用户名: 密码: 验证码:
北京森林植被固碳能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在应对全球气候变化背景下,森林碳汇成为当前研究的核心内容之一。现阶段有关北京山地森林和城市园林绿地碳储量的数据主要基于森林资源清查资料及以往建立的有关模型计算而来,缺乏森林碳储量估算所需的针对北京地区的基础参数(如生物量转化和扩展系数、单木生物量模型),所得的估算值存在较大不确定性,仍未形成一套适合北京实际的森林碳汇计量和监测技术体系。
     本研究以北京山地森林和城市园林绿地乔木为研究对象,采用嵌套回归方法无损测定样木生物量,建立适用于北京地区的12种主要树种单木生物量方程;同时,基于“北京市植物种质资源调查项目”的调查资料(2007—2009),建立侧柏林、刺槐林、桦树林、阔叶树林、栎树林、落叶松林、杨树林和油松林等北京8种主要森林类型生物量转化和扩展系数(BCEF),以及基于2009年TM影像建立8种主要森林类型的碳储量遥感估算模型;在此基础上,基于2005年北京森林资源二类调查资料(2004)和2009年TM影像分别估算了2004年和2009年北京山地森林碳储量,基于2005年北京市城市园林绿化普查资料和2009年崇文区园林绿地乔木调查数据估算了2005年和2009年崇文区园林绿地乔木碳储量以及2005年北京城市园林绿地乔木碳储量,并估算了2011—2015年北京森林植被固定的碳。主要研究结果如下:
     (1)2004年和2009年北京山地森林碳储量分别为5240 490.8 tC和6158970.6tC,平均碳密度分别为12.03 tC·hm-2和14.14 tC·hm-2(含地上和地下部分);8种森林类型中,栎树林、杨树林、油松林的碳储量较大,刺槐林和落叶松林的碳储量较小;从空间分布特征来看,2009年北京山地森林碳储量主要分布在密云、延庆和怀柔3个区县;从0-10、10-20、20-30和>30tC·hm-2四个碳密度区间来看,多数森林分布在10-20 tC·hm-2区间,主要分布在北部山区。
     (2)2005年和2009年崇文区园林绿地乔木碳储量分别为8022.09和8541.29 tC,根据2005年的园林绿地面积(539.96 hm2),碳密度分别为14.86和15.82tC·hm-2。
     (3)2005年北京全市园林绿地乔木碳储量约为122.07×104tC,按园林绿地面积计算碳密度,全市平均碳密度为31.40 tC·hm-2,16个区县的平均碳密度与其碳储量不成正相关;16个区县中,碳储量比较多的区县主要是城市功能扩展区所在区县,约占总碳储量的70%。
     (4)基于库—差别方法估算得到2004年至2009年北京山地森林的碳汇为0.42tC·hm-2·year-1,2005年至2009年北京崇文区园林绿地乔木的碳汇为0.24 tC·hm-2·year-1。据此估算得到,2011年至2015年北京山地森林和北京城市园林绿地乔木固定的碳分别为914550.0 tC和46453.08 tC,年平均固定的碳分别为182910.0 tC和9330.62 tC,2011—2015年二者合计固定的碳达961003.08 tC。
In local and global contexts of attempting to mitigate climate change, carbon sequestration by the world's forests is a focus of global climate change researches. At present, estimated values of carbon storage by mountain forests and urban landscape in Beijing are derived from forest inventory data and models developed pastly. However, there is significant uncertainty in these estimations because of lacking correspondingly basic parameters suitable for the Beijing region, including biomass conversion and expansion factors and allometric models, and thus a useful technique framework for estimating and monitoring carbon sequestration by Beijing's forests is now lacking.
     The major research objects of this study are mountain forests and trees in urban green spaces in the whole Beijing area. Diameter-based aboveground biomass equations were developed for twelve tree species using a non-destructive method, named as the nested sampling method, in Beijing, and biomass conversion and expansion factors and TM-based models for estimating carbon stored by eight major forest types, including Platycladus orientalis forest, Robinia pseudoacacia forest, Betula forest, Broad-leaved forest, Quercus forest, Larix principis-rupprechtii forest, Populus forest and Pinus tabulaeformis forest, on the basis of data from the program "Beijing plant germplasm resources survey" (2007-2009) and TM images acquired in 2009. Then, carbon stock in mountain forests in 2004 and 2009 were estimated based on 2005 Beijing forest inventory data and TM images acquired in 2009, and carbon storages by trees in urban green spaces in Chongwen District in 2005 and 2009 and in the whole study area in 2005 were also estimated, respectively, based on 2005 Beijing City urban green space census and 2009 tree survey data in Chongwen District's urban green spaces. Carbon sequestered by Beijing's forests from 2011 to 2015 was projected depending on Beijing's forest carbon storage estimates of this study. The main results include as follows:
     (1) Beijing's mountain forest carbon stocks in 2004 and 2009 were 5 240 490.8 tonnes carbon and 6 158 970.6 tonnes carbon (including above- and belowground carbon storage), respectively, with mean carbon storage densities of 12.03 tC·hm-2 and 14.14 tC·hm-2. Among the eight forest types, carbon storages were higher in Quercus forest, Populus forest and Pinus tabulaeformis forest and lower in Robinia pseudoacacia forest and Larix principis-rupprechtii forest. According to four carbon storage densities of 0-10,10-20,20-30 and >30 tC·hm-2, Beijing's mountain forest carbon storage densities mostly varied from 10 tC·hm-2 to 20 tC·hm-2 in 2009, mainly found in the northern mountains.
     (2) Urban trees in Chongwen District in 2005 and 2009 stored 8 022.09 and 8 541.29 tonnes carbon, respectively, with average carbon densities of 14.86 tC·hm-2 and 15.82 tC·hm-2 based on the district's green space area of 539.96 hm2 in 2005.
     (3) Urban trees in Beijing's 16 districts and counties stored roughly 1 220 700.00 tonnes carbon with mean carbon density of 31.40 tC·hm-2, and average carbon densities of the 16 cities were not directly proportional to their carbon stocks. Among the 16 cities, urban trees in the cities belonging to urban capability expansion region stored the most carbon accounting for 70% of total carbon storage.
     (4) Based on an pool-difference method, it was estimated that carbon sequestration rates of Beijing's mountain forests (from 2004 to 2009) and Chongwen District's urban trees (from 2005 to 2009) were 0.42 tC·hm-2·year-1 and 0.24 tC·hm-2·year-1, respectively. Mountain forests and urban trees in the whole study area will sequester 914 550.00 tonnes carbon and 46 453.08 tonnes carbon from 2011 to 2015, respectively, amount to 961 003.08 tonnes carbon, with average carbon sequestered per year of 182 910.0 tonnes carbon and 9 330.62 tonnes carbon.
引文
[1]毕君,黄则舟.刺槐单株生物量动态研究[J].河北林学院学报,1993,8(4):278-282.
    [2]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化[J].地理研究,2002,21(5):551-560.
    [3]曹明奎,于贵瑞,刘纪元,李克让.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学D辑:地球科学,2004,34(S2):1-14.
    [4]曹庆先,徐大平,鞠洪波.基于TM影像纹理与光谱特征和KNN方法估算5种红树林群落生物量[J].林业科学研究,2011,24(2):144-150.
    [5]陈炳浩,陈楚莹.沙地红皮云杉森林群落生物量和生产力的初步研究[J].林业科学,1980,(4):269-278.
    [6]陈步峰,潘永军,史欣,肖以华,徐猛.广州市典型森林土壤有机碳密度及储量生态特征[J].东北林业大学学报,2010,38(4):59-91.
    [7]陈传国,郭杏芳.预测阔叶红松林生物量的数学模式[J].辽宁林业科技,1986,(3):27-37.
    [8]程堂仁,冯菁,马钦彦,王玉涛,康峰峰,冯仲科,张彦林,邓向瑞.甘肃小陇山森林植被碳库及其分配特征[J].生态学报,2008,28(1):33-44.
    [9]程堂仁,马钦彦,冯仲科,罗旭.甘肃小陇山森林生物量研究[J].北京林业大学学报,2007,29(1):31-36.
    [10]丁圣彦,梁国付.近20年来洛宁县森林植被碳储量及动态变化[J].资源科学,2004,26(3):105-108.
