对棘异尾轮虫(Trich.stylata)、裂痕龟纹轮虫(Anuraeopsis fissa)、螺形龟甲轮虫(Keratellacochlearis)、广生多肢轮虫(Polyarthra vulgaris)和叉角拟聚花轮虫(Conochilus dossnarius)为优势种;枝角类以微型裸腹溞(Moina micrura)为优势种;桡足类成体以台湾温剑水蚤(Thermcyclops taihokuensis)为优势种。有鱼围隔和无鱼围隔中的后生浮游动物的种类数和丰度均以体长在200μm以下的小型浮游动物为主,主要是轮虫和无节幼体。有鱼围隔与无鱼围隔中轮虫优势种更替不明显。鲢鳙鱼的捕食,导致养鱼围隔中的轮虫相对丰度较无鱼围隔中的轮虫相对丰度高;轮虫、枝角类和桡足类丰度、生物量显著下降。可能由于鲢鳙食性上的重叠,两种鲢鳙放养比例围隔中的浮游动物丰度、生物量和个体大小差异不明显。
     显岗水库是广东省典型高产水库,水库相对较浅,处于中度富营养化水平。2007年6月至2009年2月对显岗水库湖泊区进行每月一次的浮游动物采样,共19次,分析水库中浮游动物群落结构特征。显岗水库的后生浮游动物共有41种,其中30种为轮虫,轮虫优势种主要是角突臂尾轮虫、剪形臂尾轮虫、广生多肢轮虫、螺形龟甲轮虫和对棘异尾轮虫。枝角类7种,长额象鼻溞(Bosmina longirostris)为优势种。桡足类4种,台湾温剑水蚤为桡足类成体优势种。与同地区其它水体相比,轮虫的种类数较少,但丰度较其它水体高。丰度表现为丰水期丰度低,枯水期丰度相对较高。生物量表现出了与丰度相反的季节性变化。CCA结果表明降雨量为影响浮游动物群落季节变化的主要非生物因子。
     于2007年6月至2009年2月在显岗水库的小型库湾(28公顷)进行大水面养殖实验,实验设置鳙单养(2007年9月-2008年7月)、鲢、鳙生物量比为7:3(2008年9月-2009年7月),密度为15g m~2,与水库鲢、鳙实际养殖密度(30g m~2)、生物量比为3:7比较,以每月一次的频率采样,共19次采样。分析比较了不同比例和密度下鲢、鳙混养对浮游动物群落的影响。不同鲢鳙混养下的轮虫优势种更替不明显。2007年9月-2008年7月库湾内鳙单养较同期库湾外鲢鳙3:7下的枝角类和台湾温剑水蚤及其桡足幼体的丰度和生物量显著性降低,可能由于库湾外12月和3月捕鱼,使鲢、鳙和野杂鱼对浮游动物的捕食压力降低所致。水库存留的大量罗非鱼及其它野杂鱼对浮游动物的捕食可能是导致2007年9月-2008年2月库湾内鳙单养与2008年9月-2009年2月库湾内鲢鳙7:3以及2008年9月-2009年2月库湾内鲢鳙7:3和2008年9月-2009年2月库湾外鲢鳙3:7下的后生浮游动物丰度和生物量差异不显著的原因。
     于2006年7月至2008年12月,对大镜山水库非植物工程区、植物工程区内的浮游动物采样,分析了探讨了以浮床植物为核心的水质改善工程对浮游动物群落的影响。36次采样共检到轮虫36种、枝角类5种和桡足类9种。角突臂尾轮虫和剪形臂尾轮虫为轮虫最主要的优势种。长额象鼻溞为枝角类的优势种,中华窄腹剑水蚤(Limnoithona sisnensis)为桡足类第一优势种,该种对咸水有较强的适应能力,是通过河流调水引入大镜山水库。抽水入库量、降雨量是影响后生浮游动物丰度季节变化的主要因子。植物工程区与非植物非工程区丰度以200μm以下的小型浮游动物为主,轮虫和无节幼体是丰度的主要贡献者。植物工程区与非植物工程区轮虫、甲壳类丰度和生物量无显著性差异。可能是不同工程区相通,但由于条件限制,未能进行鱼类结构调整所致。郝氏皱甲轮虫(Ploesoma hudsoni)、污前翼轮虫(Proales sordida)和高跷轮虫(Scaridium longicaudum)三种寡营养指示种出现在以浮床植物为核心的水质改善工程后期。而富营养化水体中的优势种如角突臂尾轮虫、剪形臂尾轮虫、对棘异尾轮虫和长额象鼻溞的丰度降低。
Reservoirs are man-made water bodies that play a critical role in mitigating the conflict between water demand and supply in industrial,agricultural and daily life.Since there are many reservoirs in Guangdong Province and the majority is becoming more and more eutrophic,we conducted manipulation experiments in Gangcun Reservoir,Xiangang Reservoir and Dajingshan Reservoir with an objective of regulating ecosystem structure against eutrophication.This thesis aims to understand response of zooplankton community to experimental manipulations.
