用户名: 密码: 验证码:
下吸式固定床农林类生物质低焦油气化过程试验研究与数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气化是生物质能主要利用方向之一,但是传统气化技术存在燃气中焦油含量高、废水难以处理等问题,燃气净化不彻底是阻碍生物质气化技术大规模商业化应用的至关因素,开发稳定高效的低焦油气化工艺成为生物质气化行业公认的难题。热裂解脱除焦油是一种简单有效且易于工程化的方法,但是目前还没有成熟的研究成果及工业化运行装置,因此研究开发完善简单高效的低焦油气化工艺及装置对于推动生物质能大规模应用具有重要的工程价值。由于焦油成分的复杂性,目前对生物质气化过程所做的数值模拟计算较少有考虑焦油组分的,因此无法分析到焦油在炉内的裂解状况,无论从热力学还是动力学角度,建立含有焦油的生物质气化过程数学模型对于研究低焦油气化工艺具有重要的理论指导意义。本文以下吸式固定床为对象,借助试验和数值计算两种手段研究了农林类生物质实现低焦油气化关键问题,包括低焦油气化装置、考虑焦油裂解过程的数学模型等。
     热解是生物质气化过程非常重要的一个环节,热解过程生成焦油,热解产物为后续氧化还原反应过程提供物质来源。为了更好地组织氧化还原过程、获得低焦油气化工艺,就需要掌握焦油生成特性及热解产物分布规律,本文首先在所建小型常压热解试验台上,研究了农林类生物质在移动床中的热解特性,得出了生物质在不同反应温度和反应时间下气、液、固三种热解产物的产率及其分布规律,并分析了组成成分。结果表明,在小型装置常规热解气化过程中,对热解产物分布影响最大的是反应温度,反应时间影响很小;随着反应温度的升高,固体、液体产物产率明显下降,气体产物产率显著上升,固、液、气三种产物产率400℃时分别约占40-45%、45-50%、7-10%,800℃时分别约占20-30%、12-18%和55-60%;常温下热解气态产物主要由H2、CO、CO2、CH4、轻烃CmHn组成,随着热解温度从400℃提高800℃,H2含量显著上升,CO和CO2含量明显下降,CH4含量有所上升,CmHn含量变化不大;热解温度在500-600℃时,焦油产量最大,随着温度的提高,焦油产量明显降低。
     为实现低焦油气化过程,就必须提供焦油裂解所需的稳定高温环境,使焦油裂解环节与热解还原过程在空间上分开,即利用分步式方法实现低焦油气化过程。本文借助下吸式固定床反应器,提出了一种简单易操作的分步式低焦油气化工艺,即将干燥热解和燃烧还原过程在物理空间上分开进行,并建立了相应气化装置,通过试验验证了低焦油气化工艺的可行性。结果表明,在分步式固定床气化装置中,燃气组分、热值、燃气中焦油含量与氧化区温度密切相关,热解温度、当量比ER等因素又直接决定着氧化区的温度;在其它条件不变的情况下,热解温度从390℃提高到550℃,氧化区温度也随之升高,反应加剧,焦油分解彻底,出灰率降低,碳转化率升高;空气气化、ER等于0.25、热解温度超过450℃、氧化区温度超过950℃时,产品气焦油含量小于20mg/Nm3,燃气热值约为5MJ/Nm3,气化效率大于72%,碳转化效率超过90%;热解温度450℃,ER从0.23提高到0.3,氧化区温度升高,燃气中CO、CH4含量下降,H2含量略有增加,燃气热值降低,焦油含量减少;当量比0.25-0.3、热解温度400-500℃,空气气化燃气热值为4.2-5.3MJ/Nm3,富氧气体(氧体积浓度90%)气化燃气热值为7-9.5MJ/Nm3。当以空气为气化剂时,水蒸汽加入后氧化区温度有所降低,燃气中H2含量提高,CO含量下降,CH4含量有所增加,气体热值略有升高。
     氧化区是焦油裂解的关键环节,为了更加清楚掌握反应条件对焦油裂解过程的影响,建立了氧化区热解产物燃烧及焦油裂解过程的动力学数学模型,实现了氧化区反应过程的可视化研究,得到了氧化区内各种物质的变化规律。计算结果表明,在其它条件不变时,ER对氧化区温度场、浓度场有较大影响,随着ER从0.17提高到0.32,氧化区内整体温度提高,氧化区出口C(S)、H2O、C2H4比例下降,N2和C02比例上升,CO与H2含量先增加后减少,CH4含量变化不大,焦油含量明显降低;热解温度高,氧化区内整体温度也高,焦油裂解速度越快;气化剂入口速度越大,氧化区气流扰动越大,燃烧越充分,焦油裂解越彻底;在热解温度和ER相同时,空气气化和富氧气体(氧体积浓度90%)气化两种方式对焦油裂解程度影响不大,但对浓度场影响较大;从氧化区轴向截面来看,各种组分沿轴向方向都在不断发生变化,燃烧及焦油裂解反应主要集中在气化剂入口向下约200mm范围内,氧化区喇叭口及下部区域主要是H20与各种物质发生的一些重整反应;焦油在燃烧初期裂解较快,之后速度逐渐变慢,焦油裂解速度实质上主要受温度影响。
     为了能够从理论上系统地考察气化炉输入与输出物质的关系,本文从热力学角度,基于物质平衡、能量平衡和化学反应平衡建立了生物质气化过程数学模型,并引入了焦油模化物基本概念。模型计算结果与前人所建模型计算结果基本吻合,说明模型计算准确;但与分步式固定床气化试验结果相比时发现在CO、CO2组成上存在较大差别,其它成分基本接近,这主要是由于试验过程中受多方面因素的影响,很多反应实际达不到平衡,模型计算是完全实现平衡时的理想结果,它给出了各种成分的最终变化趋势,因此热力学计算结果可以从宏观上指导工程实践。计算结果表明,空气气化、当量比0.25、反应温度1000℃,达到平衡状态时,燃气中CO、H2体积之和在40%以上,CH4约占0.8-2.5%,焦油含量很少,燃气热值为6-7.7MJ/Nm3;空气预热温度提高,燃气中CO、H2体积含量增加,CO2、H2O、CH4、N2、焦油体积含量均有所下降,气体热值明显增加;原料水分增加,燃气中CO、H2、N2含量下降,CO2、H2O、CH4含量上升,焦油含量微增,气体热值先微降后微升;随着水蒸汽的加入,燃气中H2、CH4、H2O、CO2体积含量均略有增加,CO、焦油含量略有下降,燃气热值增加;ER从0.2提高到0.3,CO含量明显下降,CO2、N2含量显著上升,H2O、CH4、焦油含量下降,H2含量变化不大,气体热值明显下降。
     综上所述,本课题从理论分析、试验研究和数值计算等方面比较全面系统地研究了农林类生物质低焦油气化关键技术问题,利用分步式气化方法找到了实现低焦油气化的工艺参数,获得了考虑焦油在内的氧化区反应过程动力学数学模型和整个气化过程的热力学数学模型,得出了各种反应物质在炉内的变化规律,这些成果不仅具有重要的理论意义,还可以指导工程实践。
Gasification is one of the most promising conversion routes for biomass utilization, but traditional gasification technology is flawed in some ways, such as high tar content in fuel gas and difficulty in waste water treatment. A pivotal factor that prevents biomass gasification technology from massive commercial application is incomplete purification of fuel gas. To develop stable and efficient low-tar gasification process becomes an acknowledged difficulty. Heat destruction for tar removal is a simple and effective method which is easy to be engineered, but now it still lack perfect research result and industrialized running device, therefore, developing and perfecting effective low-tar gasification technology and apparatus is of significant engineering value for promoting the massive application of biomass energy. Due to the complexity of the tar composition, current numerical computation on biomass gasification process seldom takes the tar composition into consideration, which makes it impossible to analyze the cracking of tar in the gasifier. Hence, building up a mathematical model of biomass gasification process that contains tar as an impact parameter will make theoretical guidance to study on low-tar gasification technology. In this paper, to take downdraft fixed bed for an example, many critical issues in making plant biomass achieve low-tar gasification were investigated by means of experiment and numerical computation, such as low-tar gasification device, mathematical model with tar crack process and so on.
