用户名: 密码: 验证码:
DSA-FACE技术筛选胰腺癌血清特异糖链的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰腺癌是一种临床表现隐匿、发展迅速和预后极差的消化系统肿瘤,目前临床上缺乏特异性强的肿瘤标志物。基于DNA测序仪的荧光糖电泳(DSA-FACE)技术是一种能实现高通量、高灵敏度的糖组学检测方法,该技术现正应用于肝脏病学、衰老和乳腺癌等血清糖组学的研究领域。
     本研究利用DSA-FACE技术对41例胰腺导管腺癌(PDA)患者血清和100例健康人群血清N-糖链的差异进行比较分析,发现两者之间存在显著性差异。选取在PDA患者组显著高于健康人群组的糖峰中差异最显著的峰14( P <0.001)以及PDA患者组显著低于健康人群组的糖峰中差异最显著的峰6(P <0.001)作为特异性糖链,并以log(p14/p6)为指标进行ROC曲线分析,发现曲线下面积为0.803±0.041,检测的灵敏度为75.6%,特异性为77%。进一步分析发现,峰14和峰6检测胰腺癌早中期的灵敏度可达77.8%,特异性可达80%。以上结果表明,峰14和峰6作为胰腺癌特异性的血清标志物有望成为临床诊断PDA的糖组学指标。
     已有研究表明,不同性别间的血清糖谱图存在明显差异,因此我们对不同性别的PDA患者与对照组的糖峰进行比较,结果发现在PDA男性患者中峰15显著高于健康男性,而在女性中没有显著差异,以log(p15/p6)作为指标,ROC曲线下面积为0.865±0.044,对PDA男性患者诊断的灵敏度为92.6%,特异性为80.3%。在PDA女性患者中峰10显著低于健康女性,而在男性中没有显著差异,以峰log(p14/p10)作为指标,ROC曲线下面积为0.925±0.047,诊断PDA女性患者的灵敏度为71.4%,特异性可达到100%。由此可以看出峰15和峰10可能与不同性别当中胰腺癌的发生密切相关,此外这些峰还可分别作为不同性别的胰腺癌临床特异性诊断标志物。此外,我们进一步比较分析了60岁上下的PDA患者和健康人群组的差异,筛选出适合诊断60岁以下和60岁以上PDA患者的糖峰,有望成为个性化医疗的辅助指标,使检测更为精确。
     目前临床上使用的胰腺癌肿瘤标志物存在灵敏度和特异性有限、无法实现高通量检测等缺点,本研究利用高通量的DSA-FACE技术筛选出PDA患者特异性的糖峰,其可以作为潜在的胰腺癌诊断标志物。根据不同性别、不同年龄PDA患者的糖链含量存在差异的情况下,筛选出了适合各自诊断的PDA糖组学指标,该结果将会对胰腺癌的预测、诊断及个性化医疗产生影响,并为建立一种可应用于临床的无创、快速、便捷的高通量诊断方法奠定基础。
Pancreatic carcinoma is one of the malignant tumors that has the worst therapeutic effect, because of the often late onset of clinical symptoms, low rate of early diagnosis and poor result of clinical treatment. Till now, the clinicl study is still lack of specific tumor markers. DNA sequencer assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) is a powerful high throughput, high sensitivity detection method for Glycomics and is being used in the research field of serum Glycomics of hepatology, aging and breast cancer.
     To find Glycomic specific tumor markers of pancreatic carcinoma, DSA-FACE was performed in 41 patients with pancreatic ductal adenocarcinoma (PDA) and 100 healthy human. The results indicated that there were significant differences in N-linked glycans between PDA patients and healthy persons. Peak 6 and Peak 14 were the most significant peaks which were picked as a new tumor marker of PDA. Taking log (p14/p6) as indicator of the ROC curve analysis, the area under ROC curve was 0.803±0.041 with 75.6% sensitivity and 77% specificity. Further analysis showed that for detection of pancreatic carcinoma early metaphase with peak 14 and peak 6, sensitivity is up to 77.8% and specificity reaches 80%. These results suggested that as the serum markers for pancreatic carcinoma specific clinical diagnosis of PDA, peak 14 and peak 6 might possibly become the Glycomics indicator.