     Silver carp and bighead carp are the most common fish in tropical reservoirs;their mixed culture is typical of the fishery in tropical reservoirs.The responses of zooplankton to this culture mode were assessed in large enclosures from March 2007 to May 2007.The ratio of silver carp and bighead carp biomass levels was set as follows:0:0,3:7 and 7:3.The density of fish in the fish group was 16.7g.m~(-3).The meta-zooplankton was composed of 33 species of rotifers,6 species of cladocerans and 5 species of copepods.Rotifers were dominated by Brachionus angularis,Brachionus forficula,Trichocerca stylata,Anuraeopsis fissa,Polyarthra spp., Conochilus dossuarius and Keratella cochlearis.Moina micrura was the dominant species of cladocera.In Copepoda,Thermocyclops taihokuensis was the most abundant species.The species and abundance was contributed by small-sized species with a body size less than 200μm, such as rotifers and copepod nauplii.The dominant species did not show an evident temporal succession.Relative abundance of rotifers in fish enclosures was higher than that in fishless enclosure due to predation of fishes on big zooplankton,and the abundance of rotifers,cladocera and copepods decreased significantly in fish enclosures.But the abundance and biomass of zooplankton at different ratios of silver carpand bighead carp were similar as the food niche of silver carp and bighead carp overlaps.
     Xiangang Reservoir is a high fishery yield reservoir,in which silver carp and bighead are mixedly cultured in a biomass ratio of 3:7.In order to understand the community structure of the zooplankton in tropical shallow reservoirs with high fishery yield,zooplankton was sampled in the pelagic zone of this reservoir from June 2007 to February 2009.The meta-zooplankton was composed of 30 species rotifers,7 species cladocerans and 4 species of copepods.Rotifers was dominated by Brachionus angularis,Brachionus forficula,T.stylata,Polyarhtra sp.and K. cochlearis.Bosmina longirostris was the dominant cladoceran.In copepoda,T.taihokuensis was the most abundant species.In the above three groups,the rotifers dominate in species number and total abundance.The total abundance of zooplankton was higher in dry season than flood season,but the total biomass changed inversely.The analysis with CCA showed the precipitation was the most important factor influencing the dynamics of meta-zooplankton.
     We examined the impact of different stocking levels of fish and different ratios of silver carp and bighead carp in a large scale(667 ha.) and an small enclosured bay(28 ha.) from september 2007 to February 2009 in Xiangang Reservoir.The inside fish biomass of the experimental bay was about 15gm~2,the outside one about 30gm~2.The biomass ratio of silver carp:bighead carp of small enclosured bay was 0:10(september,2007-July,2008) and 7:3(September,2008-February,2009),the large scale one was 3:7.Samples of zooplankton were collected monthly to analyze species composition,abundance,biomass,body size and dominant species.The dominant species of rotifer did not show an evident temporal succession with different stocking levels of fish and different ratios of silver carp and bighead carp.The abundance and biomass of crustacean small enclosured bay decreased significantly than ones of large scale because of low predation induced fishing from september 2007 to July 2008 in large scale.The abundance and biomass of zooplankton at small enclosured bay between from September 2007 to February 2008 and from September 2008 to February 2009,and ones of between small enclosured bay and large scale from September 2008 to February 2009 were not significant difference,which resulted from the low predation of Tilapia nilotica and other rough fishes.