     Pyrolysis plays a very important role in biomass gasification process, for tar is produced during pyrolysis process and pyrolysis products are reactants of the following oxidiation and reduction processes. In order to organize redox processes well and gain low-tar gasification technology, it is neccesary to matser the rules of tar production and distribution properties of pyrolysis products. A small pyrolysis experiment platform was built up. The pyrolysis property of plant biomass was studied on the platform. The distribution rules of the gaseous, liquid and solid pyrolysis products at different reaction temperature and time were obtained, and their compositions were analyzed. The results showed that the reaction temperature had a strong impact on the products distribution while the reaction time showed very little. It was also found that the yields of liquid products and solid products decreased obviously as the reaction temperature rising, while the yields of gaseous products clearly increased. The mass ratios of solid, liquid and gaseous products took the percentages of 40-45%,45-50%,7-10% respectively at about 400℃, and they went to 20-30%,12-18% and 55-60% respectively as the reaction temperature rose to 800℃. It could be concluded that the uncondensable gaseous products mainly contained H2, CO, CO2, CH4 and light hydrocarbon (CmHn). As the temperature increased from 400℃to 800℃, the volume content of H2 rose obviously, those of CO content and CO2 both decreased distinctly, the CH4 volume content increased slightly, and there was no visible change in CmHn content. The yield of tar reached its peak at the pyrolysis temperature of 500-600℃and decreased as the temperature rose.
     In order to achieve the low-tar gasification process, a stable high-temperature condition which should separate from pyrolysis and reduction stages is essential. A step-by-step method can carry out the low-tar gasification. In this paper, with the use of downdraft fixed bed reactor for example, a simple and maneuverable low-tar step-by-step gasification technology was proposed, which made pyrolysis and oxidation become two separate processes by physical space. Besides, a corresponding device was built up, and the low-tar gasification technology was validated through extensive experiments. As the results showed, in the step-by-step fixed gasification device, the component, heat value, and tar content of the fuel gas were nearly bound up with the temperature of oxidation zone which can be directly influenced by pyrolysis temperature and equivalence ratio (ER). With other conditions remaining the same, as the pyrolysis temperature rose from 390℃to 550℃, the temperature of oxidation zone increased, the reaction intensified, tar decomposed more completely, the residual ash content decreased and the carbon conversion ratio increased. Under the conditions that air ER was 0.25, pyrolysis temperature was above 450℃and the temperature of oxidation zone was above 950℃, the raw tar content of the fuel gas was less than 20 mg/Nm3, and the low heat value(LHV) was about 5MJ/Nm3, while the gasification efficiency was higher than 72%, and the carbon conversion ratio was over 90%. As ER increased from 0.23 to 0.3 at the pyrolysis temperature 450℃, the temperature of oxidation zone rose, the volume contents of CO and CH4 in the fuel gas decreased while the H2 content increased slightly, both the gas calorific value and the tar content reduced. Under the conditions that ER was from 0.25 to 0.3 and pyrolysis temperature varied from 400℃to 500℃, the gas calorific value ranged from 4.2 to 5.3 MJ/Nm3 while using air as the gasification agent, and the value changed from 7 to 9.5 MJ/Nm3 while using oxygen-enriched gas in which the volume concentration of oxygen was 90% as the gasification agent. When air was used as the gasification agent, as adding the steam, the temperature of oxidation zone reduced, the H2 content increased and the CO content decreased, while the CH4 content and the gas calorific value added up slightly.