     It’s known that there are differences in serum profile between different sexes so we grouped according to the gender to make analysis. It is found that the peak 15 showed significant difference between male patients of PDA and the healthy male but no significant difference in female. Taking log (p15/p6) as indicator, the area under ROC curve is 0.865±0.044 with 92.6% sensitivity and 80.3% specificity. Also, the peak 10 showed significant difference between female patients of PDA and the healthy female but no significant difference in male. Taking log (p14/p10) as indicator, the area under the ROC curve is 0.925±0.047 with 71.4% sensitivity and 100% specificity. So, the peak 15 and peak 10 may be closely related to the occurrence of pancreatic carcinoma of different gender, in addition, these peaks can be also taken as different sex-specific diagnostic markers of pancreatic carcinoma.
     Meanwhile, for the age of high incidence of pancreatic carcinoma, the N-glycomic changes in serum were analyzed between PDA and healthy persons of the age at the cutoff 60. the appropriate PDA glycan peaks were checked for the diagnose of PDA between the age over 60 and the age below it. As the specific Glycomics indexes with the cutoff point of 60-year-old for the diagnosis of pancreatic carcinoma, it’s possible that theses results may become an auxiliary index for the personalized health care and make the detection more accurate and useful.
     The sensitivity and specificity of the current clinical tumor markers of pancreatic carcinoma is limited and high throughput detection is impossible. In this work, with high-throughput screening technology of DSA-FACE, the specific glycan peaks were founded and it can be used as potential diagnostic markers of pancreatic carcinoma. According to gender, age and many differences cases in PDA, the Glycomics indicator for each diagnosis group were analyzed. The result should be helpful for the forecast of pancreatic carcinoma, diagnosis and personalized medical treatment and might be used as a foundation to establish clinical noninvasive, fast and convenient high-throughput diagnostic methods.
引文
1 X. Guo, Z. Cui. Current Diagnosis and Treatment of Pancreatic Cancer in China. Pancreas.2005, 31:13~22
    2李兆申.胰腺癌流行病学研究进展.解放军医学杂志. 2002, 27:283~285
    3郑建明,朱明华.胰腺肿瘤组织学新的分类方法.胰腺病学. 2001, 1:49~51
    4朱明华.胰腺癌的病理组织学分类.胰腺病学. 2005, 5:1~3
    5 C. Rosty, M. Goggins. Early Detection of Pancreatic Carcinoma. Hematol Oncol Clin North Am. 2002, 16: 37~52
    6 N. Kokhanenko, A. M. Ignashov, E. V. Varga, et al. Role of the Tumor Markers CA19-9 and Carcinoembryonicantigen(CEA) in Diagnosis, Treatment and Prognosis of Pancreatic Cancer. Vopr Onkol.2001, 47:294~297
    7 R. W. Parks, O. J. Garden. Ensuring Early Diagnosis in Pancreatic Cancer. Practitioner. 2000, 244:336~343
    8 C. Haglund, J. Lundin, P. Kuusela, et al. CA242, a New Tumour Marker for Pancreatic Cancer: a Comparison with CA19-9, CA50 and CEA. Br J Cancer. 1994, 70:487~492
    9 M. Ventrucci, G. M. Ubalducci, A. Cipolla, et al. Serum CA242: the Search for a Valid Marker of Pancreatic Cancer. Clin Chem Lab Med.1998, 36:179~184
