用户名: 密码: 验证码:
广东凡口超大型铅锌矿田成矿学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凡口铅锌矿床位于南岭成矿带曲仁构造盆地的北东缘,多年来关于它的物质来源及成因成为诸多学者的研究热点。本文以地洼学说多因复成递进成矿理论为指导,以宏观地质为基础,重点对前人研究较薄弱的同位素、成矿物理化学环境等入手,对矿床的物质来源,矿床成因、矿床的成矿作用以及成矿预测作了许多新的尝试,取得了一些有别于前人的地质认识,这些认识对指导矿床深边部找矿具有重要理论意义和实践价值。主要创新成果和认识如下:
     (1)通过对矿床原生地球化学晕特征及成矿作用的深入分析,指出矿床成矿物质可能来源于地壳深部重熔的岩浆分异热液,间歇式沿NEE—NE向古断裂带上升,在还原的泻湖沉积条件下,与海底沉积碳酸盐岩交代富集成矿,并形成凡口铅锌矿床特有的各元素地球化学场;
     (2)氢、氧同位素、铅同位素和硫同位素地球化学研究成果表明,成矿物质具有显著的多源性特征:硫大部分来自沉积地层,少部分来自岩浆流体;铅主要来自岩浆流体和沉积地层;成矿流体则是印支晚期至燕山早期岩浆热流体以及被加热的地下水;
     (3)矿床矿物包裹体测温和物理化学环境研究分析研究结果,提出成矿早期矿床温度较高,而成矿晚期温度较低;不同成矿阶段矿液的溶解和搬运形式有所不同。
     (4)矿区铅锌硫化物矿床的形成、分布和矿体具体定位同时受多方面因素的控制。中泥盆统棋梓桥组和上泥盆统佘田桥组地层的沉积岩相古地理环境及其时空变异控制了沉积成岩期黄铁矿矿化分布和矿化强度;印支期断层、褶皱、层间滑动构造组合控制铅锌硫化物矿体的矿化就位和矿带的展布;印支晚期至燕山早期富含铅锌等金属成矿元素的岩浆水和深度演化地下水混合是矿床形成重要的控制因素。
     (5)通过综合分析,首次提出凡口铅锌硫化物矿床具有多成矿大地构造阶段、多成矿物质来源、多控矿因素组合类型、多成矿作用方式和多成因类型的特点,属于典型的多因复成矿床的观点。
     (6)总结了矿床空间分布及其演化规律,建立了矿床沉积成矿阶段、沉积成岩成矿阶段和岩浆成矿阶段的成矿模式,建立了凡口矿的成矿预测地质模型,并对其外围进行了实用性较高的成矿预测。
Fankou Pb-Zn ore deposit is situated on the Northeast of Quren structural basin in Nanling mineralization belt, its genesis and metallogenic source are hot spot of research for many years. Directed by the Polygenetic and compound progressive Metallogenic theory of Diwa theory, based on the geologic research and start with isotope and physicochemical environment, the dissertation has made some researches and gains some new recognitions in Metallogenic Source, genesis, mineralizing process and Metallogenic prognosis.
     1. Based on the analysis of the Geochemical aureole and mineralizing process, it is pointed out that the metallogenic source originated from magma hydrothermal solution of crustal remelting and ascend along the old fracture which NEE—NE direction, it formed element diffusion aureole in lagoon environment.
     2. Based on the study of isotope features of H, O、Pb and S, it is concluded that the metallogenic source are complex in Fankou Pb-Zn ore deposit. S from mineral-bearing stratum, Metallogenic elements from the source area and excurrent area of Metallogenic fluids, and Metallogenic fluids are magma fluid and ground hot water from later of Indo-Chinese epoch to early Yenshan epoch. The metallogenic sources are polygenous.
     3. Based on study of the physicochemical environment, it is indicated that the metallogenic temperature is high in early stage and low in later stage. The dissolution and transportation form are different in every metallogenic stage.
     4. The form, distribution and emplacement are controlled by many factors in Fankou Pb-Zn ore deposit. The palaeogeographic environment of sediment and its variation in space-time distribution control the distribution and intension of pyritization of diagenetic stage in Qixin group and Shetianqiao group in Devonian; the fault, fold and interstratal sliding surface of Indo-Chinese epoch control the mineralization belt and its form, the migmatite of magma fluid and ground hot water from later of Indo-Chinese epoch to early Yenshan epoch is significant control factor of deposit forming.
     5. It is concluded that the Fankou Pb-Zn ore deposit is a typical polygenetic and compound deposit, which is characterized by multiple stages, multiple metallogenesis, multiple ore-controlled factors, polymaterial sources and polygenetic types.