     Oxidation zone is the key to tar crack. In order to know the influence of reaction conditions on the tar crack process, a dynamic mathematical model of reaction process in oxidation zone was established, which made the reaction processes visualize, and the changing rules of various reactants in oxidation zone could be analyzed. It was concluded from the calculation results that ER had a great effect on both the temperature value and the substance concentration in oxidation zone. As ER growing from 0.17 to 0.32, the average temperature of the oxidation zone increased, while the mole ratios of C(S), H2O, C2H4 and tar all decreased at the outlet of oxidation zone, in contrast to the increase of the ratios of N2 and CO2. The content of CO and H2 declined after their initial growth. The growth of ER showed a little effect on the content of CH4. The results also indicated that the higher the pyrolysis temperature was, the higher the average temperature of the oxidation zone was and the faster the tar cracked. With the increase of the inlet velocity of gasification agent, the reactions in the field worked more perfect and tar crack became more complete for intensification of gasification agent disturbance. While the pyrolysis temperature and ER remained unchanged, the two gasification methods with separately air and oxygen-enriched gas as the gasifying agent, in which the volume concentration of oxygen was 90%, showed slight influence on tar crack but great effect on concentration field. Seen from the axial cross-section of the oxidation zone, it showed that all the components changed along the axial direction. Combustion reactions and tar crack reactions mainly took place at the gasifying agent inlet surface down to about 200mm and it was some reforming reactions in the horn part and the lower area of the oxidation zone. The cracking speed of tar was mainly influenced by temperature.
     In order to systematically investigate the relationship between reactants and products of gasifier in theory, this paper established a thermodynamic mathematical model of biomass gasification processs with tar on the bases of mass balance, energy balance and chemical reaction balance. The results were in good accord with those the predecessors got, but had some difference in the content of CO and CO2 with the experiment results of step by step fixed gasification bed. The difference was mainly resulted from that some reactions couldn't achieve the balance in experiments while in numerical simulations they were supposed to be balanced. The simulation results actually indicated the ideal trends. Therefore they could be used to make theoretical guidance to the practice on the view of macroscopic. The results showed that under the conditions that air ER was 0.25 and reaction temperature was 1000℃, after the reactions achieved their balance, the volume of CO and H2 in the gas added up to more to 40% while CH4 took about 0.8% to 2.5%. The tar content was really a little and the LHV of fuel gas ranged from 6 to 7 MJ/Nm3. As the air preheating temperature went up, the volume ratios of CO and H2 increased, while the volume contents of CO2, H2O, CH4, N2 and tar all reduced, as a result, LHV of the fuel gas improved. Increasing moisture content in raw material could bring down the volume ratios of CO, H2 and N2, and raise the ratios of CO2, H2O, CH4, while making little effect on the content of tar and the gas calorific value. The entry of water vapor could increase the volume contents of H2, CO2, H2O and CH4 while decrease the contents of CO and tar, as a result, which could make LHV of the fuel gas rise. As ER increased from 0.2 to 0.3, the contents of CO, H2O, CH4 and tar decreased clearly, and the contents of CO2 and N2, increased obviously, while the H2 content varied inconspicuously and the gas calorific value decreased.
     In summary, this subject comprehensively and systematically studied the key issues in plant biomass low-tar gasification technology with the use of theoretical analysis, experiment research and numerical calculation. In this paper, the low-tar gasification processing parameters were found through a step-by-step gasification method. Besides, a dynamic mathematical model of oxidation zone in downdraft fixed bed and a thermodynamics mathematical model for the whole gasification process were established, in which the tar was both considered as effect parameters, and the changing rules of various reactants in the furnace were obtained. The work done by this research can offer theoretical support and practice guidance to the plant biomass gasification industry.
引文
[1]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003
    [2]刘亚军.生物质焦油催化裂解实验及中热值气化技术应用研究[D].杭州:浙江大学,2004
    [3]庄会永,张雁茹,田雅林等.中国农林生物质工业化收集应用模式的研究[J].中国工程科学,2011,13(2):101-106
    [4]李琳,郑骥.我国生物质能行业发展现状及建议[J].中国环保产业,2010,(12):50-54
    [5]Ragnar Warnecke. Gasification of biomass:comparison of fixed bed and fluidized bed gasifier [J]. Biomass and Bioenergy,2000,18(6):489-497
    [6]A. van der Drift, J. van Doom, J. W. Vermeulen. Ten residual biomass fuels for circulating fluidized-bed gasification[J]. Biomass and Bioenergy,2001,20(1):45-56
    [7]Jhuma Sadhukhan, Yingru Zhao, Nilay Shah, et al. Performance analysis of integrated biomass gasification fuel cell (BGFC) and biomass gasification combined cycle (BGCC) systems[J]. Chemical Engineering Science,2010,65(6):1942-1954
    [8]Andrea Kruse. Hydrothermal biomass gasification[J]. The Journal of Supercritical Fluids,2009, 47(3):391-399
    [9]Jianzhong Xu, Jun Sui, Bingyu Li, et al. Research, development and the prospect of combined cooling, heating, and power systems[J]. Energy,2010,35(11):4361-4367
    [10]关海滨,孙荣峰,闫桂焕,等.生物质气化的分布式冷热电联供系统研究[J].农业机械学报,2010,41(11):98-104
    [11]Lijun Wang, Curtis L. Weller, David D. Jones, et al. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production [J]. Biomass and Bioenergy,2008,32(7):573-581
    [12]Buljit Buragohain, Pinakeswar Mahanta, Vijayanand S. Moholkar. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis[J]. Energy,2010,35(6):2557-2579
    [13]Toshiaki Hanaoka, Yanyong Liu, Kotetsu Matsunaga, et al. Bench-scale production of liquid fuel from woody biomass via gasification[J]. Fuel Processing Technology,2010,91(8):859-865
    [14]Wennan Zhang. Automotive fuels from biomass via gasification[J]. Fuel Processing Technology,2010,91(8):866-876
    [15]孙立,张晓东.生物质发电产业化技术[M].北京:化学工业出版社,2011
    [16]耿家锐,沈强华,刘俊场.焦炭反应性影响因素研究现状及展望[J].云南冶金,2009, 38 (2):59-62.