    [11]董世仁,关玉秀.油松林生态系统的研究(Ⅰ)一山西太岳油松林的生产力初报[J].北京林林业大学学报,1980,(0):1-20.
    [12]杜红梅,王超,高红真.华北落叶松人工林碳汇功能的研究[J].中国生态农业学报,2009,17(4):756-759.
    [13]樊登星,余新晓,岳永杰,牛丽丽,高志亮,马莉娅.北京市森林碳储量及其动态变化[J].北京林业大学学报,2008,30(S2):117-120.
    [14]樊辉,黄海军,唐军武.黄河口水体光谱特性及悬沙浓度遥感估测[J].武汉大学学报,2007,32(7):601-604.
    [15]范渭亮,杜华强,周国模,徐小军,崔瑞蕊,董德进.大气校正对毛竹林生物量遥感估算的影响[J].应用生态学报,2010,21(1):1-8.
    [16]范文义,孙晓芳,王岩,杨爱玲.基于两种辐射传输模型的遥感数据大气校正及结果对比分析[J].东北林业大学,2009,37(7):121-124.
    [17]范文义,张海玉,于颖,毛学刚,杨金明.三种森林生物量估测模型的比较分析[J].植物生态学报,2011,35(4):402-410.
    [18]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报:英文版,2001,43(9):967-973.
    [19]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [20]方精云,刘国华,朱彪,王效科,刘绍辉.北京东灵山三种温带森林生态系统的碳循环[J].中国科学D辑:地球科学,2006,36(6):533-543.
    [21]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [22]方精云,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [23]方升佐,章小明.杨树无性系生物量生产的三维模拟研究[J].南京林业大学学报(自然科学版),1999,23(5):7-12.
    [24]冯琦胜,高新华,黄晓东,于惠,梁天刚.2001-2010年青藏高原草地生长状况遥感动态监测[J].兰州大学学报(自然科学版),2011,47(4):75-82.
    [25]冯仲科,罗旭,马钦彦,郝星耀,陈晓雪,赵利果.基于三维激光扫描成像系统的树冠生物量研究[J].北京林业大学学报,2007,29(Z2):52-56.
    [26]冯宗伟,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:50-200.
    [27]冯宗炜,王永安.不同经营措施对油茶林生物产量的影响[J].湖南林业科技,1979,(2):1-3.
    [28]高浩,潘学标,符瑜.气候变化对内蒙古中部草原气候生产潜力的影响[J].中国农业气象,2009,(3):277-282.
    [29]高志强,刘纪远.1980—200中国LUCC对气候变化的响应[J].地理学报,2006,61(8):865-872.
    [30]高智慧,邢爱金.浙北平原水杉人工林生物量的研究[J].植物生态学与地植物学学报,1992,16(1):64-71.
    [31]光增云.河南省森林碳储量及动态变化研究[J].林业资源管理,2006,(4):56-61.
    [32]郭建斌,陈珏.北京市空气污染季节变化规律研究及污染控制建议[J].生态环境学报,2009,18(3):952-956.
    [33]郭志华,彭少麟,王伯苏.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832-1839.
    [34]贺庆棠.森林对地气系统碳素循环的影响[J].北京林业大学学报,1993,15(3):132-137.
    [35]胡会峰,刘国华.中国天然林保护工程的固碳能力估算[J].生态学报,2006,26(1):291-296.
    [36]黄从德,张健,杨万勤,唐宵,赵安玖.四川省及重庆地区森林植被碳储量动态[J].生态学报,2008,28(3):966-975.
    [37]黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    [38]黄东.森林碳汇:后京都时代减排的重要途径[J].林业经济,2008,(10):12-15.
    [39]黄国胜,夏朝宗.基于MODIS的东北地区森林生物量研究[J].林业资源管理,2005,(4):40-44.
    [40]江洪.紫果云杉天然中龄林分生物量和生产力的研究[J].植物生态学与地植物学学报,1986,10(2):146-152.
    [41]江洪,林鸿荣.云南松异速生长现象的初步研究[J].林业科学,1984,20(1):80-83.
    [42]江洪,林鸿荣.飞播云南松林分生物量和生产力的系统研究[J].四川林业科技,1985,6(4):1-10.
    [43]姜萍,叶吉,吴钢.长白山阔叶红松林大样地木本植物组成及主要树种的生物量[J].北京林业大学学报,2005,27(S2):112-115.
    [44]焦树仁.樟子松人工林针叶生物量及叶而积的估算[J].辽宁林业科技,1982,4(4):21-23.
    [45]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
    [46]康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计[J].应用生态学报,1996,7(3):230-234.
    [47]黎夏,刘凯,王树功.珠江口红树林湿地演变的遥感分析[J].地理学报,2006,61(1):26-34.
    [48]李成才,毛节泰,刘启汉MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J].中国科学D辑:地球科学,2005,35(S1):177-186.
    [49]李成长,毛节泰,刘启汉.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染[J].大气科学,2003,27(5):869-883.
    [50]李海奎,雷渊才.中国森林植被生物量和碳储量评估[M].北京:中国林业出版社,2010:26-48.
    [51]李海涛,王姗娜,高鲁鹏,于贵瑞.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    [52]李虎,慈龙骏,方建国,陈冬花,刘玉锋.新疆西天山云杉林生物量的动态监测[J].林业科学,2008,44(10):14-]9.
    [53]李建华,李春静,彭世揆.杨树人工林生物量估计方法与应用[J].南京林业大学学报(自然科学版),2007,31(4):37-40.
    [54]李江,孟梦,朱宏涛,邱琼,翟明普,陈宏伟,郭永清.思茅松中幼人工林的生物量碳计量参数[J].云南植物研究,2010,(1):60-66.
    [55]李锦业,吴炳方,周月敏,张磊.三峡库区植被生物量遥感估算方法研究[J].遥感技术与应用,2009,24(6):784-787.
    [56]李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学D辑,2003,33(1):72-80.
    [57]李怒云,宋维明.气候变化与中国林业碳汇政策研究综述[J].林业经济,2006,(5):60-64.
    [58]李强.后京都时代美国参与国际气候合作原因的理性解读[J].理论导刊,2009,(3):101-103.
    [59]李晓储,黄利斌,王伟.杉木木材基本密度变异的研究[J].林业科学研究,1999,12(2): 179-184.
    [60]李轩然,刘琪璟,陈永瑞,胡理乐,杨风亭.千烟洲人工林主要树种地上生物量的估算[J].应用生态学报,2006,17(8):1382-1388.
    [61]李意德,吴仲民,曾庆波,周光益,陈步峰.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [62]李意德,吴仲民,周铁烽.中国热带天然林变迁对大气C02的影响及经济损益评估[J].生态科学,1999,18(2):1-7.
    [63]李意德,曾庆波,吴仲民,周光益,陈步峰.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,11(2):156-162.
    [64]李意德,方精云.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [65]李志辉,周肓平.水杉人工林生物产量及生产力的研究[J].中南林学院学报,1996,16(2):47-51.
    [66]廖宝文,郑德璋.木榄林生物量的灰色动态预测[J].林业科学研究,1991,4(4):360-367.
    [67]廖涵宗,张春能,邸道生,陈作智.米槠人工林生产量的研究[J].福建林学院学报,1991,11(1):313-317.
    [68]林清山,洪伟,吴承祯,林勇明,陈灿.永春县柑橘林生态系统的碳储量及其动态变化[J].生态学报,2010,30(2):309-316.
    [69]林文鹏,王臣立,赵敏,黄敬峰,施润和,柳云龙,高峻.基于森林清查和遥感的城市森林净初级生产力估算[J].生态环境,2008,17(2):766-770.
    [70]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [71]刘琪璟.嵌套式回归建立树木生物量模型[J].植物生态学报,2009,33(2):331-337.
    [72]刘青华,金国庆,张蕊.24年生马尾松生长、形质和木材基本密度的种源变异与种源区划[J].林业科学,2009,45(10):55-61.
    [73]刘盛,李国伟.林分碳贮量测算方法的研究[J].北京林业大学学报,2007,29(2):166-169.
    [74]刘世荣,柴一新,蔡体久,彭长辉.兴安落叶松人工群落生量物与净初级生产力的研究[J].东北林业大学学报,1990,18(2):40-46.
    [75]刘卫国,潘晓玲,高炜,师庆东,吕光辉,郭凯.新疆阜康绿洲生态系统生物量遥感估算分析[J].资源科学,2005,27(5):134-140.