     To understand the effect of floating macrophyte rafts on zooplankton in Dajingshan Reservoir, pelagic zooplankton was investigated monthly or biweekly inside in experimental zones with macrophyte and without macrophte from July 2006 to December 2008.The meta-zooplankton was composed of 36 species of rotifers,5 species of cladocerans and 9 species of copepods. Rotifers were dominated by Brachionus,such as Brachionus angularis and Brachionus forficula. Bosmina longirostris was the dominant species of cladocera.In copepoda,Limnoithona sinensis was the most abundant species,Limnoithona sisnensis is a small-sized species.It can adapt to high salinity,and invade Dajingshan Reservoir with water pumped from the Xijiang River. Precipitation and pumped water were the most important factors influencing the dynamics of the meta-zooplankton,and they significantly modified the effect of temperature.The zooplankton abundance of three zones was composed of small-sized species with a body size less than 200~tm, such as rotifers and copepod nauplii.The abundance and biomass ofrotifers and cructacean were not significant difference between experimental zones with macrophyte and without macrophyte because three experimental zones were not isolated absolutely and the composition of fishes were adjusted.Towards the third years after the bio-engineering,some oligotrophy indicators, such as Ploesoma hudsoni,Proales sordida,and Scaridium longicaudum occurred,and the abundance of eutrophic indicators such as B.angularis,B.forficula,T.stylata,and B. longirostris,decreased.
引文
[1]陈绵润.白鲢和尼罗罗非鱼混养对热带水库浮游动物群落影响-大型围隔实验.暨南大学硕士学位论文[D].2007.
    [2]陈少莲.东湖放养鲢、鳙鱼种的食性分析[J].水库渔业,1982,3:21-26.
    [3]高拯民等.官厅水库氮、磷污染及其控制途径[J].环境科学学报.1984,4(1):1-15.
    [4]韩博平,李铁,林旭钿.广东省大中型水库富营养化现状与防治对策研究[M].北京:科技出版社,2003.
    [5]韩德举,彭建华等.丹江口水库的饵料生物资源及水体营养状态评价[J].湖泊科学,1997,9(1):57-62.
    [6]何志辉,李永函.清河水库的浮游植物[J].水生生物学集刊.1983.8:71-84.
    [7]胡韧,雷腊梅,韩博平.南亚热带大型贫营养水库浮游植物群落结构与季节变化—以新丰江水库为例[J].生态学报,2008,28(10):4652-4664.
    [8]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社.1990,138-239.
    [9]赖伟,李逸平,堵南山.上海淀山湖浮游动物桡族类群落组成[J].水生生物学报,1987,11(2):173-183.
    [10]李明德.于桥水库的浮游植物[J].水生生物学论文集.北京:海洋出版社,1991:38-51.
    [11]李秋华,韩博平.基于CCA的典型调水水库浮游植物群落动态特征分析[J].生态学报,2007,27(6):2355-2364.
    [12]林秋奇,胡韧,段舜山,韩博平.广东省大中型供水水库浮游生物对水库营养状态的指示[J].生态学报,2003.23(6):1101-1108.
    [13]林秋奇,赵帅营,韩博平.广东省水库轮虫分布特征[J].生态学报,2005,25(5):1123-1131.
    [14]林秋奇,赵帅营,韩博平.新建水库轮虫和甲壳类浮游动物动态特征[J].生态学杂志,2006,25(3):270-276.
    [15]林少君,贺立静,黄沛生,韩博平.浮游植物中叶绿素a提取方法的比较与分析[J].生态科学,2005,24:9-11.
    [16]林彰文,顾继光,韩博平.一个抽水型水库的沉积物及其无机磷含量的分布特点[J].农业环境科学学报,2006,25(3):776-781.
    [17]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(3):193-196.
    [18]刘晓亮,刘定忠等.青山水库浮游生物群落及鲢、鳙鱼产力的估计[J].水利渔业,1993,6:20-22.
    [19]马经安等.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002.11(6):575-578.
    [20]马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000(2):99-101.
    [21]宋福等.密云水库水质探讨.中国环境科学,1986,6(4):52-55.
    [22]宋祥甫,邹国燕,吴伟明,等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-491.
    [23]王家骧,严朝辉,史为良.大火房水库叶绿素a周年分布[J].水利渔业,1993,6:8-10.
    [24]望甜,王晓辉,韩博平.一座抽水水库中中华窄腹剑水蚤种群动态及其对浮游甲壳类群落结构的影响.湖泊科学,2009,21(1):110-117.
    [25]王晓辉,望甜,林秋奇,韩博平.华南地区典型抽水型水库后生浮游动物群落的种类组成与结构.生态学报,2009,29(1):456-465.
    [26]谢平.鲢、鳙与水华控制[M].北京:科学出版社,2003.