    [17]Pengmei Lv, Zhenhong Yuan, Longlong Ma, et al. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier[J]. Renewable Energy,2007, 32(13):2173-2185
    [18]G. Schuster, G. Loffler, K. Weigl, et al. Biomass steam gasification-an extensive parametric modeling study[J]. Bioresource Technology,2001,77(1):71-79
    [19]M. Detournay, M. Hemati, R. Andreux. Biomass steam gasification in fluidized bed of inert or catalytic particles:Comparison between experimental results and thermodynamic equilibrium predictions[J]. Powder Technology,2011,28(2):558-567
    [20]Kentaro Umeki, Kouichi Yamamoto, Tomoaki Namioka, et al. High temperature steam-only gasification of woody biomass[J]. Applied Energy,2010,87(3):797-798
    [21]Yu-hong Qin, Jie Feng, Wen-ying Li. Formation of tar and its characterization during air-steam gasification of sawdust in a fluidized bed reactor[J]. Fuel,2010,89(7):1344-1347
    [22]Manuel Campoy, Alberto Gomez-Barea, Fernando B. Vidal, et al. Air-steam gasification of biomass in a fluidized bed:Process optimization by enriched air[J]. Fuel Processing Technology, 2009,90(5):677-685
    [23]Xiangmei Meng, Wiebren de Jong, Ningjie Fu, et al. Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier:Effects of operational conditions on product gas distribution and tar formation[J]. Biomass and Bioenergy,2011,35(7):2910-2924
    [24]Toshiaki Hanaoka, Seiichi Inoue, Seiji Uno, et al. Effect of woody biomass components on air-steam gasification[J]. Biomass and Bioenergy,2005,28(1):69-76
    [25]Avdhesn Kr. Sharma. Experimental investigations on a 20 kWe, solid biomass gasification system[J]. Biomass and Bioenergy,2011,35(1):421-428
    [26]宿凤明,孙绍增,赵义军,等.生物质空气气化机理和燃气品质影响因素研究[J].哈尔滨工业大学学报,2006,38(11):1898-1902
    [27]Rade Karamarkovic, Vladan Karamarkovic. Energy and exergy analysis of biomass gasification at different temperatures[J]. Energy,2010,35(2):537-549
    [28]吴创之,阴秀丽,徐冰,等.生物质富氧气化特性的研究[J].太阳能学报,1997,18(3):237-242
    [29]苏德人,周肇秋,谢建军,等.生物质流化床富氧-水蒸汽气化制备合成气研究[J].农业机械学报,2011,42(3):100-104
    [30]Gerardo Gordillo, Kalyan Annamalai. Adiabatic fixed bed gasification of dairy biomass with air and steam[J]. Fuel,2010,89(2):384-391
    [31]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005
    [32]NY/T443-2001《秸秆气化供气系统技术文件及验收规范》[S]
    [33]Hasler P, Nussbaumer T. Gas cleaning for IC engine applications from fixed bed biomass gasification[J]. Biomass and Bioenergy,1999,16(6):385-395
    [34]Miline T A, Evans R J. Biomass gasification "tars":Their nature formation and conversion[R]. NERL Technical Report,1998
    [35]Lopamudra D, Krzysztof J, et al. A review of the primary measure for tar elmination in biomass gasification processes[J]. Biomass and Bioenergy,2003, (24):125-140
    [36]孙云娟,蒋剑春.生物质气化过程中焦油的去除方法综述[J].生物质化学工程,2006,40(2):31-35.