    [76]刘彦春,张远东,刘世荣.川西亚高山次生桦木林恢复过程中的生物量、生产力与材积变化[J].生态学报,2010,30(3):594-601.
    [77]刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生产力的研究[J].植物生态学报,1994,18(4):328-337.
    [78]罗云建,王效科,张小全,朱建华,张治军,侯振宏.华北落叶松人工林的生物量估算参数[J]. 林业科学,2010,46(2):6-11.
    [79]罗云建,张小全,侯振宏,于澎涛,朱建华.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111-1118.
    [80]罗云建,张小全,王效科,朱建华,张治军,孙贵生,高峰.华北落叶松人工林生物量及其分配模式[J].北京林业大学学报,2009,31(1):1-6.
    [81]罗云建,张小全.多代连栽人工林碳贮量的变化[J].林业科学研究,2006,19(2):791-798.
    [82]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34-39.
    [83]马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):31-34.
    [84]马泽清,刘琪璟,徐雯佳,李轩然,刘迎春.江西千烟洲人工林生态系统的碳蓄积特征[J].林业科学,2007,43(11):1-7.
    [85]买买提依明·买买提,塔西甫拉提·特依拜,买买提沙吾提,丁建丽.基于6S模型的遥感数据大气校正应用研究[J].水土保持研究,2011,18(3):15-18.
    [86]毛节泰,李成才,张军华MODIS卫星遥感北京地区气溶胶光学厚度及与地而光度计遥感的对比[J].应用气象学报,2002,13(s1):127-135.
    [87]穆天民.贺兰山区青海云杉森林群落的生物量[J].内蒙古林业科技,1982,(1):18-31.
    [88]聂道平,徐德应,王兵.全球碳循环与森林关系的研究——问题与进展[J].世界林业研究,1997,(5):33-40.
    [89]潘维俦,田大伦,李利村,高正衡.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981,(1):1-21.
    [90]秦建华,姜志林,钱能志.福建洋口杉木生物量估测模型的选择[J].南京林业大学学报(自然科学版),1990,(1):30-34.
    [91]秦建华,姜志林.森林在大气碳平衡中的作用[J].世界林业研究,1997,(4):18-25.
    [92]沈国华,汪企明,石有光.不同种源马尾松苗高度、生物量和地理纬度关系初步研究[J].江苏林业科技,1981,(1):30-33.
    [93]盛瑞发,任朝珊,梁立兴.油松人工林球果生物量的初步研究[J].生态学报,1984,4(2):134-140.
    [94]石培礼,钟章成.四川桤柏混交林生物量的研究[J].植物生态学报,1996,20(6):525-533.
    [95]宋婉,张志毅,续九如.毛白杨无性系木材基本密度遗传变异研究[J].林业科学,2000,36(1):125-130.
    [96]孙丽群.顺昌县马尾松生物量遥感估测[J].福建林学院学报,2010,(2):183-186.
    [97]孙玉军,张俊,韩爱惠,王雪军,王新杰.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J].生态学报,2007,27(5):1756-1762.
    [98]唐罗忠,生原喜久雄,黄宝龙,户田浩人,杨文忠,荒井知朗.江苏省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报(自然科学版),2004,28(2):1-6.
    [99]唐守正,杜纪山.利用树冠竞争因子确定同龄间伐林分的断面积生长过程[J].林业科学,1999,35(6):35-41.
    [100]唐守正,张会儒.相容性生物量模型的建立及其估计方法的研究[J].林业科学,2000,36(Z1):19-27.
    [101]田大伦.马尾松人工林密度与枯枝落叶量的关系[J].林业实用技术,1989,(5):21-23.
    [102]仝慧杰,冯仲科,罗旭,张彦林.森林生物量与遥感信息的相关性[J].北京林业大学学报,2007,29(S2):156-159.
    [103]涂洁,刘琪璟.亚热带红壤丘陵区湿地松人工林固碳释氧效益研究[J].长江流域资源与环境,2008,17(1):30-35.
    [104]汪企明,石有光.江苏省湿地松人工林生物量的初步研究[J].植物生态学与地植物学学报,1990,14(1):1-12.
    [105]王兵,魏文俊.江西省森林碳储量与碳密度研究[J].江西科学,2007,25(6):681-687.
    [106]王臣立,郭治兴,牛铮,林文鹏.热带人工林生物物理参数及生物量对RADARSAT SAR信号响应研究[J].生态环境,2006,15(1):115-119.
    [107]王德艺,蔡万波.雾灵山蒙古栎林生物生产量的研究[J].生态学杂志,1998,17(1):9-1 5.
    [108]王迪生.北京城区园林植物生物量的计测研究[J].林业资源管理,2009,(4):120-125.
    [109]王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9-14.
    [110]王立海,邢艳秋.基于人工神经网络的天然林生物量遥感估测[J].应用生态学报,2008,19(2):261-266.
    [111]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244.
    [112]王淑君,管东生,黎夏,宋巍巍.广州森林碳储量时空演变及异质性分析[J].环境科学学报,2008,28(4):778-785.
    [113]王维芳,宋丽楠,隋欣.帽儿山林场森林生物量估测及时空动态格局分析[J].东北林业大学学报,2010,38(1):47-49.
    [114]王维芳,王琪,李国春,孙龙.基于气象模型的黑龙江省植被净第一性生产力[J].东北林业大学学报,2009,(4):27-29.
    [115]王文杰,祖元刚,王辉民,杨逢建,三枝信子,小池孝良,山本晋.基于涡度协方差法和生理生态法对落叶松林CO2通量的初步研究[J].植物生态学报,2007,31(1):118-128.
    [116]王效科,冯宗炜,欧言志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [117]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [118]王玉辉,周广胜,蒋延玲,杨正宇.基于森林资源清查资料的落叶松林生物量和净生长量估 算模式[J].植物生态学报,2001,25(4):420-425.
    [119]王振亮,毕君.刺槐树冠生物量估测模型的研究[J].河北林业科技,1994,(4):4-6.
    [120]王中挺,陈良富,张莹.利用MODIS数据监测北京地区气溶胶[J].遥感技术与应用,2008,23(3):284-289.
    [121]魏安世,林寿明,李志洪.基于TM数据的森林植物碳储量估测方法研究[J].中南林业调查规划,2006,25(4):44-47.
    [122]温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净C02交换量中的不确定性[J].地球科学进展,2004,19(4):658-663.
    [123]温远光,韦炳二.亚热带森林凋落物产量及动态的研究[J].林业科学,1989,25(6):542-548.
    [124]吴鹏飞,朱波,刘世荣,王小国.不同林龄桤—柏混交林生态系统的碳储量及其分配[J].应用生态学报,2008,19(7):1419-1424.
    [125]吴庆标,王效科,段晓男,邓立斌,逯非,欧阳志云,冯宗炜.中国森林生态系统植被固碳现状与潜力[J].生态学报,2008,28(2):517-524.
    [126]吴仲民,李意德,曾庆波,周光益,陈步峰,杜志鹄,林明献.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341-344.
    [127]夏炎,张伟,岳孔.速生杨木材基本密度变异规律及其与生长性状的关系[J].东北林业大学学报,2010,38(8):14-17.
    [128]肖春波,王海,范凯峰,韩玉洁,康宏樟,刘春江.崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J].上海交通大学学报(农业科学版),2010,28(1):30-34.
    [129]肖建武,康文星,尹少华,谢欣荣.城市森林固碳释氧功能及经济价值评估——以第三个“国家森林城市”长沙市为实证分析[J].林业经济问题,2009,29(2):129-132.
    [130]谢军飞,李玉娥,李延明,高清竹.北京城市园林树木碳贮量与固碳量研究[J].中国生态农业学报,2007,15(3):5-7.
    [131]邢素丽,张广录,刘慧涛,王道波.基于Landsat ETM数据的落叶松林生物量估算模式[J].福建林学院学报,2004,24(2):153-156.
    [132]胥辉.一种与材积相容的生物量模型[J].北京林业大学学报,1999,21(5):32-36.
    [133]徐飞,刘为华,任文玲,仲启铖,张桂莲,王开运.上海城市森林群落结构对固碳能力的影响[J].生态学杂志,2010,29(3):439-447.