    10 N. Furuya, S. Kawa, O. Hasebe, et al. Comparative Study of CA 242 and CA 19-9 in Chronic Pancreatitis. Br J Cancer. 1996, 73:372~376
    11 M. Carpelan, J. Louhimo, U. H. Stenman, et al. CEA, CA19-9 and CA242 Improve the Diagnostic Accuracy in Gastrointestinal Cancers. Anti-cancer Res. 2002, 22:2311~2316
    12 J. Y. Li, Y. Huang, M. F. Lin. Clinical Evaluation of Several Tumor Markers in the Diagnosis of Primary Hepatic Cancer. World Journal of Gastroenterology. 2000, 6: 39~40
    13 H. Furukawa. Diagnostic Clues for Early Pancreatic Cancer. Japanese Journal of Clinical Oncology. 2002, 32:391~392
    14袁世珍.胰腺癌.科学技术出版社. 2001: 153~169
    15许以平,郑捷.现代免疫学检验与临床实践.上海科学技术文献出版社. 1999: 346~350
    16沈霞.临床免疫学与免疫学检验.人民军医出版社. 2002: 196~198
    17张韶光,张先富.胰腺癌肿瘤标志物的临床应用进展.中国医药学导报. 2007, 4:9~10
    18 S. R. Rittling, A. F. Chambers. Role of Osteopontin in Tumor Progression. Br J Cancer. 2004, 90:1877~1881
    19 A. Kolb, J. Kleeff, A. Guweidhi, et al. Osteopontin Influences the Invasiveness of Pancreatic Cancer Cells and Is Increased in Neoplastic and Inflammatory Conditions. Cancer Biology & Therapy .2005, 4:740~746
    20 W. Zhou, K. J. Sokoll, D. J. Bruzek, et al. Identifying Markers for Pancreatic Cancer by Gene Expression Analysis. Cancer Epidemiology, Biomarkers and Prevention. 1998, 7:109~112
    21 M. R. Bootcov, A. R. Bauskin, S. M. Valenzuela, et al. MIC-1, a Novel Macrophage Inhibitory Cytokine, Is a Divergent Member of the TGF-beta Superfamily Cluster. Proc. Natl. Acad. Sci. USA. 1997, 94:11514~11519
    22 J. Koopmann, C. N. Rosenzweig, Z. Zhang, et al. Serum Markers in Patients with Resectable Pancreatic Adenocarcinoma: Macrophage Inhibitory Cytokine 1 versus CA19- 9. Clin Cancer Res. 2006, 12:442~446
    23 J. Koopmann, P. Buckhaults, D. A. Brown, et al. Serum Macrophage Inhibitory Cytokine 1 as a Marker of Pancreatic and Other Periampullary Cancers. Clin Cancer Res. 2004, 10:2386~2392
    24 D. M. Simeone, B. Ji, M. Banerjee, et al. CEACAM1, a Novel Serum Biomarker for Pancreatic Cancer. Pancreas. 2007, 34:436~443
    25李淑德,蒋斐,李兆申.胰液分子生物学检测诊断胰腺癌研究进展.世界华人消化杂志. 2007, 15:2768~2771
    26 M. Tada, M. Omata, S. Kawai, et al. Detection of Ras Gene Mutations in Pancreatic Juice and Peripheral Blood of Patients with Pancreatic Adenocarcinoma. Cancer Res. 1993, 53:2472~2474
    27 X. Lu, T. Xu, J. Qian, et al. Detecting K-ras and p53 Gene Mutation from Stool and Pancreatic Juice for Diagnosis of Early Pancreatic Cancer. Chin Med. 2002, 115: 1632~1636
    28 N. Sawabu, H. Watanabe, Y. Yamaguchi, et al. Serum Tumor Markers and Molecular Biological Diagnosis in Pancreatic Cancer. Pancreas. 2004, 28:263~267
    29 H. Uehara, A. Nakaizumi, M. Tatsuta, et al. Diagnosis of Pancreatic Cancer by Detecting Telomerase Activity in Pancreatic Juice: Comparison with K-ras Mutations. Am J Gastroenterol. 1999, 94:2513~2518
    30 K. Mizumoto, M. Tanaka. Genetic Diagnosis of Pancreatic Cancer. Hepatobiliary Pancreat Surg. 2002, 9:39~44
    31 C. Rosty, M. Goggins. Identification of Differentially Expressed Proteins in Pancreatic Cancer Using a Global Proteomic Approach. Methods Mol Med. 2005, 103:189~197