    [37]Christoph Baumhakl, Sotirios Karellas. Tar analysis from biomass gasification by means of online fluorescence spectroscopy[J]. Optics and Lasers in Engineering,2011,49(7):885-891
    [38]Chunshan Li, Kenzi Suzuki. Tar property, analysis, reforming mechanism and model for biomass gasification-An overiew[J]. Renewable and Sustainable Energy Reviews,2009, 13(3):594-604
    [39]Thana Phuphuakrat, Tomoaki Namioka, Kunio Yoshikawa. Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption [J]. Applied Energy,2010, 87(7):2203-2211
    [40]张晓东.生物质气化与焦油的催化裂解动力学试验研究[D].杭州:浙江大学,2003
    [41]陈冠益,高文学,颜蓓蓓,等.生物质气化技术研究现状与发展[J].煤气与热力,2006,26(7):20-26
    [42]C.M. Kinoshita, Y. Wang, J. Zhou. Tar formation under different biomass gasification conditions[J]. Journal of Analytical and Applied Pyrolysis,1994,29(2):169-181
    [43]Umberto Arena, Lucio Zaccariello, Maria Laura Mastellone. Tar removal during the fluidized bed gasification of plastic waste[J]. Waste Management,2009,29(2):783-791
    [44]Thana Phuphuakrat, Nimit Nipattummaku, Tomoaki Namioka, et al. Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge[J]. Fuel,2010,89(9):2278-2284
    [45]张晓东,周劲松,骆仲泱,等.生物质热解煤气中焦油含量的影响因素[J].燃烧科学与技术,2003,9(4):329-334
    [46]P. Gilbert, C. Ryu, V. Sharifi, et al. Tar reduction in pyrolysis vapours from biomass over a hot char bed[J]. Bioresource Technology,2009,100(23):6045-6051
    [47]Elliot M A. Chemistry of Coal Utilization[M].2nd ed. New York:Wiley Interscience,1981
    [48]Dahlman J W K, Zwart R Olga. Tar removal 4MWt commercial demonstration biomass gasification in France[C]. San Francisca Gasification Technology Conference,2007
    [49]陈平.生物质流化床气化机理与工业应用研究[D].合肥:中国科学技术大学,2006
    [50]Arjan F. Kirkels, Geert P.J. Verbong. Biomass gasification:Still promising? A 30-year global overview[J]. Renewable and Sustainable Energy Reviews,2011,15(1):471-481
    [51]A. A. C. M. Beenackers. Biomass gasification in moving beds, a review of European technologies[J]. Renewable Energy,1999,16(1-4):1180-1186
    [52]Krister Stahl, Magnus Neergaard. IGCC power plant for biomass utilization, Varnamo, Sweden [J]. Biomass and Bioenergy,1998,15(3):205-211
    [53]Knut Bernotat, Thomas Sandberg. Biomass fired small-scale CHP in Sweden and the Baltic States:a case study on the potential of clustered dwellings[J]. Biomass and Bioenergy,2004,27(6): 521-530
    [54]蒋剑春.生物质热化学转化行为特性和工程化研究[D].北京:中国林业科学研究院,2003
    [55]US Department of Energy. Electricity from biomass:National Biomass Power Program[M]. Five Year Plan. US Department of Energy, Washington DC,1993
    [56]Hitofumi Abe, Akio Katayama, Bhuwneshwar P. Sah, et al. Potential for rural electrification based on biomass gasification in Cambodia[J]. Biomass and Bioenergy,2007,31(9):656-664
    [57]Keith Pitcher, Barbara Hilton, Henrik Lundberg. The arbre project:Progress achieved[J]. Biomass and Bioenergy,1998,15(3):213-218
    [58]Athena Piterou, Simon Shackley, Paul Upham. Project ARBRE:Lessons for bio-energy developers and policy-makers[J]. Energy Policy,2008,36(6):2044-2050
    [59]H. J. De Lange, P. Barbucci. The THERMIE energy farm project[J]. Renewable Energy,1999, 16(1-4):1004-1006
    [60]Roland V. Siemons. Identifying a role for biomass gasification in rural electrification in developing countries:the economic perspective[J]. Biomass and Bioenergy,2001,20 (4):271-285
    [61]S. C. Bhattacharya, P. Abdul Salam. Low greenhouse gas biomass options for cooking in the developing countries[J]. Biomass and Bioenergy,2002,22(4):305-317
    [62]S. Mekhilef, R. Saidur, A. Safari, et al. Biomass energy in Malaysia:Current state and prospects[J]. Renewable and Sustainable Energy Reviews,2011,15 (7):3360-3370
    [63]Buljit Buragohain, Pinakeswar Mahanta, Vijayanand S. Moholkar. Biomass gasification for decentralized power generation:The Indian perspective [J]. Renewable and Sustainable Energy Reviews,2010,14(1):73-92
    [64]M. Junginger, A. Faaij, R. van den Broek, et al. Fuel supply strategies for large-scale bio-energy projects in developing countries. Electricity generation from agricultural and forest residues in Northeastern Thailand[J]. Biomass and Bioenergy,2001,21(4):59-275
    [65]S. Prasertsan, B. Sajjakulnukit. Biomass and biogas energy in Thailand:Potential, opportunity and barriers[J]. Renewable Energy,2006.31(5):599-610