     6. Finally, the Metallogenic model and provided prospecting proposals has been established.
引文
[1] 陈国达等.地洼学说讲义.长沙:中国科学院长沙大地构造研究所出版社,1985
    [2] 陈国达.成矿学及其在中国加强研究的必要性.大地构造与成矿学,1987,11(2):105-114
    [3] 陈国达等.亚洲陆海壳体大地构造.长沙:湖南教育出版社,1998
    [4] 陈国达.地洼学说—活化构造及成矿理论体系概述.长沙:中南工业大学出版社,1996
    [5] A.R.谢格诺夫.成矿分析原理,叶敬仁译.长沙:中国科学院长沙大地构造研究所,1984
    [6] 陈国达.中国地台“活化区”的实例并着重讨论“华夏古陆”问题.地质学报,1956,36(3):239-272
    [7] 陈国达.地壳的第三基本构造单元—地洼区.科学通报,1959,(3):94-95
    [8] 陈国达.多因复成矿床并从地壳演化规律看其形成机理..大地构造与成矿学,1982,6(1):1-55
    [9] 彭省临等.论华南古断裂谷与多因复成铜多金属矿床的关系.中南矿冶学院学报,1991,22(5)
    [10] 陈国达.地洼学说的新进展.北京:科学出版社,1992
    [11] 彭省临,陈子龙.多因复成矿床及其研究方法.见:地洼学说研究与应用,长沙:中南工业大学出版社,1992:1-7
    [12] 陈国达.壳体构造—一种综合大地构造学新概念.大地构造与成矿学,1994,18(4):283-310
    [13] 程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列.中国地质科学院院报,第1号,北京:地质出版社,1979:32-57
    [14] 程裕淇,陈毓川,赵一鸣等.再论矿床的成矿系列问题.中国地质科学院院报,第6号,北京:地质出版社,1983:1-64
    [15] 陈毓川.矿床的成矿系列研究现状与趋势.地质与勘探,1997,33(1):21-25
    [16] 翟裕生.成矿系列问题.现代地质,1992,6(3):301-308
    [17] 章崇真.矿床类型、成矿系列和矿床组合模式.地质与勘探,1983,11:1-7
    [18] 陈从喜,蔡克勤,沈宝琳.矿床成矿系列研究的若干问题与方向.地质论评,1998,44(6):596-602
    [19] 康迪(Condie),K.C.,板块构造与地壳演化.北京:科学出版社,1986
    [20] 郭令智,施央申,马瑞士.论地质构造—板块构造理论研究的最新问题.中国地质科学院院报,北京:地质出版社,1984,(10):27-34
    [21] 李春昱,王荃,刘雪亚.中国内生成矿与板块构造.地质学报,1981,55(3):195-204
    [22] 吴 国.继往开来,发展地质力学.地质力学学报,1996,2(1):1-5
    [23] 张文佑等.中国及邻区海陆大地构造.北京:科学出版社,1986
    [24] 张文佑.断块构造导论.北京:石油工业出版社,1984
    [25] 李春昱.矿床与全球构造(米契尔A H G等著)中译本序.北京:地质出版社,1984
    [26] 郭文魁.中国内生金属成矿图(1:400万)说明书.北京:中国地图出版社,1987
    [27] 裴荣富主编.中国矿床模式.北京:地质出版社,1995
    [28] 陈毓川,陶维屏.中国金属、非金属矿产资源及成矿规律.北京:地质出版社,1996
    [29] 翟裕生,邓军,彭润民.中国区域成矿若干问题探讨.矿床地质,1999,18(4):323-332
    [30] 翟裕生等.区域成矿学.北京:地质出版社,1999
    [31] 陈国达.关于多因复成矿床的一些问题.大地构造与成矿学,2000,24(3):199-201
    [32] 彭省临.湘南地洼型铅锌矿形成机制.长沙:中南工业大学出版社,1992
    [33] 李培铮.浙江金矿及其形成机制.北京:地质出版社,1990
    [34] 涂光炽.八十年代地球科学的若干新进展.地质与勘探,1986,22(5)
    [35] 吴延之.层控矿床理论及研究方法.有色总公司成都干部学院出版社,1985
    [36] 涂光炽.关于超大型矿床的寻找和理论研究.矿物岩石地质地球化学通讯,1989,(3):163-168
    [37] 刘继顺.喷流沉积成矿作用研究的若干问题.矿产与地质,1996,10(1):6-10
    [38] 刘家军等,曹淑英,李元林.建德铜矿的海底喷流沉积成因.矿产与地质,1996,10(3):145-154
    [39] 西多罗夫.A.A.环太平洋成矿带的低温热液金-银矿床.国外地质科技,1997,3(15):12-15
    [40] A.H.G.Mitchell.菲律宾浅成低温热液金矿体系.国外火山地 质,1992,2:23-29
    [41] 翟裕生.论成矿系统.地学前缘,1999,6(1)13-27
    [42] 翟裕生.论矿床形成后的变化与保存.地学研究,1997,(29-30):267-273