    32 R. Chen, Sh. Pan, C. Kelly, et al. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis. Pancreas. 2007, 34: 70~79
    33 A. Varki, R. Cummings, J. Esko, et al. Essential of Glycobiology. Cold Spring Harbor Laboratory Press. 1999.
    34金城.糖生物学:基因组学和蛋白质组学的延伸.世界科技研究与发展. 2001, 23:31~34
    35 L. G. Ellies, S. Tsuboi, B. Petryniak, et al. Core 2 Oligosaccharide Biosynthesis Distinguishes between Selectin Ligands Essential for Leukocyte Homing and Inflammation. Immunity. 1998, 9:881~890
    36 J. P. Zanetta, A. Badache, S. Maschke, et al. Carbohydrates and Soluble lectins in the regulation of cell adhesion and proliferation. Histol Histopathol. 1994, 9:385~412
    37 R. D. Huby, R. J. Dearman, I. Kimber. Why are some proteins allergens? Toxicol Sci. 2000, 55: 235~246
    38 C. Cebo, T. Dambrouck, E. Maes, et al. Recombinant Human Interleukins IL-1alpha, IL-1beta, IL-4, IL-6, and IL-7 Show Different and Specific Calcium-independent Carbohydrate-binding Properties. Biol Chem. 2001, 276:5685~5691
    39 A. Helenius, A. Markus. Intracellular Functions of N-linked Glycans. Science. 2001, 291:2364~2369
    40 M. R. Wormald, R. A. Dwek. Glycoproteins: Glycan Presentation and Protein-fold Stability. Structure. 1999, 7:155~160
    41 R. K. Plemper, D. H. Wolf. Retrograde Protein Translocation: Eradication of Secretory Proteins in Health and Disease. Trends Biochem Sci. 1999, 24:266~270
    42 S. Elliott, J. Egrie, J. Browne, et al. Control of Rhuepo Biological Activity: the Role of Carbohydrate. Exp Hematol. 2004, 32:1146~1155
    43张旭.蛋白质糖基化工程.生物工程进展. 1995, 15:30~35
    44王克夷.糖类研究的进展和前沿.生命的化学. 1994, 14: 4~8
    45 D. H. Dube, C. R. Bertozzi. Glycans in Cancer and Inflammation-Potential for Therapeutics and Diagnostics. Nat. Rev. Drug Discov. 2005, 4:477~488
    46 A. Litynska, M. Prybylo, E. Pochec. et al. Comparison of the Lectin-Binding Pattern in Different Human Melanoma Cell Lines. Melanoma Res. 2001, 11:205~212
    47 F. L. Chan, H. L. Choi, S. M. Ho. Analysis of Glycoconjugate Patterns of Normal and Hormone-Induced Dysplastic Noble Rat Prostate, and an Androgen-independent Noble Rat Prostate Tumor by Lectin Histochemistry and Protein Blotting. Prostate. 2001, 46:21~32
    48 S. Lin, W. Kemmner, S. Grigull, et al. Cell Surface Alpha 2,6-Sialylation Affects Adhesion of Breast Carcinoma Cells. Exp Cell Res. 2002, 276: 101~110
    49 J. R. Brown, Fustermm, T. Whisenan, et al. Expression Patterns of Alpha 2,3-sialyltransferases and Alpha 1,3-fucosyltransferases Determine the Mode of Sialyl Lewis X Inhibition by Disaccharide Decoys. BioChemistry. 2003, 278: 23352~23359
    50 F. Tanaka, Y. Otake, T. Nakagawa, et al. Expression of Polysialic Acid and STX, a Human Polysialyltransferase, is Correlated with Tumor Progression in Non-small Cell Lung Cancer . Cancer Res. 2000, 60: 3072~3080