    [66]M.A.A. Mohammed, A. Salmiaton, W.A.K.G. Wan Azlina, et al. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia[J]. Renewable and Sustainable Energy Reviews,2011,15(2):1258-1270
    [67]Bishnu Acharya, Animesh Dutta, Prabir Basu. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO[J]. International Journal of Hydrogen Energy,2010,35(4):1582-1589
    [68]J.F. Gonzalez, S. Roman, D. Bragado, et al. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production [J]. Fuel Processing Technology, 2008,89(8):764-77
    [69]Michiel J. A. Tijmensen, Andre P. C. Faaij, Carlo N. Hamelinck, et al. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification[J]. Biomass and Bioenergy,2002,23(2):129-152
    [70]王伟,赵戴青,杨浩林,等.生物质气化发电系统的生命周期分析和评价方法探讨[J].太阳能学报,2005,26(6):752-759
    [71]魏泉源,王凯军,宋英豪,等.中国农村生物质集中供气工程建设与管理模式[J].农业工程学报,2009,25(5):303-307
    [72]阴秀丽,周肇秋,马隆龙,等.生物质气化发电技术现状分析[J].现代电力,2007,24(5):48-52
    [73]欧训民.生物质气化发电技术的现状及发展趋势[J].能源技术,2009,30(2):84-88
    [74]Laihong Shen, Yang Gao, Jun Xiao. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds[J]. Biomass and Bioenergy,2008,32(2):120-127
    [75]孙晓轩.生物质气化合成甲醇二甲醚技术现状及展望[J].中外能源,2007,12(4):29-36
    [76]Ningbo Gao, Aimin Li, Cui Quan. A novel reforming method for hydrogen production from biomass steam gasification[J]. Bioresource Technology,2009,100(18):4271-4277
    [77]王铁军,吕永兴,吴创之,等.百吨级生物质合成气合成二甲醚中试系统设计及运行分析[J].太阳能学报,2009,30(11):1566-1570
    [78]吕永兴,王铁军,吴创之,等.生物质气一步法合成二甲醚中试试验[J].现代化工2009,29(7):68-71
    [79]Chunbao (Charles) Xu, Jaclyn Donald, Enkhsaruul Byambajav, et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel,2010,89(8): 1784-1795
    [80]Jun Han, Heejoon Kim. The reduction and control technology of tar during biomass gasification/pyrolysis:An overview[J]. Renewable and Sustainable Energy Reviews,2008,12(2): 397-416
    [81]L. Ma, H. Verelst, G.V. Baron. Integrated high temperature gas cleaning:Tar removal in biomass gasification with a catalytic filter[J]. Catalysis Today,2005,105(3-4):729-734
    [82]Lopamudra Devi, Krzysztof J. Ptasinski, Frans J. J. G. Janssen. Review of the primary measures for tar elimination in biomass gasification processes[J]. Biomass and Bioenergy,2003, 24(2):125-140
    [83]Juan Daniel Martinez, Electo Eduardo Silva Lora, Rubenildo Viera Andrade, et al. Experimental study on biomass gasification in a double air stage downdraft reactor[J]. Biomass and Bioenergy,2011,35(8):3465-3480
    [84]Sascha R. A. Kersten, Wolter Prins, Bram van der Drift, et al. Principles of a novel multistage circulating fluidized bed reactor for biomass gasification[J]. Chemical Engineering Science,2003, 58(3-6):725-731
    [85]Kitipong Jaojaruek, Sompop Jarungthammachote, Maria Kathrina B. Gratuito, et al. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach[J]. Bioresource Technology, 2011,102(7):4834-4840
    [86]Brandt P., Larsen E., HenriksenU. High tar reduction in a two-stage gasifier[J]. Energy & Fuels,2000,14(4):816-819
    [87]Yan Cao, Yang Wang, John T. Riley, et al. A novel biomass air gasification process for producing tar-free higher heating value fuel gas[J]. Fuel Processing Technology,2006,87(4): 343-353
    [88]ELEFSINIOTIS, Lampros[GR/GR]. TWO-STAGE COMBINED COCURRENT COUNTERCURRENT GASIFIER:PCT, WO 2007/102032 A2 [P].13 September 2007
    [89]Xianbin Xiao, Duc Dung Le, Kayoko Morishita, et al. Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG):Test operation of animal-waste-derived biomass and parametric investigation at low temperature [J]. Fuel Processing Technology,2010, 91(8):895-902
    [90]S. C. Bhattacharya, A. H. Md. Mizanur Rahman Siddique, Hoang-Luong Pham. A study on wood gasification for low-tar gas production[J]. Energy,1999,24(4):285-296
    [91]中国科技大学.一种复合式生物质气化炉及其燃气制备方法:中国,00133263.5[P].2003-07-30
    [92]中国科学院广州能源研究所.一种生物质复合气化的方法即装置:中国, 10032675.4[P].2007-12-18
    [93]赖艳华,吕明新,马春元,等.两段气化对降低生物质气化过程焦油生成量的影响[J].燃烧科学与技术,2002,8(5):478-481
    [94]赖艳华,吕明新,马春元,等.缩口结构对降低生物质两段气化中焦油生成量的影响研究[J].太阳能学报,2004,25(4):547-551
    [95]M. Ruggiero, G. Manfrida. An equilibrium model for biomass gasification processes[J]. Renewable Energy,1999,16(1-4):1106-1109
    [96]周密,阎立峰,王益群,等.生物质定向气化制合成气—气化热力学模型与模拟[J].化学物理学报,2005,18(1):69-74