    [43] 孙海田,邬介人,李锦平.北祁连金属成矿省时—空格局,演化及成矿作用.地质学报,1997,71(2):170-178
    [44] 徐兴旺,蔡新平,马天林,等.新疆康古尔金矿床时空四维结构模型.矿床地质,1998,17(2):150-157
    [45] 蔡新平,徐兴望,张宝林,等.云南墨江金厂金矿时空四维结构模型.矿床地质,1999,18(2):
    [46] 李华芹,谢才富,常海亮.新疆北部有色贵金属矿床成矿作用年代学.北京:地质出版社,1998
    [47] 翟裕生.地史中成矿演化的趋势和阶段性.地学前缘,1997,4(4):197-204
    [48] 翟裕生.成矿系统及其演化—初步实践到理论思考.地球科学,2000,25(4):333-339
    [49] 翟裕生.金属成矿学研究的若干进展.地质与勘察,1997,33(1):13-18
    [50] 於崇文.成矿作用动力学—理论体系和方法论.地学前缘,1994,11(3):54-82
    [51] 於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,1998
    [52] 於崇文.热液成矿作用动力学.武汉中国地质大学出版社,1993
    [53] 毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,1999,18(4):291-299
    [54] 裴荣富,邱小平,尹冰川等.成矿作用爆发异常及巨量金属堆积.矿床地质,1999,18(4):333-340
    [55] V.I.卡赞斯基.科拉超深钻:期望与结果.长春地质学院学报,1996,26(4):368-370
    [56] 杜扬松.壳幔成矿学初探.矿床地质,1999,18(4):341-346
    [57] 马东升.地壳中流体的大规模流动系统及其成矿意义.高校地质学报,1998,4:250-261
    [58] 陈丰.氢—地球深部流体的重要源泉.地学前缘,1996,3(3-4):72-79
    [59] 曹荣龙.地幔流体的前缘研究.地学前缘,1996,3(4):161-171
    [60] 曹荣龙、朱寿华.地幔流体与成矿作用.地球科学进展,1995,10(4):323-329
    [61] 杜乐天、刘若新、邓晋福.地幔流体与软流层(体)地球化学.北京:地质出版社,1996
    [62] 杜乐天.地壳流体与地幔流体间的关系.地学前缘,1996,3(4):172-180
    [63] 杜乐天.烃碱流体地球化学原理-重论热液作用和岩浆作用.北京:科学出版社,1996
    [64] 路凤香.深部地幔及深部流体.地学前缘,1996,3(3):181-186
    [65] 翟裕生,金属成矿学研究的若干进展.地质与勘探,1997,33(1):13-18
    [66] 翟裕生.关于矿床研究前景的探讨.矿床地质,1999,18(2):146-151
    [67] 朱裕生、肖克炎.成矿预测法.北京:地质出版社,1997.4
    [68] 张均.隐伏矿床定位预测的方法学基础及方法论.贵金属地质,2000,9(2):100-104
    [69] 张均.矿体定位预测的研究现状与趋向.地球科学进展,1997,12(6):25-30
    [70] 卢作祥、范永香、刘辅臣.成矿规律和成矿预测学.武汉:中国地质大学出版社,1985
    [71] 祁月明.关于大比例尺成矿预测工作的思考.见:中国地质科学院成矿远景区划室汇编,预测找矿文集.北京:地质出版社,1995:166-169
    [72] 王永基.褶皱构造与隐伏矿床预测.地质与勘探,1990,26(7):10-15
    [73] 吴树仁.控矿断裂几何学和运动学及其控矿规律研究.地质与勘探,1993,29(3):1-6
    [74] 吉亚勃金KΦ.地壳断裂体系极其在金属矿床预测中的应用.火山地质与矿产,1997,18(1):49
    [75] 章增凤.隐爆角砾岩筒的特征及其形成机制.地质科技情报,1991,10(4):1-5
    [76] 王延印,刘金刊.塔里木盆地成盆期及裂谷作用初探.见:中国塔里木盆地北部油气地质研究(二).武汉:中国地质大学出版社,1991:115-124
    [77] 梅燕雄.论隐伏矿床预测.见:中国地质科学院成矿远景区划室汇编,预测找矿文集.北京:地质出版社,1995:153-160
    [78] G.R.戴维斯.成矿理论可以作为一种实用的勘查手段吗?国外地质科技,1989,(1):1-8
    [79] 张贻侠主编.矿床模式导论.北京:地震出版社,1993
    [80] 考克斯D P,辛格D A.矿床模式.宋伯庆,李文祥等译.北京:地质出版社,1990
    [81] 赵鹏大,陈永清.地质异常矿体定位的基本途径.地球科学,1998,23(2):71-78
    [82] 郑明华.现代成矿学导论.重庆:重庆大学出版社,1988
    [83] 韦永福,吕英杰等,中国金矿.北京:地震出版社,1994
    [84] 王运军,黑龙江省东部火山岩型金矿找矿前景浅析.贵金属地质,1992,2(2)