    [134]徐天蜀,张天菲,岳彩荣.基于PCA的森林生物量遥感信息模型研究[J].生态环境,2007,16(6):1759-1762.
    [135]徐天蜀,岳彩荣.基于印度遥感卫星IRS—P6的森林生物量估测模型研究[J].中南林业调查规划,2008,27(1):42-45.
    [136]徐孝庆,陈之端.毛白杨人工林生物量的初步研究[J].南京林业大学学报(自然科学版),1987,(4):130-136.
    [137]徐有明.油松木材基本密度的变异[J].华中农业大学学报,1991,10(3):281-285.
    [138]徐有明,唐万鹏.荆州引种火炬松木材基本密度的变异[J].东北林业大学学报,1999,27(4):33-37.
    [139]徐志高,王晓燕,需瑞德.基于GIS的秦岭火地塘森林景观生物量变化趋势分析[J].中南林业调查规划,2003,22(4):14-17.
    [140]续珊珊,贾利.黑龙江省森工国有林区森林碳储量分析[J].林业经济问题,2010,30(1):47-51.
    [141]续珊珊,姚顺波.基于生物量转换因子法的我国森林碳储量区域差异分析[J].北京林业大学学报(社会科学版),2009,8(3):109-114.
    [142]闫德仁,闫婷.内蒙古森林碳储量估算及其变化特征[J].林业资源管理,2010,(3):31-34.
    [143]闫平.帽儿山林场4类天然次生林碳储量研究[J].林业资源管理,2006,(4):61-65.
    [144]阎福礼,李震,邵芸,卢华复,范湘涛,任鑫.基于NOAA/AVHRR数据的西部植被覆盖变化监测[J].兰州大学学报:自然科学版,2003,39(2):90-94.
    [145]杨昆,管东生.珠江三角洲地区森林生物量及其动态[J].应用生态学报,2007,18(4):705-712.
    [146]杨义波,安太国.长春市主要广场城市森林结构的研究[J].长春大学学报,2005,15(6):84-85.
    [147]叶金盛,佘光辉.广东省森林植被碳储量动态研究[J].南京林业大学学报(自然科学版),2010,34(4):7-12.
    [148]叶镜中,姜志林,周本琳,韩福庆,陈世彬.福建省洋口林场杉木林生物量的年变化动态[J].南京林学院学报,1984,(4):1-9.
    [149]叶镜中,姜志林.苏南丘陵杉木人工林的生物量结构[J].生态学报,1983,3(1):7-14.
    [150]应天玉,李明泽,范文义.哈尔滨城市森林碳储量的估算[J].东北林业大学学报,2009,37(9):33-35.
    [151]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2006:100-210
    [152]于贵瑞,张雷明,孙晓敏,李正泉,伏玉玲.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学D辑:地球科学,2004,34(S2):15-29.
    [153]曾天勋,吴振文.五年生杉阔混交林分叶面积指数与地上生物量关系的研究[J].广东林业科技,1990,(2):17-20.
    [154]张德全,桑卫国,李曰峰,王宗泉,盖文杰.山东省森林有机碳储量及其动态的研究[J].植物生态学报,2002,26(S1):93-97.
    [155]张登荣,赵元洪.土流失强度遥感快速调查方法[J].浙江大学学报(自然科学版),1997,31(6):753-759.
    [156]张慧芳.北京地区森林植被生物量遥感反演及时空动态格局分析[D].北京:北京林业大学,2008:
    [157]张家贤,袁永珍.海南五针松人工林分生物量的研究[J].植物生态学报,1987,12(3):63-68.
    [158]张茂震,王广兴,周国模,葛宏立,徐丽华,周元中.基于森林资源清查、卫星影像数据与随机协同模拟尺度转换方法的森林碳制图[J].生态学报,2009,29(6):2919-2928.
    [159]张鹏超,张一平,杨国平,郑征,刘玉洪,谭正洪.哀牢山亚热带常绿阔叶林乔木碳储量及固碳增量[J].生态学杂志,2010,29(6):1047-1053.
    [160]张萍.北京森林碳储量研究[D].北京:北京林业大学,2009:
    [161]张全智,王传宽.6种温带森林碳密度与碳分配[J].中国科学:生命科学,2010,40(7):621-631.
    [162]张世煜,杨玉柱.落叶松人工幼林生物量的初步研究[J].河北林业科技,1984,(3):31-37.
    [163]张婷媛,林文鹏,陈家治.基于FLAASH和6S模型的Spot-5大气校正比较研究[J].光电子·激光,2009,20(11):1471-1473.
    [164]张瑛山,王学兰,周林生.雪岭云杉林生物量测定的初步研究[J].新疆八一农学院学报,1980,(3):19-25.
    [165]张祝平.鼎湖山森林群落的总生产力[J].广西植物,1991,11(2):162-170.
    [166]赵海珍,王德艺,张景兰,冯学全.雾灵山自然保护区森林的碳汇功能评价[J].河北农业大学学报,2001,24(4):43-47.
    [167]赵俊芳,延晓冬,贾根锁.基于FORCCHN的未来东北森林生态系统碳储量模拟[J].地理科学,2009,29(5):690-696.
    [168]赵丽琼.北京山区森林碳储量遥感估测技术研究[D].北京:北京林业大学,2010:
    [169]赵茂盛,Ronald, Neilson, P.气候变化对中国植被可能影响的模拟[J].地理学报,2002,57(1):28-38.
    [170]赵敏,丁慧勇,高峻.城市森林固定C02价值评估[J].生态经济,2007,(8):143-145.
    [171]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    [172]政府间气候变化专门委员会(IPCC).2006年IPCC国家温室气体清单指南(第四卷:农业、林业利其他土地利用)[M].口本全球环境战略研究所,2006,133-206.
    [173]中华人民共和国林业部.林业专业调查主要技术规定[M].北京:中国林业出版社,1990:120-130.
    [174]周国模,姚建祥.浙江庆元杉木人工林生物量的研究[J].浙江林学院学报,1996,13(3):235-242.
    [175]周群英,陈少雄,韩斐扬,陈文平,李天会,吴志华和简明.尾细桉等5种桉树无性系生物量和能量的比较研究[J].林业科学研究,2010,23(1):18-24.
    [176]周世强和黄金燕.四川红杉人工林分生物量和生产力的研究[J].植物生态学与地植物学学报,1991,15(1):9-16.
    [177]周绪,刘志辉,菊春燕,戴维,易莉,姜红.基于RS和GIS分析干旱区土地利用/覆盖变 化对陆地植被碳储量的影响——以新疆鄯善县绿洲为例[J].干旱地区农业研究,2007,25(6):231-236.
    [178]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [179]朱丽梅,胥辉.思茅松树干平均密度估计方法研究[J].西南林学院学报,2008,28(2):17-20.
    [180]朱守谦,魏鲁明.茂兰喀斯特森林生物量构成初步研究[J].植物生态学报,1995,19(4):358-367.
    [181]朱兴武,肖瑜,蔡文成.山杨天然次生林生物量的初步研究[J].青海农林科技,1988,(1):35-38.
    [182]Adegbidi, H.G., Jokela, E.J., Comerford, N.B., Barros, N.F.. Biomass development for intensively managed loblolly pine plantations growing on Spodosols in the southeastern USA[J]. Forest Ecology and Management,2002,167(1-3):91-102.
    [183]Alamgir, M., Al-Amin, M.. Allometric models to estimate biomass organic carbon stock in forest vegetation[J]. Journal of Forestry Research,2008,19(2):101-106.
    [184]Al-Bakri, J.T., TAYLOR, J.C.. Application of NOAA AVHRR for monitoring vegetation conditions and biomass in Jordan[J]. Journal of Arid Environments,2003,54(3):579-593.
    [185]Albaugh, T.J., Bergh, J., Lundmark, T., Nilsson, U., Stape, J.L., Allen, H.L., Linder, S.. Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce? [J]. Forest Ecology and Management,2009,258(12):2628-2637.
    [186]Anaya, J.A., Chuvieco, E., Palacios-Orueta, A.. Aboveground biomass assessment in Colombia: A remote sensing approach[J]. Forest Ecology and Management,2009,257(4):1237-1246.
    [187]Arp, P.A., Mcgrath, T.P.. A parameter-based method for modelling biomass accumulations in forest stands:Theory [J]. Ecological Modelling,1987,36(1-2):29-48.