    [97]Rodolfo Rodrigues, Argimiro R. Secchi, Nilson R. Marcilio, et al. Modeling of Biomass Gasification Applied to a Combined Gasifier-Combustor Unit:Equilibrium and Kinetic Approaches[J]. Computer Aided Chemical Engineering,2009,27:657-662
    [98]Maria Puig-Arnavat, Joan Carles Bruno, Alberto Coronas. Review and analysis of biomass gasification models[J]. Renewable and Sustainable Energy Reviews,2010,14 (9):2841-2851
    [99]Capucine Dupont, Guillaume Boissonnet, Jean-Marie Seiler, et al. Study about the kinetic processes of biomass steam gasification[J]. Fuel,2007,86(1-2):32-40
    [100]K. Jaojaruek, S. Kumar. Numerical simulation of the pyrolysis zone in a downdraft gasification process[J]. Bioresource Technology,2009,100(23):6052-6058
    [101]Luiz Felipe Pellegrini, Silvio de Oliveira Jr. Exergy analysis of sugarcane bagasse gasification[J]. Energy,2007,32(4):314-327
    [102]Mehrdokht B. Nikoo, Nader Mahinpey. Simulation of biomass gasification in fluidized reactor using ASPEN PLUS[J]. Biomass and Bioenergy,2008,32(12):1245-1254
    [103]刘鑫,陈文义,范晓旭,等.小型生物质循环流化床气化炉内流动整体三维模拟[J].农业机械学报,2011,42(6):112-116
    [104]Wayne Doherty, Anthony Reynolds, David Kennedy. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy,2010,35(12): 4545-4555
    [105]张巍巍,陈雪莉,王辅臣,等.基于ASPEN PLUS模拟生物质气流床气化工艺过程[J].太阳能学报,2007,28(12):1360-1364
    [106]M.K. Cohce, I. Dincer, M.A. Rosen. Thermodynamic analysis of hydrogen production from biomass gasification[J]. International Journal of Hydrogen Energy,2010,35(10):4970-4980
    [107]Yaning Zhang, Bingxi Li, Hongtao Li, et al. Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers[J]. ThermochimicaActa,2011,519(1-2):65-71
    [108]Chanchal Loha, Himadri Chattopadhyay, Pradip K. Chatterjee. Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk[J]. Energy,2011,36(7):4063-4071
    [109]Z. A. Zainal, R. Ali, C. H. Lean, et al. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials[J]. Energy Conversion and Management,2001,42(12):1499-1515
    [110]Watkinson A.P., Lucas J.P., Lin O.J.. A prediction of performance of commercial coal gasifiers[J]. Fuel,1991,70(4):519-527
    [111]Carlos R. Altafini, Paulo R. Wander, Ronaldo M. Barreto. Prediction of the working parameters of a wood waste gasifier through an equilibrium model[J]. Energy Conversion and Management,2003,44(17):2763-2777
    [112]Chanchal Loha, Pradip K. Chatterjee, Himadri Chattopadhyay. Performance of fluidized bed steam gasification of biomass-Modeling and experiment[J]. Energy Conversion and Management, 2011,52(3):1583-1588
    [113]Andres Melgar, Juan F. Perez, Hannes Laget, et al. Thermochemical equilibrium modelling of a gasifying process[J]. Energy Conversion and Management,2007,48(1):59-67
    [114]X. T. Li, J. R. Grace, C. J. Lim, et al. Biomass gasification in a circulating fluidized bed[J]. Biomass and Bioenergy,2004,26(2):171-193
    [115]Jarungthammachote S, Dutta A. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier[J]. Energy,2007,32(9):1660-1669
    [116]廖强,朱跃钊,廖传华,等.高温空气气化生物质的平衡模型研究[J].农机化研究,2009,(1):174-177。
    [117]蒋受宝,蒋绍坚,张灿.生物质气化计算平衡模型[J].中南林学院学报,2006,26(2):68-71
    [118]邓世敏,危从师,林万超IGCC系统专用单元模型研究[J].中国电机工程学报,2001,21(3):34-36
    [119]A. Gomez-Barea, B. Leckner. Modeling of biomass gasification in fluidized bed[J]. Progress in Energy and Combustion Science,2010,36(4):444-509
    [120]D.A. Nemtsov, A. Zabaniotou. Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor[J]. Chemical Engineering Journal,2008,143(1-3):10-31
    [121]Avdhesh Kr. Sharma. Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation[J]. Energy Conversion and Management,2011,52(2):1386-1396
    [122]杨肖.低焦油、高热值农村秸秆气化技术的开发与应用[D].天津:天津大学,2010
    [123]步学朋.流化床气化炉的数学模拟[J].煤炭转化,1994,17(2):61-67
    [124]阴秀丽,徐冰燕,吴创之等.生物质循环流化床气化炉的数学模型研究[J].太阳能学报,17(1):1-8
    [125]吕鹏梅,王铁军,常杰,吴创之,陈勇.生物质流化床空气-水蒸汽气化模型研究[C].2005年中国生物质能技术与可持续发展研讨会,53-63
    [126]D.Fiaschi, M.Michelini. A two-phase one-dimensional biomass gasification kinetics model[J]. Biomass and Bioenergy,2001,21(2):121-132.
    [127]A.Sanz, J.Corella. Modeling circulating fluidized bed biomass gasifiers. Results from a pseudo-rigorous 1-dimensional model for stationary state[J]. Fuel Processing Technology,2006, 87(3):247-258.