    [85] 韦永福,中国东部金矿地质研究.北京:地质出版社,1993
    [86] 刘洪林,董连慧,阿希金矿地质特征及成因初探.新疆地质,1992,10(2):110~119
    [87] 叶庆同,傅旭杰,张晓华.阿舍勒铜锌块状硫化物矿床地质特征和成因.矿床地质,1997,16(2):97-106
    [88] 叶庆同,傅旭杰,王保良.新疆阿尔泰南缘多金属成矿带的成矿规律.地质学报,1998,72(4):349-357
    [89] 朱赖民,何明友,胡瑞忠.黔西南微细浸染型金矿床金砷共生分离因素分析.有色金属矿产与勘查,1998,7(1):7-11
    [90] 胡惠明等.大比例尺成矿预测方法.北京:地质出版社.1995
    [91] 郭华东.中国新疆北部遥感找矿方法与实践.北京:科学出版社,1997
    [92] 丁悌平.技术方法的进步与地球科学的发展.地学前缘,1998,5(1-2):9-15
    [93] 刘光鼎.论地球科学.地学前缘,1998,5(1-2):1-8
    [94] 张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985
    [95] 中科院地化所.高等地球化学.北京:科学出版社,1998.11
    [96] 刘平.贵州主要汞矿床的微量元素特征.矿床地质.1994,(3):250-259
    [97] 翟建平、胡凯、陆建军.应用H、O同位素研究矿床成因的一些问题探讨.地质科学,1996,31(3):229-237
    [98] 甘源明,王功烙,丁兆明,李忠文.初论微观找矿标志体系.中国地质科学院地质研究所所刊,北京:地质出版社,1988,(17):44-51
    [99] 谢学锦.勘查地球化学的现状与未来展望.地质论评,1996,42(4):346-356
    [100] 赵鹏大胡旺亮高怀忠等矿床统计预测北京地质出版社1983
    [101] 刘石年.成矿预测学.长沙:中南工业大学出版社,1993
    [102] 刘石年,段嘉瑞,毛先成.地质综合场理论方法应用.长沙:中南工业大学出版社,1996
    [103] 胡旺亮,吕瑞英,高怀忠,等.矿床统计预测方法流程研究.地球科学,1995,20(2):128-133
    [104] 赵鹏大,王京贵,饶明辉.中国地质异常.地球科学,1995,20(2):117-127
    [105] 赵鹏大,孟宪国.地质异常与矿产预测.地球科学,1993,18(1):39-46
    [106] 池顺都,周顺平,吴新林.GIS支持下的地质异常分析及金属矿产经验 预测.地球科学,1997,22(1):99-103
    [107] 池顺都,吴新林.云南元江地区铜矿GIS预测时的找矿有利度和空间相关性分析.地球科学,1997,22(1):75-78
    [108] 池顺都,赵鹏大.应用GIS圈定找矿可行地段和有利地段.地球科学,1998,23(2):126-128
    [109] 亚当斯S S.美国西部大盆地卡林型金矿的资料—过程—准则模型.地质科技参考资料,1993,(17):12-15
    [110] Castaing C.流变不均一性在脉状矿床定位中的作用.地质科技译丛,1994,(4):62-67
    [111] 奥斯特洛夫斯基.目的预测.地质科技参考资料,1993,(17):21-27
    [112] 陈毓川,朱裕生等.中国矿床成矿模式.北京:地质出版社,1993
    [113] 朱裕生,梅燕雄.成矿模式研究的几个问题.地球学报,1995,16(2):182-189
    [114] E.A.科兹洛夫斯基等.建立矿床模式的方向和任务.国外地质科技,1989,(1):8-13
    [115] 王钟,邵孟林,肖树建.隐伏有色金属矿床综合找矿模型.北京:地质出版社,1996
    [116] 熊光楚.矿产预测中应用物探资料的问题.有色金属矿产与勘查,1993,2(1):1-5
    [117] 周宏坤,丁宗强,雷祖志等.金属矿床大比例尺定量预测.北京:地质出版社,1993.4
    [118] 涂光炽.地球化学.上海科学技术出版社,1984
    [119] 陈光远.成因矿物学与找矿矿物学.重庆出版社,1987
    [120] 刘英俊,曹励明,李兆麟等.元素地质化学.北京:科学出版社,1984
    [121] 戴塔根等.微量元素地球化学及其应用.中南工业大学出版社,1992
    [122] 朱裕生.论矿床成矿模式.地质论评,1993,39(3):216-222
    [123] 任纪舜,姜春发,张正坤等.中国大地构造及其演化.北京:科学出版社,1980
    [124] 肖序常,汤耀庆.古中亚复合巨型缝合带南缘构造演化.北京:科学技术出版社,1992
    [125] 陈衍景.中国西北地区中亚型造山—成矿作用的研究意义和进展.高校地质学报,2000,6(1):17-22
    [126] 孟祥化,葛铭.沉积盆地与建造层序.北京:地质出版社,1993
    [127] 卢焕章,李院生.成矿流体,中科院矿床地球化学开放实验室著,矿床地球化学.北京:地质出版社,1997,109-134.