    51 S. Birkle, G. Zeng, L. Gao. Role of Tumor-associated Gangliosides in Cancer Progression. 2003, 85:455~463
    52 J. Zhao, D. M. Simeone, D. Heidt, et al. Comparative Serum Glycoproteomics Using Lectin Selected Sialic Acid Glycoproteins with Mass Spectrometric Analysis: Application to PancreaticCancer Serum. Proteome Res. 2006, 5: 1792~1802
    53 N. Okuyama, Y. Ide, M. Nakano, et al. Fucosylated Haptoglobin is a Novel Marker for Pancreatic Cancer: A Detailed Analysis of the Oligosaccharide Structure and a Possible Mechanism for Fucosylation. Int. J. Cancer. 2006, 118: 2803~2808
    54 M. Nakano, T. Nakagawa, T. Ito, et al. Site-specific Analysis of N-glycans on Haptoglobin in Sera of Patients with Pancreatic Cancer: A Novel Approach for the Development of Tumor Markers. Int. J. Cancer. 2008, 122:2301~2309
    55 C. Li, D. M. Simeone, E. Dean, et al. Pancreatic Cancer Serum Detection Using a Lectin/Glyco-Antibody Array Method. Proteome Res. 2009, 8: 483~492
    56 S. Barrabes, P. P. Lluis, Catherine M, et al.Glycosylation of Serum Ribonuclease 1 Indicates a Major Endothelial Origin and Reveals an Increase in Core Fucosylation in Pancreatic Cancer. Glycobiology. 2007, 17: 388~400
    57 Z. X. Ning. Handbook of Food Composition .Beijing: Light Industry Press of China. 1998:1~16
    58王静,王晴,向文盛.色谱法在糖类物质分析中的应用.分析化学. 2001, 29: 222~227
    59 A. Kameyama, N. Kikuchi, S. Nakaya, et al. A Strategy for Identification of Oligosaccharide Structures Using Observational Multistage Mass Spectral Library. Anal Chem. 2005, 77:4719~4725
    60 J. Hirabayashi, K. Hayama, H. Kaji, et al. Affinity Capturing and Gene Assignment of Soluble Glycoproteins Produced by the Nematode Caenorhabditis Elegans. Biochem. 2002, 132:103~114
    61 J. Hirabayashi. Lectin-based Structural Glycomics: Glycoproteomics and Glycan Profiling. Glycoconjugate journal. 2004, 21: 35~40
    62 C. C. Wang, Y. L. Huang, C. T. Ren, et al. Glycan Microarray of Globo H and Related Structures for Quantitative Analysis of Breast Cancer. National AcadSciences. 2008, 105:11661~11666
    63 T. Feizi, F. Fazio, W. Chai, et al. Carbohydrate Microarrays-a New Set of Technology at the Frontiers of Glycomics. Current Opinion in Structural Biology. 2003, 13:637~645
    64 L. Nimrichter, A. Gargir, M. Gortler, et al. Intact Cell Adhesion to Glycan Microarrays. Glycobiology. 2004, 14:197~203
    65 K. I. P. J. Hidari, T. Murata, K. Yoshida, et al. Chemoenzymaticsynthesis, Characterization and Application of Glycopolymers Carrying Lactosamine Repeats as Entry Inhibitors against Influenza Virus Infection. Glycobiology. 2008, 18:779~788
    66 H. Kogelberg, V. E. Piskarev, Y. Zhang, et al. Determination by Electrospray Mass Spectrometry and H-NMR Spectroscopy of Primary Structures of Variously Fucosylated Neutral Oligosaccharides Based on the Iiso-lacto-N-octaose core. Eur J Biochem. 2004, 271:1172~1186