    [188]Baldwin, V.C.. Is sapwood area a better predictor of loblolly pine crown biomass than bole diameter?[J]. Biomass,1989,20(3-4):177-185.
    [189]Baret F., Guyot G., Major D.J.. TSAVI:a vegetation index which minimizes soil brightness effects on LAI and APAR estimation [j]. Proceeding of the 12th Canadian Symposium on remote sensing and IGARSS'89,1989,3(1):1355-1358.
    [190]Basuki, T.M., Van Laake, P.E., Skidmore, A.K., Hussin, Y.A.. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests[J]. Forest Ecology and Management,2009,257(8):1684-1694.
    [191]Bergen, K.M., Dobson, M.C.. Integration of remotely sensed radar imagery in modeling and mapping of forest biomass and net primary production[J]. Ecological Modelling,1999,122(3): 257-274.
    [192]Bishta A. Z.. Assessing utilization of multi-resolution satellite imageries in geological mapping, a case study of Jabal Bani Malik area, eastern Jeddah City, Kingdom of Saudi Arabia[J]. Journal of King Abdulaziz University:Earth Sciences,2010,21(1):27-52.
    [193]Botkin, D.B., Simpson, L.G., Nisbet, R.A.. Biomass and carbon storage of the North American deciduous forest[J]. Biogeochemistry,1993,20(1):1-17.
    [194]Brown, S., Schroeder, P., Birdsey, R.. Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development[J]. Forest Ecology and Management,1997,96(1-2):37-47.
    [195]Brown, S.L., Schroeder, P., Kern, J.S.. Spatial distribution of biomass in forests of the eastern USA[J]. Forest Ecology and Management,1999,123(1):81-90.
    [196]Cannell, M.GR., Cruickshank, M.M., Mobbs, D.C.. Carbon storage and sequestration in the forests of Northern Ireland[J]. Forestry,1996,69(2):155-166.
    [197]Castellvi, F., Snyder, R.L., Baldocchi, D.D.. Surface energy-balance closure over rangeland grass using the eddy covariance method and surface renewal analysis[J]. Agricultural and Forest Meteorology,2008,148(6-7):1147-1160.
    [198]Chander, G., Markham, B.L., Helder, D.L.. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors[J]. Remote Sensing of Environment,2009,113(3):893-903.
    [199]Chhabra, A., Dadhwal, V.K.. Assessment of major pools and fluxes of carbon in Indian forests[J]. Climatic,2004,64(3):341-360.
    [200]Chhabra, A., Palria, S., Dadhwal, V.K.. Growing stock-based forest biomass estimate for India[J]. Biomass and Bioenergy,2002,22(3):187-194.
    [201]Chiba, Y.. Architectural analysis of relationship between biomass and basal area based on pipe model theory[J]. Ecological Modelling,1998,108(1-3):219-225.
    [202]Cole, T.G., Ewel, J.J.,2006. Allometric equations for four valuable tropical tree species[J]. Forest Ecology and Management,2006,229(1-3):351-360.
    [203]Conde, L.F., Swindel, B.F., Smith, J.E.. Plant species cover, frequency, and biomass:Early responses to clearcutting, chopping, and bedding in Pinus elliottii flatwoods[J]. Forest Ecology and Management,1983,6(4):307-317.
    [204]Crist, E.P., Cicone, R.C.. Application of the tasseled Cap Concept to Simulated Thematic Mapper Data[J]. Photogrammetric Engineering and Remote Sensing,1984,50(3):343-352.
    [205]Das, A.K., Ramakrishnan, P.S.. Above-ground biomass and nutrient contents in an age series of Khasi Pine (Pinus kesiya) [J]. Forest Ecology and Management,1987,18(1):61-72.
    [206]Deans, J.D., Moran, J., Grace, J.. Biomass relationships for tree species in regenerating semi-deciduous tropical moist forest in Cameroon[J]. Forest Ecology and Management,1996, 88(3):215-225.
    [207]Dixon, K.R., Luxmoore, R.J., Begovich, C.L.. CERES—A model of forest stand biomass dynamics for predicting trace contaminant, nutrient, and water effects. I. Model description[J]. Ecological Modelling,1978,5(1):17-38.
    [208]Dong, J., Kaufmann, R.K., Myneni, R.B., Tucker, C.J., Kauppi, P.E., Liski, J., Buermann, W., Alexeyev, V., Hughes, M.K.. Remote sensing estimates of boreal and temperate forest woody biomass:carbon pools, sources, and sinks[J]. Remote Sensing of Environment,2003,84(3): 393-410.
    [209]Duff, A.B., Meyer, J.M., Pollock, C., Felker, P.. Biomass production and diameter growth of nine half-sib families of mesquite (Prosopis glandulosa var. glandulosa) and a fast growing Prosopis alba half-sib family grown in Texas[J]. Forest Ecology and Management,1994,67(1-3): 257-266.
    [210]Escobedo, F.J., Nowak, D.J.. Spatial heterogeneity and air pollution removal by an urban forest[J]. Landscape and Urban Planning,2009,90(3-4):102-110.
    [211]Espinosa, M., Acuna, E., Cancino, J., Munoz, F., Perry, D.A.. Carbon sink potential of radiata pine plantations in Chile[J]. Forestry,2005,78(1):11-19.
    [212]Fang, J.Y., Guo, Z.D., Piao, S.L..Terrestrial vegetation carbon sinks in China,1981-2000[J]. Science in China Series D:Earth Science,2007,50(9):1341-1350.
    [213]Fang, J.Y., Wang, Z.M.. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass[J]. Ecological Research,2001,16(3):587-592.
    [214]Fattorini, L., Gasparini, P., Nocetti, M., Tabacchi, G., Tosi, V.. Above-ground tree phytomass prediction and preliminary shrub phytomass assessment in the forest stands of Trentino[J]. Museo Tridentino di Scienze Naturali, Trento. Studi Trentini di Scienze Naturalia, Acta Biologica,2004, 81 (1):75-121.
    [215]Fazakas, Z., Nilsson, M., Olsson, H.. Regional forest biomass and wood volume estimation using satellite data and ancillary data[J]. Agricultural and Forest Meteorology,1999,98-99(1): 417-425.
    [216]Fearnside, P.M.. Wood density for estimating forest biomass in Brazilian Amazonia[J]. Forest Ecology and Management,1997,90(1-2):59-87.
    [217]Ferm, A., Hyt Nen, J., Vuori, J.. Effect of spacing and nitrogen fertilization on the establishment and biomass production of short rotation poplar in Finland[J]. Biomass,1989,18(2):95-108.
    [218]Ferm, A., Kauppi, A.. Coppicing as a means for increasing hardwood biomass production[J]. Biomass,1990,22(1-4):107-121.
    [219]Foody, G.M., Boyd, D.S., Cutler, M.E.J.. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003,85(4):463-474.
    [220]Foody, G.M., Cutler, M.E., Mcmorrow, J., Pelz, D., Tangki, H., Boyd, D.S., Douglas, I.. Mapping the biomass of Bornean tropical rain forest from remotely sensed data[J]. Global Ecology and Biogeography,2001,10(4):379-387.
    [221]Fox, G.A., Sabbagh, G.J, Searcy, S.W.. An automated soil line identification routine for remotely sensed images[J]. Soil Science Society of America Journal,2004,68(4):1326-1331.
    [222]Fuchs, H., Magdon, P., Kleinn, C., Flessa, H.. Estimating aboveground carbon in a catchment of the Siberian forest tundra:Combining satellite imagery and field inventory[J]. Remote Sensing of Environment,2009,113(3):518-531.
    [223]Fukuda, M., Iehara, T., Matsumoto, M.. Carbon stock estimates for sugi and hinoki forests in Japan[J]. Forest Ecology and Management,2003,184(1-3):1-16.
    [224]Gallaun, H., Zanchi, G., Nabuurs, G.J., Hengeveld, G., Schardt, M., Verkerk, P. J.. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements[J]. Forest Ecology and Management,2010,260(3):252-261.
    [225]Gasparri, N.I., Parmuchi, M.G., Bono, J., Karszenbaum, H., Montenegro, C.L.. Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina[J]. Journal of Arid Environments,2010,74(10):1262-1270.
    [226]Gehring, C, Park, S., Denich, M.. Liana allometric biomass equations for Amazonian primary and secondary forest[J]. Forest Ecology and Management,2004,195(1-2):69-83.