    [27]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.358-370。
    [28]赵帅营,林秋奇,刘正文,韩博平.南亚热带湖泊-星湖后生浮游动物群落特征研究[J].水生生物学报,2007,31(3):405-413.
    [29]赵文,姜宏,何志辉.三北地区内陆盐水的浮游甲壳类[J].大连水产学院学报,1996,13(1):1-13.
    [30]Arcifa M S.Zooplankton composition of ten reservoirs in southern Brazil.Hydrobiologia,1984,113:137-145.
    [31]Baumann P C & Kitchell J F.Diel patterns of distribution and feeding of bluegill in Lake Wingra,Wisconsin[J].Transactions of the American Fisheries Society,1974,103:255-260.
    [32]Benndorf J,Boing W,Koop J & Eeubauer I.Top-down control of phytoplankton;the role of time scale,lake depth and trophic state[J].Freshwater biology,2002,47;2282-2295.
    [33]Blancher E C.Zooplankton-trophic state relationships in some north and central Florida lakes[J].Hydrobiologia,1984,109:251-263.
    [34]Brooks J L & Dodson S I.Predation,body size,and composition of plankton[J].Science,1965,150:28-35.
    [35]Burns C W.The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested[J].Limnology and Oceanography,1968(13):675-678.
    [36]Buyukates Y,Roelke D.Influence of pulsed inflows and nutrient loading on zooplankton and phytoplankton community structure and biomass in microcosm experiments using estuarine assemblages[J].Hydrobiologia,2005,548:233-249.
    [37]Carpenter S R,Kitchell J F & Hodgson J R.Cascading trophic interactions and lake productivity [J].Bioscience,1985,35(10):634-639.
    [38]Chang K H & Hanazato T.Diel vertical migrations of invertebrate predators (Leptodora kindtii,Thermocyclops taihokuensis,and Mesocyclops sp.)in a shallow,eutrophic lake[J].Hydrobiologia,2004,528:249-259.
    [39]Chang K H,Nagata T & Hanazato T.Direct and indirect impacts of predation by fish on the zooplankton community:an experimental analysis using tanks[J].Limnology,2004,5:121-124.
    [40]Claska M E & Gilbert J J.The effect of temperature on the response of Daphnia to toxic cyanobacteria[J].Freshwater Biology,1998,39(2):221-232.
    [41]Crisman T L & Beaver I R.Applicability of planktonic biomanipulation:for managing eutrophication in the subtropics[J].Hydrobiologia,1990,200/201:177-185.
    [42]Datta S & Jana B B.Control bloom in a tropical lake:grazing efficiency of some herbivorous fished[J].Journal of Fish Biology,1998,53:12-24
    [43]Dejen E,Vijverberg J,Nagelkerke L A J,Sibbing F A.Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake(L.Tana,Ethiopia)[J].Hydrobiologia,2004,513:39-49.
    [44]Deneke R,Nixdorf B.On the occurrence of clear-water phases in relation to shallowness and trophic state:a comparative study[J].Hydrobiologia,1999,408/409:251-262.
    [45]Domaizon I,Desvilettes C & Debroas D.Influence of zooplankton and phytoplankton on the fatty acid compositon of digesta and tissue lipids of silver carp:mesocosm experiment [J].Journal of Fish Biology,2000,57:417-432.
    [46]Drenner R & Hambtight K D.Review:biomanipulation of fish assemblages as a lake restoration technique[J].Archive Fur Hydrobiologie,1999,146:129-165.
    [47]Dumont H J & Negrea S.Introduction to the Class Brachiopoda,Guides to the Identification of the Microinvertebrates of the Continental Waters of the World [M].Backhuys Publishers.Leiden.2002.
    [48]Dumont H J.On the diversity of the Cladocera in the tropics[J].Hydrobiologia,1994,272:27-38.
    [49]Duncan A.Assessment of factors influencing the composition,body size and turnover rate of zooplankton in Parakrama Samudra,an irrigation reservoir in Sri Landka[J].Hydrobiologia,1984,113:201-215.
    [50]Duncan A.Assessment of factors influencing the composition,body size and turnover rate of zooplankton in Parakrama Samudra,an irrigation reservoir in Sri Lanka[J].Hydrobiologia,1984,113:201-215.