    [128] 孙丰月,石准立.试论幔源C-H-O流体与大陆板内某些地质作用.地学前缘,1995,2(1-2):167-175
    [129] 孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1995
    [130] 王濮,翁玲宝,陈代璋,粤北凡口铅锌矿床的成因,成矿时代,成矿模式与找矿,现代地质,1995,vol9(1):60—68
    [131] 肖新建,倪培,论喷流沉积(SEDEX)成矿与沉积-改造成矿之对比,地质找矿论丛,2000,vol15(3):238—245
    [132] 张术根,周建普,黄满湘等,广东凡口铅锌(银)矿床成矿流体来源研究,矿产与地质,2002,vol16(4):199—202
    [133] 陈学明,邓军,翟裕生,凡口铅锌矿床海底热泉喷溢成矿的物理化学环境,矿床地质,1998,vol17(3):240—246
    [134] 陈学明,邓军,沈崇辉,凡口超大型铅锌矿床成矿流体的物理特征和地球化学特征,地球科学——中国地质大学学报,2000,vol25(4):438—442
    [135] Bilibin J A. Metallogenetic province and Metallogenetic epoch. New York:Academic Press, 1968.
    [136] Sawwkins F J. Metal deposit in relation to plate tectonic. Berlin: Spdng-Verlag, 1984.
    [137] Bonnemaison M etal. Auriferous mineralization in some sbear-zone:A three-stage model of metellogenesis. Mineral Deposit, 1990,25(2):96-104.
    [138] Mawer C K. Mechanics of formation of gold-bearing quartz veins,Nova Scotia, Canada. Tectonophysics,1987,135:99-119.
    [139] Sillitio R H. A plate tectonic modle for the origin of porphyry copper deposits. Economic Geology., 1972,67:184-197.
    [140] Jebrak M,Gauthier M. Terrigenous dilution using a method for quantifying hydrothermal input in the sedimentary environment. Marine Geology., 1991,98(1): 17-24.
    [141] Bischoff J L,etal. Hydrothermal alteration of graywacke by brine and seawater:Roles of alteratoin and chloride complexing on metal solubilization at 200 and 350. Economic Geology., 1981,76:659—676.
    [142] Drummond S E,Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology., 1985,80:126-147.
    [143] Hemley J J,Cygan G L,d Angelo W M. Effect of pressure on ore mineral solubilities under hydrothermal conditions. Geology., 1986,14:377-379.
    [144] Spycher N F, Reed M H. Evolution of Broadlands-type epithermal ore fluid along alternative P-T path:implication for the transport and deposition of base,precious,and volatile metals. Economic Geology.,1989,84:328-359.
    [145] Head W P,Folry N K,Hayba D O, Comparative anatomy of volcanic-hosted epithermal deposits:Acid-sulfate and adularia-sericite types. Economic Geology., 1987,82:1-26
    [146] P.Sanger-Von Oepen ,et al. Comparison between the fluid characteristics of the Rodalquilar and two neighbouring epithermal gold deposits in Spain. Mineral Deposita 1990,25(supl)
    [147] White N C, et al. Epithermal enviroments and styles of mineralization.-variations and their cause and guidelines for exploration. Journal of geochemical exploration., 1990,(36):445-474.
    [148] Barley M E.,Groves D I. Supercontinent cycles and the distribution of metal deposits through time . Geology, 1992,20:291-294.
    [149] Jaques L A,Wyborn L A I,Gallaghe R. The role of geographic information system,empirical modeling and expert systems in metallogenic research, in: 12th Australian Geological Convention,Geological Society of Australia Abstracts(No.37).[c].[s.l.]:Perth,1994,196-197.
    [150] Haynes D W,Cross K C,Bill R T,etal. Olympic Dam Ore Genesis: A Fluid-Mixing Model. Economic Geology. 1995,99:281-307
    [151] Petford N,Atherton M P,Haliday A N. Rapid magma production rates,underplating and remelting in the Andes—isotopic evidence from northern-central Peru. J,S,Amer.Earth Sci.,1996,9(1-2):69-78.
    [152] Hill R I. Mantle plume and continental tectonics. Science, 1990,256:186-193.
    [153] Loper D E. Mantle plume.Tectonophysics,1991,187:373-384.
    [154] Hofmann A, Mandwhite W M. Mantle plume from ancient oceanic crust,Earth planet. Sci. Lett., 1982,57:421-436.
    [155] Davies G F, Mantle plume,mantle stirring,and hotspot chemistry,Earth planet Sci. Lett., 1990,99:94-109.
    [156] Griffiths R W, Campbell I H. Stirring and structure in mantle plune, ,Earth planet.Sci. Lett., 1990,99:66-78.