    [227]Gitas, I.Z., Devereux, B. J.. The Role of Topographic Correctin in Mapping Recently Burned Mediterranean Forest Areas From Landsat TM Images[J]. International Journal of Remote Sensing,2006,27(1):41-54.
    [228]Glenday, J.. Carbon storage and emissions offset potential in an East African tropical rainforest[J]. Forest Ecology and Management,2006,235(1-3):72-83.
    [229]Goetz, S.J., Prince, S.D., Goward, S.N., Thawley, M.M., Small, J.. Satellite remote sensing of primary production:an improved production efficiency modeling approach[J]. Ecological Modelling,1999,122(3):239-255.
    [230]Green, C, Tobin, B., O'Shea, M., Farrell, E., Byrne, K.. Above- and belowground biomass measurements in an unthinned stand of Sitka spruce[J]. European Journal of Forest Research, 2007,126(2):179-188.
    [231]Gu, D.G., Gillespie, A.. Topographic normalization of Landsat TM images of forest based on subpixel sun-canopy-sensor geometry [J]. Remote Sensing of Environment,1998,64(2):166-175.
    [232]Guo, Z.D., Fang, J.Y., Pan, Y.D., Richard, B.. Inventory-based estimates of forest biomass carbon stocks in China:A comparison of three methods[J]. Forest Ecology and Management,2010, 259(7):1225-1231.
    [233]Haripriya, G.S.. Estimates of biomass in Indian forests[J]. Biomass and Bioenergy,2000,19(4): 245-258.
    [234]Hazarika, M.K., Yasuoka, Y., Ito, A., Dye, D.. Estimation of net primary productivity by integrating remote sensing data with an ecosystem model[J]. Remote Sensing of Environment, 2005,94(3):298-310.
    [235]Hiroshima, T., Nkajima, T.. Estimation of sequestered carbon in Article-3.4 private planted forests in the first commitment period in Japan[J]. Journal of Forest Research,2006,11 (6):427-437.
    [236]Hu, H.F., Wang, G.G.. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005[J]. Forest Ecology and Management,2008,255(5-6):1400-1408.
    [237]Huete, A.R.. A soil-adjusted vegetation index (SAVI) [J]. Remote Sensing of Evnironment,1988, 25(3):295-309.
    [238]Hyde, P., Nelson, R., Kimes, D., Levine, E.. Exploring LiDAR—RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment,2007,106(1):28-38.
    [239]Ingerslev, M.. Above ground biomass and nutrient distribution in a limed and fertilized norway spruce (picea abies) plantation:Part Ⅰ. Nutrient concentrations[J]. Forest Ecology and Management,1999,119(1-3):13-20.
    [240]Isaev, A., Korovin, G., Zamolodchikov, D., Utkin, A., Pryaznikov, A.. Carbon stock and deposition in phytomass of the russian forests[J]. Water, Air and Soil Pollution,1995,82(1-2): 247-256.
    [241]Jalkanen, A., Makipaa, R., Stahl, G., Kafatos, A., Petersson, H.. Estimation of the biomass stock of trees in Sweden:comparison of biomass equations and age-dependent biomass expansion factors[J]. Annals of Forest Science,2005,62(1):845-851.
    [242]Jimenez-Munoz, J.C., Sobrino, J.A, Mattar, C.. Atmospheric correction of optical imagery from MODIS and Reanalysis atmospheric products[J]. Remote Sensing of Environment,2010,114(10): 2195-2210.
    [243]Johnston, M.H., Homann, P.S., Engstrom, J.K., Grigal, D.F.. Changes in ecosystem carbon storage over 40 years on an old-field/forest landscape in east-central Minnesota[J]. Forest Ecology and Management,1996,83(1-2):17-26.
    [244]Kale, M.P., Ravan, S.A., Roy, P.S., Singh, S.. Patterns of carbon sequestration in forests of western ghats and study of applicability of remote sensing in generating carbon credits through afforestation/reforestation[J]. Journal of the Indian Society of Remote Sensing,2009,37(3): 457-471.
    [245]Kaonga, M.L., Bayliss-Smith, T.P.. Allometric models for estimation of aboveground carbon stocks in improved fallows in eastern Zambia[J]. Agroforest Systems,2010,78(3):217-232.
    [246]Karjalainen, T.. The carbon sequestration potential of unmanaged forest stands in Finland under changing climatic conditions[J]. Biomass and Bioenergy,1996,10(5-6):313-329.
    [247]Kauppi, P.E., Rautiainen, A., Korhonen, K.T., Lehtonen, A., Liski, J., Nojd, P., Tuominen, S., Haakana, M., Virtanen, T.. Changing stock of biomass carbon in a boreal forest over 93 years[J]. Forest Ecology and Management,2010,259(7):1239-1244.
    [248]Kenzo, T., Furutani, R., Hattori, D., Kendawang, J., Tanaka, S., Sakurai, K., Ninomiya, I.. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia[J]. Journal of Forest Research,2009,14(6):365-372.
    [249]Kenzo, T., Ichie, T., Hattori, D., Kendawang, J.J., Sakurai, K., Ninomiya, I.. Changes in above-and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia[J]. Forest Ecology and Management,2010,260(5):875-882.
    [250]Komiyama, A., Jintana, V., Sangtieran, T., Kato, S.. A common Allometric equation for predicting stem weight of mangroves growing in secondary forests[J]. Ecological Research,2002,17(3): 415-418.
    [251]Krankina, O.N., Harmon, M., Cohen, W.B., Oetter, D.R., Zyrina, O., Duane, M.V.. Carbon stores, sinks, and sources in forests of northwestern russia:can we reconcile forest inventories with remote sensing results?[J]. Climatic Change,2004,67(2-3):257-272.
    [252]Kwak, D.A., Lee, W.K., Cho, H.K., Lee, S.H., Son, Y., Kafatos, M., Kim, S.R.. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data[J]. Journal of Plant Research,2010, 123(4):421-432.
    [253]Labrecque, S., Fournier, R.A., Luther, J.E., Piercey, D.. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland[J]. Forest Ecology and Management,2006,226(1-3):129-144.
    [254]Laclau, P.. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia[J]. Forest Ecology and Management,2003,180(1-3):317-333.
    [255]Leboeuf, A., Beaudoin, A., Fournier, R.A., Guindon, L., Luther, J.E., Lambert, M.C.,2007. A shadow fraction method for mapping biomass of northern boreal black spruce forests using Quick Bird imagery [J]. Remote Sensing of Environment,2007,110(4):488-500.
    [256]Lehtonen, A., M-Kip, R., Heikkinen, J., Siev Nen, R., Liski, J.. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests[J]. Forest Ecology and Management,2004,188(1-3):211-224.
    [257]Leuschner, C., Moser, G., Bertsch, C., R-Derstein, M., Hertel, D.. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador[J]. Basic and Applied Ecology,2007,8(3): 219-230.
    [258]Liddle, M.J.. A theoretical relationship between the primary productivity of vegetation and its ability to tolerate trampling[J]. Biological Conservation,1975,8(4):251-255.
    [259]Lodhiyal, L.S., Lodhiyal, N.. Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations[J]. Forest Ecology and Management,1997, 98(2):167-179.
    [260]Lodhiyal, N., Lodhiyal, L.S.. Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India[J]. Forest Ecology and Management,2003,176(1-3):217-235.
    [261]Lugo, A.E., Wang, D., Herbert, B.F.. A comparative analysis of biomass production in five tropical tree species[J]. Forest Ecology and Management,1990,31(3):153-166.
    [262]Luther, J.E., Fournier, R.A., Piercey, D.E., Guindon, L., Hall, R.J.. Biomass mapping using forest type and structure derived from Landsat TM imagery[J]. International Journal of Applied Earth Observation and Geoinformation,2006,8(3):173-187.
    [263]Manhas, R.K., Negi, J.D.S., Kumar, R.K., Chauhan, P.S.. Temporal assessment of growing stock, biomass and carbon stock of indian forests[J]. Climatic Change,2006,74(1-3):191-221.
    [264]Mchale, M., Burke, I., Lefsky, M., Peper, P., Mcpherson, E.. Urban forest biomass estimates:is it important to use allometric relationships developed specifically for urban trees?[J]. Urban Ecosystems,2009,12(1):95-113.