    [51]Dussart B H & Defaye D.Introduction to the Copepods,Guides to the Identification of the Microinvertebrates of the Continental Waters of the World.Backhuys Publishers,Leiden,2001.Korovchinsky N M.How many species of Ciadocera are there[J]? Hydrobiologia,1996,321:191-204.
    [52]Dussart B H,Fernando C H & Matsumura-Tundisi & Shiel R J.Areview of systematics,distribution and ecology of tropical freshwater zooplankton [J].Hydrobiologia,1984,113:77-91.
    [53]Fernando C H & Zankai N P.The rotifera of Malasia and Singapore with remarks on some species[J].Hydrobiologia,1981,78:205-219.
    [54]Fernando C H.The freshwater zooplankton of Sri Lanka,with a discussion of tropical freshwater zooplankton composition[J].International Review of Hydrobiology,1980a,65(1):85-125.
    [55]Fernando C H.The species and size composition of tropical freshwater zooplankton with special reference to the oriental region(South East Asia)[J].International Review of Hydrobiology,1980b,65(3):411-426.
    [56]Fulton R S Ⅲ.Grazing on filamentous algae by herbivorous zooplankton [J].Freshwater Biology,1988,20:263-272.
    [57]Gilbert J J.Suppression of rotifer populations by Daphnia:A review of the evidence,the mechanisms,and the effects on zooplankton community structure[J].Limnology and Oceanography,1988,33 (6):1286-1303.
    [58]Gliwicz Z M A & Ghilarov A & Pijanowska J.Food and predation as major factors limiting wo natural populations of Daphnia cucullata Sars[J].Hydrobiologia,1981,80:205-218.
    [59]Gliwicz Z M & Pijanowska J.The role of predation in zooplankton succession[M].In Sommer,U.(ed.),Plankton Ecology.Springer-Verlag,New York,1989:253-296.
    [60]Gliwicz Z.& Rowan M.Survival of Cyclops abyssorum tatricus (Copepoda,Crustacea)in alpine lakes stocked with planktivorous fish[J].Limnol.Oceanol.,1984,29:1290-1299.
    [61]Gonzales H E,Smetacek V.The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material [J].Marine Ecology Progress Series,1994,113:233-246.
    [62]Green J.The temperate-tropical gradient of planktonic Protozoa and Rotifera [J],Hydrobiologia,1994,272:13-26.
    [63]Guo X M.Two new species of Mesocyclops from southern China and notes on the genus Mesocyclops in China[J].Hydrobiologia,2000b,429:115-131.
    [64]Hall J G,Threlkeld S T & Burns C W.The size-efficiency hypothesis and the size structure of zooplankton communities.Annu.Rev.Ecol.Sysl.,1976,7:177-208.
    [65]Hansen,A M & Jeppesen E.Changes in the abundance and composition of cyclopoid copepods following fish manipulation in eutrophic Lake Vaeng,Denmark[J].Freshwater Biology,1992,28:183-193.
    [66]Hansson L A,Annadotter H et al.Biomanipulation as an application of food-chain theory:constraints,synthesis,and recommendations for temperate lakes[J].Ecosystems,1998,1;558-574.
    [67]Hebert P D N.The population biology of Daphnia (Crustacea,Daphnidae)[J].Biol.Rev.,1978,53:387-426.
    [68]Hollibaugh J T,Wong P S.Microbial processes in the San Francisco Bay estuarine turbidity maximum[J].Estuaries,1999,22:848-862.
    [69]Hrbacek J,Dvorakova M,Korinek V & Prochazkova L.Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton assemblage[J].Verh.Int.Ver.Theoret.Angew.Limnol..1961,14:192-195.
    [70]Korinek V Cladocera.In:Fernando C H (ed):A guide to tropical freshwater zooplankton[M].Leiden:Backhuys Publishers,2002.
    [71]Korovchinsky N M.The Cladocera (Crustacea:Branchiopoda)as a relict group[J].Zoological Journal of the Linnean Society,2006,147:109-124.
    [72]Korponai J,Matyas K,Paulovits G,Tatrai I,Kovacs N.The effect of different fish communities on the cladoceran plankton assemblages of the Kis-Balaton Reservoir,Hungary[J].Hydrobiogia,1997,360:211-221.
    [73]Lampert.Food limitation and the structure of zooplankton communities [J].The Journal of Animal Ecology,1987,56(3):1086-1087.
    [74]Lauridsen T L,Jeppesen E & Sondergaard M.Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the 1~(st)5Years following fish manipulation[J].Hydrobiologia,1994,276:233-242.