    [157] Campbell I H, Griffiths R W. Implication of mantle plume structure for the eruption of flood basalts. Earth Planet. Sci. Lett., 1990,99:79-93.
    [158] Davies G F, Richards M A, Mantle convection. Jounal of Geology, 1992,100:24-49
    [159] Morgan W J. Convection plume in the lower mantle. Nature,1971,230:42-42.
    [160] Fyfe W S, Kerrich R. Fluids and thrusting. Chemical Geology, 1985,49:356-362
    [161] McCuaig T C,Kerrich R. P-T-deformation-fluid characteristics of lode gold deposits:evidence from alteration systematics.Ore Geology Review, 1998,12:381-454
    [162] Robinson R W, Norman D I. Mineralogy and fluid inclusion study of the Southern Amethyst vein system,Creede mining district, Colorodo. Economic Geology., 1984,79:439-447.
    [163] Kaihui Yang, Steven D Scott. Possible contribution of a metel-rich magmatic fluid to a sea-floor hydrothermal system. Nature,1996,383:420-423.
    [164] Garven G. Continental-scale groundwater flow and geological processes. Annu. Rev. Earth Planet.Sei., 1995,23:468-488.
    [165] Gize A P, Bames H L. The organic geochemistry of two Mississippi valley-type lead-zinc deposits. Economic Geology.,1987,82:457-470.
    [166] Giordano T H. A preliminary evolution of organic ligands and metallogenic complexing in Mississippi valley type ore solutions. Economic Geology.,1985,80:96-106.
    [167] Anderson G M. Organic maturation and ore precipitation in southeast Missouri. Economic Geology.,1991,86:909-926.
    [168] Disnar J R. A comparison of mineralization histories for two MVT deposits,Trevesand Malines (Causses basin,France),based on the geochemistry of associated organic matter. Ore Geology Reviews, 1996,11:133-156.
    [169] Sieree A A, Barnes H L. Upper Mississippi valley distiet ore fluid model;the role of organic complexes. Ore Geology Reviews,1996,11:105-131.
    [170] National Research Council. Solid-earth sciences and society, National Academy Press, 1993,6-21.
    [171] Lister G S,Davis G A. The origin of metamorphic core complexes and detachment fault formed during Tertiary continental extention in the Northern Colorado River region,U S A. Journal of Structural Geology, 1989,11 (1-2):65-94.
    [172] Richard J P, Spooner E T C. Evidence for Cu-(Ag) mineralization by magmatic-meteoric fluid mixing in keweenawan fissure veins Mamainse Point,Onterio. Economic Geology., 1989,84:360-385.
    [173] Matthai S K,Henley R W, Heinrich C A. Gold precipitation by fluid mixing in bedding-parallel fractures near Carbonaceous slates at the cosmopolitan Howrley gold deposie,Northern Australia. Economic Geology., 1995,90:123—142.
    [174] Laznicaka P. Discovery of giant metal deposit and disticts. In:Pei R F,ed.Proc. 30th Int.Geo.Congr:Energy and mineral resources for 21st century geology of mineral economics. Holland: Vsp,1997,9:355-366.
    [175] Taylor H P Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology.,1974,69:843-883.
    [176] Sheppard S M F,Nielesen R L, Taylor H P Jr. Oxygen and hydrogence isotope ratios of clay minerals from porphyry copper deposits. Economic Geology., 1969,64:755-777.
    [177] Woodall R. Exploration:the life-blood of mining company . the Auslmm Bulletiin, 1996,Feb:64-67
    [178] Kristiabsson K,Malmquist L. Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport. Geophysics, 1982,47(10): 1444-1452.
    [179] Keh-Jim Dumn, Bergman D J. Permeability relation with other petrophysical parameters for periodic porous media .Geophysics, 1999, 64(2):470-478
    [180] Oldenburg D W, Li Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 1999,64(2):403-416
    [181] Roberts J J, Duba A G Carbon-enhanced electrical condutivity during fracture of rocks. Journal of Geophysical Research. 1999,104(Bl):737-748
    [182] Wannamaker P E. Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA. Part I; implication for stracture of the western Caldera. Part II:implication for CSAMT methodology. Geophysics, 1999, 62:451-474
    [183] Agterberg F P. Application of Image Analysis and Multivariate Analysis to Mineral Resource. Economic Geology.,1981,76:1016-1031
    [184] Mandelbrot B B. How longis the coast of britian? Statistical self-similarity and fractional dimension. Science.,1967,156:636-638.
    [185] Mandelbrot B B. The fractal geometry of nature. New York: W H Freeman and Company, 1983,468.
    [186] Mandelbrot B B. Self-affine fractals and fractal dimension. Physica Scripta,1985,32:257-260.
    [187] BARTON c c,Larsen E. Fractal geometry of two-demensional fracture networks at Yucca mountain, Southwest Nevada. IN:Stephannson,ed. Proceeding of the international symposium on fundamentas of rock jionts. Sweden; Bjorkklliden,1985,77-84.