    [265]McMahon, T.A., Kronauer, R.E.. Tree structures:deducing the principle of mechanical design[J]. Journal of Theoretical Biology,1976,59(2):443-466.
    [266]Mcpherson, E.G.. Atmospheric carbon dioxide reduction by sacramento's urban forest[J]. Journal of Arboriculture,1998,24(4):215-223.
    [267]Mcroberts, R.E., Tomppo, E.O.. Remote sensing support for national forest inventories[J]. Remote Sensing of Environment,2007,110(4):412-419.
    [268]Meng, Q., Cieszewski, C.J., Madden, M., Borders, B.. A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images[J]. Forest Ecology and Management,2007, 244(1-3):93-101.
    [269]Messier, C., Mitchell, A.K.. Effects of thinning in a 43-year-old Douglas-fir stand on above- and below-ground biomass allocation and leaf structure of understory Gaultheria shallon[J]. Forest Ecology and Management,1994,68(2-3):263-271.
    [270]Minnaert, N.. The reciprocity principle in lunar photometry[J]. Astrophysics Journal,1941,93(1): 403-410.
    [271]Mohren, G.M.J., Van Gerwen, C.P., Spitters, C.J.T.. Simulation of primary production in even-aged stands of Douglas fir[J]. Forest Ecology and Management,1984,9(1):27-49.
    [272]Montes, N., Gauquelin, T., Badri, W., Bertaudi Re, V, Zaoui, E.H.. A non-destructive method for estimating above-ground forest biomass in threatened woodlands [J]. Forest Ecology and Management,2000,130(1-3):37-46.
    [273]Moreau, S., Le Toan, T.. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management[J]. Remote Sensing of Environment,2003,84(4): 477-492.
    [274]Myeong, S., Nowak, D.J., Duggin, M.J.. A temporal analysis of urban forest carbon storage using remote sensing[J]. Remote Sensing of Environment,2006,101(2):277-282.
    [275]Navar, J.. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico[J]. Forest Ecology and Management,2009,257(2):427-434.
    [276]Nelson, B.W., Mesquita, R., Pereira, J.L.G., De Souza, G.A.S., Teixeira, B.G, Bovino, C.L. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology and Management,1999,117(1-3):149-167.
    [277]Neumann, M., Jandl, R.. Derivation of locally valid estimators of the aboveground biomass of Norway spruce[J]. European Journal of Forest Research,2005,124(2):125-131.
    [278]Ney, R.A., Schnoor, J.L., Mancuso, M.A.. A methodology to estimate carbon storage and flux in forestland using existing forest and soils databases[J]. Environmental Monitoring and Assessment, 2002,78(3):291-307.
    [279]Niklas, K.J.. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories[J]. New Phytologist,2006,171(1):27-40.
    [280]Nilsson, U., Albrektson, A.. Productivity of needles and allocation of growth in young Scots pine trees of different competitive status[J]. Forest Ecology and Management,1993,62(1-4):173-187.
    [281]Nogueira, E.M., Fearnside, P.M., Nelson, B.W.. Wood density in forests of Brazil's 'arc of deforestation':Implications for biomass and flux of carbon from land-use change in Amazonia[J]. Forest Ecology and Management,2007,248(3):119-135.
    [282]Nowak, D.J.. Atmospheric Carbon Reduction by Urban Trees[J]. Journal of Environmental Management,1993,37(3):207-217.
    [283]Nowak, D.J., Crane, D.E.. Carbon storage and sequestration by urban trees in the USA[J]. Environmental Pollution,2002,116(1):381-389.
    [284]Nunery, J.S., Keeton, W.S.. Forest carbon storage in the northeastern United States:Net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management,2010,259(8):1363-1375.
    [285]Oberheitmann, A.. A new post-Kyoto climate regime based on per-capita cumulative CO2-emission rights—rationale, architecture and quantitative assessment of the implication for the CO2-emissions from China, India and the Annex-Ⅰ countries by 2050[J]. Mitigation and Adaptation Strategies for Global Change,2010,15(3):137-168.
    [286]Onyekwelu, J.C.. Above-ground biomass production and biomass equations for even-aged Gmelina arborea(ROXB) plantations in south-western Nigeria[J]. Biomass and Bioenergy,2004, 26(1):39-46.
    [287]Pablo, L.L.. Root biomass and carbon storage of ponderosa pine in a northwest Patagonia plantation[J]. Forest Ecology and Management,2003,173(1-3):353-360.
    [288]Pajtik, J., Konopka, B., Lukac, M.. Biomass functions and expansion factors in young Norway spruce (Picea abies L. Karst) trees[J]. Forest Ecology and Management,2008,256(5): 1096-1103.
    [289]Patenaude, G.L., Briggs, B.D.J., Milne, R., Rowland, C.S., Dawson, T.P., Pryor, S.N.. The carbon pool in a British semi-natural woodland[J]. Forestry,2003,76(1):109-120.
    [290]Pearson, R.L., Miller, L.D.. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado[J]. Proceedings of the 8th International Symposium on Remote Sensing of Environment,1972,2(1):1357-1381.
    [291]Pehl, C.E., Tuttle, C.L., Houser, J.N., Moehring, D.M.. Total biomass and nutrients of 25-year-old loblolly pines (Pinus taeda L.)[J]. Forest Ecology and Management,1984,9(3): 155-160.
    [292]Peichl, M., Arain, M.A.. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests[J]. Agricultural and Forest Meteorology,2006, 140(1):51-63.
    [293]Peichl, M., Arain, M.A.. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management,2007,253(1-4): 68-80.
    [294]Peters, G.P., Hertwich, E.G.. Post-Kyoto greenhouse gas inventories:production versus consumption[J]. Climatic Change,2008,86(1-2):51-66.
    [295]Potter, C., Gross, P., Klooster, S., Fladeland, M., Genovese, V.. Storage of carbon in U.S. forests predicted from satellite data, ecosystem modeling, and inventory summaries[J]. Climatic Change, 2008,90(3):269-282.
    [296]Potter, C., Klooster, S., Hiatt, S., Fladeland, M., Genovese, V, Gross, P.. Satellite-derived estimates of potential carbon sequestration through afforestation of agricultural lands in the United States[J]. Climatic Change,2007,80(3-4):323-336.
    [297]Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data:A comparison of empirical modeling approaches[J]. Remote Sensing of Environment,2010,114(5):1053-1068.
    [298]Proisy, C., Couteron, P., Fromard, F.. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment,2007,109(3):379-392.
    [299]Quilho, T, Pereira, H.. Within and between-tree variation of bark content and wood density of Eucalyptus Globulus in commercial plantations[J]. IA WA Journal,2001,22 (3):255-265.
    [300]Ranasinghe, D.M.S.H.K., Mayhead, G.J.. Dry matter content and its distribution in an age series of Eucalyptus camaldulensis (Dehn.) plantations in Sri Lanka[J]. Forest Ecology and Management,1991,41(1-2):137-142.
    [301]Rauste, Y.. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment,2005,97(2):263-275.
    [302]Reese, H., Olsson, H.. C-correction of optical satellite data over alpine vegetation areas:A comparison of sampling strategies for determining the empirical c-parameter[J]. Remote Sensing of Environment,2011,115(6):1387-1400.
    [303]Richardson, A.J., Wiegand, C.L.. Distinquishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing,1977,43(3):1541-1552.
    [304]Rodeghiero, M., Tonolli, S., Vescovo, L., Gianelle, D., Cescatti, A.. INFOCARB:A regional scale forest carbon inventory[J]. Forest Ecology and Management,2010,259(6):1093-1101.
    [305]Rouse, J.W., Haas, R.H., Schell, J.A.. Monitoring vegetation systems in the great plains with Erts[J]. Third Earth Resources Technology Satellite-1 Symposium-Volume Ⅰ:Technical Presentations, Washington, DC:NASA,1974,1(1):309-317.
    [306]Running, S.W.. Global primary production from terrestrial vegetation:Estimates integrating satellite remote sensing and computer simulation technology[J]. Science of The Total Environment,1986,56(5):233-242.
    [307]Running, S.W., Coughlan, J.C.. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes [J]. Ecological Modelling,1988,42(1):125-154.
    [308]Rytter, L.. Effects of thinning on the obtainable biomass, stand density, and tree diameters of intensively grown grey alder plantations[J]. Forest Ecology and Management,1995,73(1-3): 135-143.