    [128]J.Corella, A.Sanz. Modeling circulating fluidized bed biomass gasifiers:A pseudo-rigorous model for stationary state[J]. Fuel Processing Technology,2005,86(9):1021-1053
    [129]S.S.Sadaka, A.E.Ghaly, M.A.Sababah. Two-phase biomass air-steam gasification model for fluidized bed reactors:Part111-model validation[J]. Biomass and Bioenegry,2002,22(6):479-487
    [130]周密.生物质在流化床气化炉内定向转化过程的模型模拟研究[D].合肥:中国科学技术大学,2006
    [131]王益群.生物质在流化床中热解过程的动力学数值模拟[D].合肥:中国科学技术大学,2008
    [132]王小芳,金保升,钟文琪.基于欧拉多相流模型的流化床煤气化过程三维数值模拟[J].东南大学学报(自然科学版),2008,38(3):454-460
    [133]Benny Gobel, Ulrik Henriksen, Torben Kvist Jensen, et al. The development of a computer model for a fixed bed gasifier and its use for optimization and control[J]. Bioresource Technology, 2007,98(10):2043-2052
    [134]D.L.Giltrap, R.McKibbin, G.R.G. Barnes. A steady state model of gas-char reactions in a downdraft biomass gasifier[J]. Solar Energy,2003,74(1):85-91
    [135]B V Babu, P N Sheth. Modeling and simulation of reduction zone of downdraft biomass gasifier[J]. Energy Coversion and Management,2006,47(15-16):2602-2611
    [136]Ningbo Gao, Aimin Li. Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier[J]. Energy Conversion and Management,2008,49(12): 3483-3490
    [137]T. H. Jayah, Lu Aye, R. J. Fuller, et al. Computer simulation of a downdraft wood gasifier for tea drying[J]. Biomass and Bioenergy,2003,25(4):459-469
    [138]Luc Gerun, Maria Paraschiv, Razvan Vijeu, et al. Numerical investigation of the partial oxidation in a two-stage downdraft gasifier[J]. Fuel,2008,87(7):1383-1393
    [139]Colomba Di Blasi. Dynamic behaviour of stratified downdraft gasifiers[J]. Chemical Engineering Science,2000,55(15):2931-2944
    [140]魏敦崧,李芳芹,李连民.生物质固定床气化试验研究[J].同济大学学报(自然科学版),2006,34(2):255-259
    [141]Weihong Yang, Anna Ponzio, Carlos Lucas. Performance analysis of a fixed-bed biomass gasifier using high-temperature air[J]. Fuel Processing Technology,2006,87(3):235-245
    [142]周春梅.生物质秸秆与残炭成型工艺及燃烧特性的试验研究[D].淄博:山东理工大学,2007
    [143]许敏.生物质热解气化特性研究与应用[D].天津:天津大学,2008
    [144]叶贻杰.生物质灰特性及其结渣机理的研究[D].武汉:华中科技大学,2007
    [145]王军.生物质化学品[J].北京:化学工业出版社,2008
    [146]Emma Jakab, Erika Meszaros, Judit Borsa. Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers[J]. Journal of Analytical and Applied Pyrolysis,2010, 87(1):117-123
    [147]Takashi Hosoya, Haruo Kawamoto, Shiro Saka. Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor[J]. Journal of Analytical and Applied Pyrolysis,2008,83(1):71-77
    [148]Takashi Hosoya, Haruo Kawamoto, Shiro Saka. Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):237-246
    [149]Dangzhen Lv, Minghou Xu, Xiaowei Liu, et al. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification[J]. Fuel Processing Technology,2010,91(8):903-909
    [150]T. Hosoya, H. Kawamoto, S. Saka. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):118-125
    [151]万仁新.生物质能工程[J].北京:中国农业出版社,1995
    [152]孙立.生物质热解制氢机理和实验研究[D].天津:天津大学,2008
    [153]王铁柱.生物质焦油催化裂解试验研究[D].杭州:浙江大学,2003
    [154]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学,2005
    [155]Thana Phuphuakrat, Nimit Nipattummakul, Tomoaki Namioka, et al. Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge[J].Fuel,2010,89(9):2278-2284
    [156]李晓霞,闫桂焕,孙荣峰,等.生物质燃气高温过滤材料的研究[J].环境工程学报,2008,2(10):1389-1392
    [157]Hyun Ju Park, Sung Hoon Park, Jung Min Sohn, et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts[J]. Bioresource Technology,2010,101(1):S101-S103
    [158]Baofeng Zhao, Xiaodong Zhang, Lei Chen, et al. Steam reforming of toluene as model compound of biomass pyrolysis tar for hydrogen[J]. Biomass and Bioenergy,2010,34(l):140-144
    [159]Dariusz Swierczynski, Claire Courson, Alain Kiennemann. Study of steam reforming of toluene used as model compound of tar produced by biomass gasification[J]. Chemical Engineering and Processing:Process Intensification,2008,47(3):508-513
    [160]Lopamudra Devi, Krzysztof J. Ptasinski, Frans J.J.G. Janssen. Pretreated olivine as tar removal catalyst for biomass gasifiers:investigation using naphthalene as model biomass tar[J]. Fuel Processing Technology,2005,86(6):707-730
    [161]Hiroyuki Noichi, Azhar Uddin, Eiji Sasaoka. Steam reforming of naphthalene as model biomass tar over iron-aluminum and iron-zirconium oxide catalyst catalysts[J]. Fuel Processing Technology,2010,91(11):1609-1616
    [162]Jun Yang, Xueguang Wang, Lin Li, et al. Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound[J]. Applied Catalysis B:Environmental, 2010,96(1-2):232-237
    [163]Francisco V. Tinaut, Andres Melgar, Juan F. Perez, et al. Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study[J]. Fuel Processing Technology,2008,89(11):1076-1089
    [164]Baofeng Zhao, Li Sun, Xiaodong Zhang, et al. Thermodynamic Equilibrium analysis of Rice Husk Pyrolysis[C]. Proceedings of ASME Turbo Expo 2008, Berlin, Germany
    [165]http://my.fit.edu/itresources/manuals/fluent6.3/help/html/ug/main_pre.htm
    [166]于勇,张俊明,姜连田Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008
    [167]Donghoon Shin, Sangmin Choi. The combustion of simulated waste particles in a fixed bed[J]. Combustion and Flame,2000,121(1-2):167-180
    [168]Yi Su, Yonghao Luo, Yi Chen, et al. Experimental and numerical investigation of tar destruction under partial oxidation environment[J]. Fuel Processing Technology,2011, 92(8):1513-1524
    [169]宋世谟,庄公惠,王正烈.物理化学(第三版)上册[M].北京:高等教育出版社,2000
    [170]沈维道,蒋智敏,童均耕.工程热力学(第三版)[M].北京:高等教育出版社,2000
    [171]Sharma A K. Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier[J]. Energy Conversion and Management,2008,49(4):832-842.
    [172]蒋绍坚,赵颖,林竹,等.高温空气气化数学模型的建立与分析[J].太阳能学报,2006,27(10):1058-1062
    [173]李绍芬.反应工程[M].北京:化学工业出版社,2003
    [174]Senelwa K. The air gasification of woody biomass from short rotation forests[D]. Palmerston North:Massey University,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700