    [188] Sanderson D J. A fractal relationship between vein thickness and gold grade in drill core from La Coaosera, Spain. Economic Geology., 1994,89:168-173.
    [189] Burrough P A.Principles of Geographycal Information System for Land Resources Assessment. Clarendon Press, 1996
    [190] Bliss J D,Ed. Developments in Deposit Modeling. U.S.Geol.Survey Bull. 1992,2004:1-12
    [191] Chung C F, Jefferson C W, etal. A quantitative link among mineral deposit modeling,geoscienee mapping and exploration-research assessment. Economic Geology. 1992,87:194-197.
    [192] Tappormier, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan,Mongolia, Baykal regions. Journal J.Geophys.Res,1979,84:3425-3459.
    [193] Coleman R. Continental growth of Northwest China. Tectonics, 1989,8:621-635.
    [194] Sengor A M C,Natal in B A,Burtman V. S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature,1993,364:299-307.
    [195] Groves D I,Goldfarb R J,Gebre-Mariam M,etal. Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposits types. Ore Geology Reviews,1998,13:7-27
    [196] Wemicke B. Low-angle normal faults in the Basin and Range provinee:Nappe tectonics in an extending orogen. Nature, 1984,291:645-648.
    [197] Tappormier, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan,Mongolia, Baykal regions. Journal J.Geophys.Res,1979,84:3425-3459.
    [198] Coleman R. Continental growth of Northwest China. Tectonics, 1989,8:621-635.
    [199] Sengor A M C,Natal'in B A,Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature,1993,364:299-307.
    [200] White N C, et al. Epithermal enviroments and styles of mineralization:variations and their cause and guidelines for exploration. Journal of Geochemical Exploration. 1990(36):445~474
    [201] P.Sanger-Von Oepen, et al. Comparison between the fluid characteristics of the Rodalquilar and two neighbouring epithermal gold deposits in Spain. Mineral Deposita 1990,25(supl)
    [202] Heald P,et al. Comparative anatmy of volcanichosted epithermal deposit:acid-sulfate and adularia-sericite types.Economic Geology, 1987,82(1): 1-26
    [203] Groves D I,Goldfarb R J,Gebre-Mariam M,etal. Orogenic gold deposits:a proposed classification in the context of their crustal distribution and relationship to other gold deposits types. Ore Geology Reviews,1998,13:7-27
    [204] Drummond S E,Ohmoto H. Submarine explosive volcanism and sulfide deposition in ancient margins:the case of the Iberian pyrite Belt. Marine Geology.,1985,59:368-380.
    [205] Taylor S R,Mclennan S H. The continental crust:its composition and evolution. Blackwell,Scientific Publication,Oxford,1985
    [206] Epy G N. Chemical subdivision of the A-type granitoids:preorogenetic and tectonic implication. Geology,1992,22:641-644.
    [207] Chang C F. A quantitative link among mineral deposit modeling , Geoscience mapping, and exploration-resource assessment. Economic Geology, 1992, 87:283-294.
    [208] Crerar D A, Namson J, Chyi M S, etal. Manganiferous chert of the Franciscan assemblage:I. General geology and modern and implication for hydrothermal convection at oceanic spreading centers. Economic Geology, 1982, 77:527-548.
    [209] Murray R W, Brink M R B, Gerlach D C. etal. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990,18(3):268-271.
    [210] Doe b r, etal. Plumbotectonics, the Phanerozoic. Geochemistry of hydrothermal ore deposits(2~(nd) Edition), A Wiley-Interscience Publication. 1979.
    [211] Kerrick.D.M.,1974. Review of metamorphic mixed-volatile equilibria. Am. mineralogist. V59 P29-762.
    [212] Newton.R.C. 1966. Some calc-silicate equilibrium relations. Am jour sci. V264 p204-222.
    [213] Freenwood G J. 1967. Wollastonite stability in H_2O-CO_2 mixtures and occurrence in a contact-metamorphic aureole near salmo. British Columbia. Canada, Ammina.52 1669-82.
    [214] Bowman J.R.1984. contact skarn formation at Elkhorn Montana. J. P-T component activity conditions of early skarn formation Am. Jour Sci. V284 P597-650.
    [215] Craig J.R., etl. 1973. Themochemical Approximations for Sulfosalts Econ Geol. V68 P493-506.
    [216] Naumov G.B.,etl. 1974. Handbook of thermodynamic data U.S.Dept of Commerce Natl Tech Inf service 328.
    [217] Helgeson. H.C., 1969 Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am.Jour. Sci., V267 P729-804.
    [218] Helgeson. H.C., 1978 Summary and critique of the thermodynamic properties of rock-forming minerals Am.Jour Sei., V278A 229P.
    [219] Crerar DA. etl. 1978. Solubility of the buffer assemblage pyrite+ pyrrhotite + magnetite in Nacl Solution from 200℃ to 350℃: Geochim et Cosmochim. Acta. V42 P1427-1437.