    [309]Saint-Andre, L., M'bou, A.T., Mabiala, A., Mouvondy, W., Jourdan, C., Roupsard, O., Deleporte, P., Hamel, O., Nouvellon, Y.. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo[J]. Forest Ecology and Management,2005,205(1-3):199-214.
    [310]Sala, O.E., Biondini, M.E., Lauenroth, W.K.. Bias in estimates of primary production:An analytical solution[J]. Ecological Modelling,1988,44(3):43-55.
    [311]Sampaio, E., Gasson, P., Baracat, A., Cutler, D., Pareyn, F., Lima, K.C.. Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil[J]. Forest Ecology and Management,2010,259(6):1135-1140.
    [312]Sandstrom, F., Petersson, H., Kruys, N., Sthl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden[J]. Forest Ecology and Management,2007,243(1):19-27.
    [313]Santos, J.R., Freitas, C.C., Araujo, L.S., Dutra, L.V., Mura, J.C., Gama, F.F., Soler, L.S., Sant'anna, S.J.S.. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment,2003,87(4):482-493.
    [314]Sarker, L.R., Nichol, J.E.. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment,2011,115(4):968-977.
    [315]Sasaki, N., Kim, S.. Biomass carbon sinks in Japanese forests:1966-2012[J]. Forestry,2009, 82(1):113-123.
    [316]Senelwa, K., Sims, R.E.H.. Tree biomass equations for short rotation eucalypts grown in New Zealand[J]. Biomass and Bioenergy,1997,13(3):133-140.
    [317]Seo, D.C., Yang, J.Y., Lee, D. H.. Kompsat-2 direct sensor modeling and geometric calibration/validation[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2008,2(1):47-51.
    [318]Shinozaki, K., Yoda, K., Hozumi, K., Kira, T., A quantitative analysis of plant form:the pipe model theory. Ⅰ. Basic analysis[J]. Japanese Journal of Ecology,1964,14(1):97-105.
    [319]Shvidenko, A., Nilsson, S.. Dynamics of russian forests and the carbon budget in 1961-1998:an assessment based on long-term forest inventory data[J]. Climatic Change,2002,55(1-2):5-37.
    [320]Simpson, L.G., Botkin, D.B., Nisbet, R.A.. The potential aboveground carbon storage of north american forests[J]. Water, Air, and Soil Pollution,1993,70(1-4):197-205.
    [321]Smith, J.A., Lin, T.L., Ranson, K.J.. The Lambertian assumption and Landsat data[J]. Photogrammetric Engineering and Remote Sensing,1980,46(9):1183-1189.
    [322]Soenen, S.A., Peddle, D.R., Hall, R.J., Coburn, C.A., Hall, F.G.. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain[J]. Remote Sensing of Environment,2010,114(7):1325-1337.
    [323]Solberg, S., Astrup, R., Gobakken, T., Sset, E.N., Weydahl, D.J.. Estimating spruce and pine biomass with interferometric X-band SAR[J]. Remote Sensing of Environment,2010,114(10): 2353-2360.
    [324]Stoffberg, G.H., van Rooyen, M.W., van der Linde, M.J., Groeneveld, H.T.. Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa[J]. Urban Forestry Urban Greening,2010,9(1):9-14.
    [325]Stromgaard, P.. Biomass, growth, and burning of woodland in a shifting cultivation area of South Central Africa[J]. Forest Ecology and Management,1985,12(3-4):163-178.
    [326]Suganuma, H., Abe, Y., Taniguchi, M., Tanouchi, H., Utsugi, H., Kojima, T., Yamada, K.. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia[J]. Forest Ecology and Management,2006,222(1-3):75-87.
    [327]Tahvanainen, T., Forss, E.. Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland[J]. Forest Ecology and Management,2008,255(3-4): 455-467.
    [328]Tavoni, M., Sohngen, B., Bosetti, V.. Forestry and the carbon market response to stabilize climate[J]. Energy Policy,2007,35(11):5346-5353.
    [329]Teillet, P.M.. Image Correction for Radiometric Effects in Remote Sensing[J]. International Journal of Remote Sensing,1986,7(12):1637-1651.
    [330]Teillet, P.M., Guindon, B., Goodenough, D.G.. On the Slope-aspect Correction of Multispectral Scanner Data[J]. Canadian Journal of Remote Sensing,1982,8(2):84-106.
    [331]Teobaldelli, M., Somogyi, Z., Migliavacca, M., Usoltsev, V.A.. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index [J]. Forest Ecology and Management,2009,257(3):1004-1013.
    [332]Ter-Mikaelian, M.T., Korzukhin, M.D.. Biomass equations for sixty-five North American tree species[J]. Forest Ecology and Management,1997,97(1):1-24.
    [333]Tietema, T.. Biomass determination of fuelwood trees and bushes of Botswana, Southern Africa[J]. Forest Ecology and Management,1993,60(3-4):257-269.
    [334]Tomppo, E., Nilsson, M., Rosengren, M., Aalto, P., Kennedy, P.. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing of Environment,2002,82(1):156-171.
    [335]Turski, M., Beker, C., Kazmierczak, K., Najgrakowski, T.. Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing scots pine (Pinus sylvestris L.) trees[J]. Forest Ecology and Management,2008,255(7):2678-2687.
    [336]Tuyl, S.V., Law, B.E., Turner, D.P., Gitelman, A.I.. Variability in net primary production and carbon storage in biomass across Oregon forests—an assessment integrating data from forest inventories, intensive sites, and remote sensing[J]. Forest Ecology and Management,2005, 209(3):273-291.
    [337]Vallet, P., Dh Te, J.F., Mogu Dec, G.L., Ravart, M., Pignard, G.. Development of total aboveground volume equations for seven important forest tree species in France[J]. Forest Ecology and Management,2006,229(1-3):98-110.
    [338]Van Lear, D.H., Taras, M.A., Waide, J.B., Augspurger, M.K.. Comparison of biomass equations for planted vs. natural loblolly pine stands of sawtimber size[J]. Forest Ecology and Management, 1986,14(1-3):205-210.
    [339]Vann, D.R., Palmiotto, P.A., Richard Strimbeck, G.. Allometric equations for two South American conifers:Test of a non-destructive method[J]. Forest Ecology and Management,1998,106(2-3): 55-71.
    [340]Wang, C.. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management,2006,222(1-3):9-16.
    [341]Wang, G.X., Oyana, T., Zhang, M.Z., Adu-Prah, S., Zeng, S.Q., Lin, H., Se, J.Y.. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images[J]. Forest Ecology and Management,2009,258(7):1275-1283.
    [342]Wang, J., Christopher, S.A.. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysics Research Letters,2003, 30(21):1-4.
    [343]Wang, X., Fang, J., Zhu, B.. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management,2008,255(12):4007-4020.
    [344]Wen, J.G., Liu, Q.H., Liu, Q.. Parameterized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China[J]. International Journal of Remote Sensing,2004,30(11):2875-2896.
    [345]White, J.D., Coops, N.C., Scott, N.A.. Estimates of New Zealand forest and scrub biomass from the 3-PG model[J]. Ecological Modelling,2000,131(2-3):175-190.
    [346]Xiao, C.W., Ceulemans, R.. Allometric relationships for below- and aboveground biomass of young Scots pines[J]. Forest Ecology and Management,2004,203(1-3):177-186.
    [347]Yang, J., McBride, J., Zhou, J.X., Sun, Z.Y.. The urban forest in Beijing and its role in air pollution reduction[J]. Urban Forestry and Urban Greening,2005,3(2):65-78.
    [348]Yang, K., Guan, D.. Changes in forest biomass carbon stock in the Pearl River Delta between 1989 and 2003[J]. Journal of Environmental Sciences,2008,20(12):1439-1444.
    [349]Yue, T.X., Liu, J.Y., Jorgensen, S.E., Gao, Z.Q., Zhang, S.H., Deng, X.Z.. Changes of Holdridge life zone diversity in all of China over half a century[J]. Ecological Modelling,2001,144(2-3): 153-162.
    [350]Zhu, Z., Arp, P.A., Meng, F., Bourque, C.P.A., Foster, N.W.. A forest nutrient cycling and biomass model (ForNBM) based on year-round, monthly weather conditions, part I:assumption, structure and processing[J]. Ecological Modelling,2003,169(2-3):347-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700