    [75]Lazzaro X.A review of planktivorous fishes:Their evolution,feeding behabiours,selectivities,and impacts[J].Hydrobiologia,1987,146:97-167.
    [76]Lazzaro X.,Bouvy M.,Ribeiro-filho R.A.,01iviera V.S.,Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian resevoirs[J]? Freshwater Biology.2003,48:649-668.
    [77]Lin Q Q,Duan S S,Hu R,Han B P.Zooplankton distribution in tropical reservoirs,South China[J].International Review of Hydrobiology,2003,88(6):606-613.
    [78]Liu Q G,Chen Y,Li J L & Chen L Q.The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem[J].Ecological Modelling,2007,203:279-289.
    [79]Lu M,Xie P,Tang H J,Shao Z J & Xie L Q.Experimental study of trophic cascade effect of silver carp(Hypophthalmichthys molitrixon)in a subtropical lake,Lake Donghu;on plankton community and underlying mechanisms of changes of crustacean community [J].Hydrobiologia,2002,487:19-31.
    [80]Macan T T The influence of predation on the composition of freshwater animal communities[J].Biol.Rev.,1977,52:45-70.
    [81]Maemets A.Rotifers as indicators of lake types in Estonia[J].Hydrobiologia,1983,104:357-361.
    [82]Mavuti K M.Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepod)and bacteria in a hypertrophic shallow lake in Vienna,Austria[J].Hydrobiologia,1997,342/343:165-174.
    [83]McCabe G D& O' Brien.The effects of suspended silt on the feeding and reproduction of Daphnia pulex[J].American Midland Naturalist,1983,110:324-337.
    [84]McNaught D C.A hypothesis to explain the succession from calanoids to cladoceras during eutrophication[J].Verh internal.Verein.Limnol,1975,19:724-731.
    [85]McQueen D J,Johannes MRS,Post J R,Stewart T J & Lean D R S.Bottom-up and top-down impacts on freshwater pelagic community structure[J].Ecological Monographs,1989,59(3):289-309.
    [86]Mehner T,Benndorf J Kasprzak P & Koschel R.Biomanipulation of lake ecosystems:successful applications and expanding complexity in the underlying science[J].Freshwater Ecology,2002,47:2453-2465.
    [87]Miura T.The effects of planktivorous fishes on the plankton community in a eutrophic lake[J].Hydrobiology,1990,200/201:567-579.
    [88]Nilssen J P.Tropical lakes-functional ecology and future development:The need for a process-orientated approach[J].Hydrobiologia,1984,113:231~242.
    [89]Nogueira M G Zooplankton composition,dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River),S(?)o Paulo,Brazil[J].Hydrobiologia,2001,455:1-18.
    [90]Northcote T G.Fish in the structure and function of freshwater ecosystems:a“top-down” view[J].Canadian Journal of Fisheries Aquatic Sciences,1988,45:361-375.
    [91]Pagano M,Saint-Jeanb L & Arfia R.Population growth capacities and regulatory factors in monospecific cultures of the cladocerans Moina micrura and Diaphanosoma excisum and the copepod Thermocyclops decipiens from Cote d' Iviote(West Africa)[J].Aquatic Living Resources,2001,13(3):163-172.
    [92]Pichlov(?)R,Brandl Z.Predatory impact of Leptodora kindtii on zooplankton community in the Slapy Reservoir[J].Hydrobiologia,2003,504:177-184.
    [93]Porter K G,Gerritsen J & Orcutt Jr J D..The effect of food concentration on swimming patterns,feeding behaviour,ingestion,assimilation and respiration by Daphnia[J].Limnology and Oceanography,1982(27):935-949.
    [94]Post J R & McQueen D J.The impact of planktivorous fish on the structure of plankton community[J].Freshwater Biology,1987(17):79-89.
    [95]Radke R J & Kahl U.Effects of a filter-feeding fish [silver carp,Hypophthalmichthys molitrix(Val.)]on phyto-and zooplankton in a mesotrophic reservoir:results from an enclosure experiment[J].Freshwater Biology,2002,47:2337-2344.
    [96]Reeders H H & Bij de Vaate.A.Zebra messels (Dreissen polynorpha):a new perspective for water quality management[J].Hydrobiologia,1990,200/201:437-450.