    67 N. Callewaert, G. Steven, M. Francis, et al. Ultrasensitive Profiling and Sequencing of N-linked Oligosaccharides Using Standard DNA-sequencing Equipment. Glycobiology. 2001, 11:275~281
    68 T. H. Plummer, J. H. Elder, S. Alexander, et al. Demonstration of Peptide: N-glycosidase F Activity in Endo-beta-N-acetylglucosaminidase F Preparation. Journal of Biolchem. 1984, 259: 10700~10704
    69 A. L. Tarentino, C. M. Gomez, T. H. Plummer. Deglycosylation of Asparagine-linked Glycans by Peptide: N-glycosidase. F. Biochemistry. 1985, 24:4665~4671
    70 W. Neuhaus, E. Bogner, M. Wirth, et a1. A Novel Tool to Characterize Paraeellular Transport: the APTS-dextzan Ladder. Pharm Res. 2006, 23:1491~1501
    71 N. V. Shilova, N. V. Bovi. Fluorescent Labels for the Analysis of Mono-and Oligosaccharides. Russian J Bioorgan Chem. 2003, 29:309~324
    72 N. Callewaert, V. H. Van, H. A. Hecke, et al. Noninvasive Diagnosis of Liver Cirrhosis Using DNA Sequencer-based Total Serum Protein Glycomics. Nature Medicine. 2004, 10:429~434
    73 X. E. Liu, L. Desmyter, C. F. Gao, et al. N-Glycomic Changes in Hepatocellular Carcinoma Patients with Liver Cirrhosis Induced by Hepatitis B Virus. Hepatology. 2007, 5:1426~1435
    74王山,李钰.蛋白质的糖组学研究进展.细胞生物学杂志. 2006, 28:127~131
    75宇传华,曹阳,方亚等. SPSS与统计分析.北京:电子工业出版社. 2007:143~145
    76宇传华,徐勇勇.非参数法估计ROC曲线下面积.中国卫生统计. 1999, 16:241~244
    77王敬瀚. ROC曲线在临床医学诊断实验中的应用.中华高血压杂志. 2008,16:175~177
    78陈卫中,潘晓平,宋兴勃等. ROC曲线中最佳工作点的选择.中国卫生统计. 2006, 23:157~158
    79 A. R. Feinstein. Clinical Epidemiology: Architecture of Clinical Research. WB Saunders Company. 1985:601~632
    80张苏江,陈庆波.数据统计分析软件SPSS的应用(三)—均数比较.畜牧与兽医. 2003, 35:16~18
    81 V. Vanhooren, X. E. Liu, C. Franceschi, et al. N-glycan Profiles as Tools in Diagnosis of Hepatocellular Carcinoma and Prediction of Healthy Human Ageing. Mechanisms of Ageing and Development. 2009, 130:92~97
    82 V. Vanhooren, W. Laroy, C. Libert, et a1. N-Glycan Profiling in the Study of Human Aging. Biogerontology. 2008, 9:351~356
    83 C. Y. Chen, H. Schmilovitz-Weiss, X.E. Liu, et al. Serum Protein N-Glycans Profiling for the Discovery of Potential Biomarkers for Nonalcoholic Steatohepatitis. Journal of Proteome Research. 2009, 8:463~470
    84 K. J. Lee, J. H. Jung, J. M. Lee, et al. High-throughput Quantitative Analysis of Plant N-glycan Using a DNA Sequencer. Biochemical and Biophysical Research Communications. 2009, 380:223~229
    85 C. C. Chen, S. Engelborghs, S. Dewaele, et al. Altered Serum Glycomics in Alzheimer Disease: A Potential Blood Biomarker. Rejuvenation Res. 2010, 3:292~297
    86李文烨,张文.α-1-3岩藻糖基转移酶Ⅶ和糖蛋白CD24与肿瘤转移的研究进展.中国癌症杂志. 2008, 18:790~795
    87耿飞,吴兴中.α-1-6岩藻糖基转移酶的研究进展.生命的化学. 2003, 23:119~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700