    [220] Potter.R.W., Ⅱ 1977. The volumetric properties of aqueous sodium chloride solutions from 0℃ to 500℃ at pressures up to 2000 bars based on regression of available data in the literation: U.S Geol, Surrey Ball. 1421.C.P. 136.
    [221] Ahmad. M. 1987. Mineralogical and Geochemical Studies of the Emperor Gold. Telluride deposit. Figi Econ Geol. P345-370.
    [222] Seward. T M. 1976. The stability of chloride complexes of silver in hydro thermal. Solutions up to 350℃ Geochim et Gosmochim Acta. V44 P1329-1341.
    [223] Xiaomav Zhang. 1994. Petrological mineralogical. Fluid Inclusion. And Stable Isotopes Studies of the Gies Gold-Silver. Telluride Deposit. Judith Mountains. Montana Eeon Geol. V89 P602-627.
    [224] Ohmoto. H., 1972. Systematies of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol. V67 P551-54.
    [225] Ohmoto. H. and Rye. Ro., 1979 Isotope of Sulfur and Carbon. In Geochemistry of Hydrothermal ore Deposits.(ed. H.L Barnes), and Edition. John Wiley and Sons. New York, P509-567.
    [226] Ohmoto.H and Goldhaber M.B., 1997. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits (ed.HL. Barnes), 3rd Edition. John wiley and sons. New York. P517-611.
    [227] Bown P.E, Bowman. J R and Kelly WC. 1985.Petrologic and stable isotope constrants on the source and evolution of skarn-forming fluids at pine erect. California. Econ. Geol., 81 72-95.
    [228] Valley J W., 1986. stable isotope geochemistry of metamorphic rocks. In stable isotopes in High Temperature Geological processes (J W Valley. HT Taylor J r and R O'neil) rev. Mineral., 16 445-489.
    [229] Geigove Simon. 1996. Phase Relations among selenides Sulfides Tellurides and Oxides. I Thermodynamic Properties and Calculated Equilibria. Econ Geol.V91 P1183-1208.
    [230] XiAomao Zhang. 1994. Calculated stability of aqueous Tellurium Species. Calaverite and Hessite at Elevated Temperatures. Econ Geol. V89 P1152-1166.
    [231] Geigoze Simon. 1977. Phase Relation among Selenides. Sulfides Tellurides and Oxides: II. Applications to Selenide-Bearing Ore Deposits. Econ Geology.
    [232] Taylor H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol. 1974.69.843-883.
    [233] Taylor H.P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochemistry of hydrothermal Ore Deposit. 1997 Third edition: New York. John Wiley and Sons.229-302.
    [234] Kelly, Rye. Geology fluid inclusion and stable isotope studies of the Sn-W deposits of Panasqueira, Portugal. Econ Geol,1974:1721-1822.
    [235] Mortean, et al. Rare-earth element and oxygen isotope studies of altered Variscan granites. The Wesxern Harz Germany and Southern Sardinia (Italy).chemical Geol,1986.54:53-68.
    [236] Peter, Taylor. An oxygen isotope study of water-rock in teraction in the granite of cataract Gulch, Western San Juan Mountains. Colerado. Bull Geol Soc Am, 1986,97:595-602.
    [237] Munksgard,Zeck. Oxygen isotope systematics of a strongly by recrystalized granite rock complex Grenvillian Belt SW Sweden. Contr. Min. Petrol,1984,85:676-730.
    [238] Munksgard, et al. Oxygen isotope systematics indicating large-scale circulation of fluid in granite rocks from southwest Sweden. Chemical Geol, 1985, 51:238-246.
    [239] Taylor H.P, et al. Stable isotope studies of matasomatic Ca-Fe-Al-Si skarn and associated metamorphic and igneous rock. Osgood Mountains. Nevada. Contr. Min. Petrol, 1977, V63.pl-50.
    [240] Bowan R, et al. Contact skarn formation at Elkhorn mountains II Origin and Evolution of C-O-H Skarn Fluids. Econ Geol 1985,V285,621-660.
    [241] Nablek H,et al.Vapor phase exsolution as a controlling farctor in hydrogen isotope variation ingranitic rocks the norch peakg granitic stock utah. Earth Planet Sci Lett 1983.V66.137-150.
    [242] Bourcier. W.L., and Barnes. H L., 1987. Ore solution chemistry -V11. stabilities or chloride and bisulfide complexes of zioce to 350℃. Econ Geol V82 P1839-1863.
    [243] Seward.T.W., 1984. The formation of lead(Ⅱ) chloride eompleses to 300℃. Geochin et cosmochim Acta. V48 P121-134.
    [244] Doe B.R.,1974.The application of the lead isotopes to the problems of ore genesis and ore prospet evoluation. A Econ Geol. V69 P757-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700