    [97]Rettig J E.Zooplankton responses to predation by larval bluegill:an enclosure experiment [J].Freshwater Biology,2003,48:636-648.
    [98]Saunders J F,Lewis W M.Dynamics and control mechanisms in a tropical zooplankton community (Lake Valencia,Venezuela)[J].Ecological Monographs,1988,58(4):337-353.
    [99]Scheffer M.Ecology of shallow lakes[M].Chapman & Hall,London,1998.
    [100]Segers H,De Meester L.Rotifera of Papua New Guinea,with the descriptions of a new Scardium Ehrenber,1830[J].Archiv Fur Hydrobiologie,1994,131:111-125.
    [101]Segers H.Zoogeography of the Southeast Asian Rotifera[J].Hydrobiologia,2001,446/447:233-246.
    [102]Shapiro J & Wright D I.Lake restoration by biomanipulation round Lake Minnesota,the first two years[J].Freshwater Biology,1984,14:371-383.
    [103]Shapiro J,Lamarro V & Lyneh M.Biomanipulatioman ecosystem approach to lake restoration.In:Brezonik,P L.& Fox,J.L.(eds.)Proceedings of a Symposium on Water Quality Management through Biological Control.University of Florida,Gainesville,1975:85-89.
    [104]Sladecek V.Rotifers as indicators of water quality[J].Hydrobiologia,1983,100:169-202.
    [105]Smith D W.The feeding selectivity of silver carp Hypophthalmichthys molitrixon[J].Journal of Fish Biology,1989,34:817-828.
    [106]Spataru P & Gophen M.Feeding behaviour of silver carp Hypophthalmichthys molitrix(Val..)and its impact on the food web in Lake Kinneret,Israel[J].Hydrobiologia,1985,120:53-61.
    [107]Starling F L R M & Rocha A J A.Experimental study of the impacts of planktivorous fishes on the plankton community and eutrophication of a tropical Brazilian reservoir[J], Hydrobiologia,1990,200/201,581-591.
    [108]Starling F L R M.Control of eutrophication by silver carp(Hypophthalmichthys molitrix)in the tropical Parana Reservoir (Brasilia,Brazil):a mesocosm experiment [J].Hydrobiologia,1993,257:143-152.
    [109]Stenson J A E.Fish impact on rotifer community structure[J].Hydrobiologia,1982,87:57-64.
    [110]Taylor B E & Mahoney D L.Extinction and recolonization:precesses regulationg zooplankton dynamics in a cooling reservoir[J].Verh.Internat.Verein.Limnol.,1988,23:1536-1541.
    [111]Thorp J H & Covich A P.Ecology and Classification of North American Freshwater Invertebrates,20d edu[M].Academic Press,San Diego,San Francisco,2001.
    [112]Threlkeld S T.Daphnia population fluctuations:patterns and mechanisms.In Peters R.H.& R.de Bernardi (eds),Daphnia[J].Mem.Ist.Ital.Idrobiol.,1987,45:367-388.
    [113]Threlkeld S T.Water renewal effects on reservoir zooplankton communities [J].Water Quality Research Journal of Canada,1982,7:151-167.
    [114]Timms R M & Moss B.Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem[J].Limmnoogy and.Oceanography,1984,29:472-486.
    [115]Uku J N & Mavuti K M.Comparative limnology,species diversity and biomass relationship of zooplankton and phytoplankton in five freshwater lakes in Kenya[J].Hydrobiologia,1994,272:251-258.
    [116]Vanni M L.Freshwater zooplankton community structure:Introduction of large invertebrate predators and large herbivores to a small-species community [J].Canadian Journal of Fisheries and Aquatic.Sciences,1988,45:1758-1770.
    [117]Vanni M.Fish predation and zooplankton demography indirect effects[J].Ecology,1986,67(2):337-354.
    [118]Wetzel R G.Freshwater ecology:changes,requirements,and future demands[J].Limnology,2000,1:3-9.
    [119]Wong B & Ward F J.Size selection of Daphnia pulicaria by yellow perch fry in West Blue Lake,Manitoba[J].Journal of the Fisheries Research Board Canada 1972,29:1761-1764.
    [120]Xie P.Gut contents of bighead carp(Aristichthys nobilis)and the processing and digestion of algal cells in the alimentary canal [J].Aquacuture,2001,195:149-161.
    [121]Zaret T M.Predation and Freshwater Communities[M].Yale University Press,New Haven and London.1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700