用户名: 密码: 验证码:
坐/卧式下肢康复机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
康复机器人是医工技术和机器人技术结合的产物,属于医疗机器人领域。我国人口老龄化的现状日趋严峻,脑卒中或各种意外事故导致的下肢瘫/截瘫患者众多,他们是一个亟需关爱的特殊弱势群体。日益增多的下肢残障患者和严重匮乏的康复医师是现存的主要矛盾。“十二五”期间我国将大力加强康复医疗服务能力的建设。目前上肢康复机器人的研究已经涵盖上肢及手部各关节,下肢康复机器人相对较少,针对当前研究存在的不足,本课题研制了坐/卧式外骨骼型下肢康复机器人,并对其进行了较为系统的研究,主要内容总结如下:
     阐述了运动神经元构造、肌电信号(Electromyography,EMG)的产生机理及人体下肢骨骼肌的解剖结构,分析了不同肌力等级对应的康复训练方式和方法。基于人体工程学,设计了坐/卧式外骨骼型下肢康复机器人。该机器人包括两条机械腿和靠背角度可调的座椅。可实现被动训练、主动辅助训练和主动抗阻训练三种运动模式。详细剖析了该机器人各部分的机械结构、安全限位保护装置及控制系统硬件构成。
     简化该机构为三连杆模型,采用“D-H”(Denavit-Hartenberg)法对其运动学进行了理论分析,并用ADAMS软件进行了仿真验证。基于AutoCAD绘图软件采用几何法分析了不同坐/卧姿态下机器人的连续变工作空间,采用构造函数法拟合出了其最大轨迹圆的圆心坐标的轨迹曲线。采用力平衡法,分析了人机系统的静力学正反解,确定了机器人末端力和各关节力的映射关系。采用拉格朗日法(LagrangianMethod)建立了人机动力学模型,分析了其各关节在运动过程中所需的驱动力,用ADAMS软件对其被动训练轨迹为圆时的各关节的运动学和动力学特性进行仿真验证。
     引入“右腿驱动技术”研制了表面肌电信号(Surface Electromyography,SEMG)采集板,对其滤波、“双T”型陷波、运放等功能模块电路的原理进行了分析和计算,并用EWB电子实验室(Electronics Workbench,现称为MultiSim)软件进行了仿真。试验采集了人体下肢肌的SEMG信号,经过时域内的系列处理,得到其移动平均幅值,和设定的阀值比较可以识别出人的运动意图。
     根据该机器人控制系统的构成,从应用的角度系统的阐述了三种训练模式的基本思想和可实现的控制策略。建立了单关节的传动系统的传递函数。被动训练采用传统的PID控制,理论推导了其建模过程,并对重力等扰动进行了补偿分析;对多关节被动训练的被控系统进行了线性解耦分析;助力辅助训练采用模糊自适应PID控制策略,并对其结果进行了仿真。单关节主动训练简化为“质量-弹簧”系统模型,对其进行了理论分析。多关节主动训练时采用能实现力追踪的自适应阻抗控制策略,论述了力追踪的自适应算法,并采用Lyapunov稳定性理论对力追踪算法的参数进行了求解。最后对该机器人进行了被动训练试验,并对试验误差进行分析。
Rehabilitation robot is a product of the combination of the biomedical engineeringtechnology with robot technology, which belongs to the medical robots. In China, theaging population is more and more, and the state is getting worse. The number of patientswith lower limb dyskinesia or paraplegia caused by stroke or various accidents anddisaster is large. They are special vulnerable groups in need of care urgently. The maincontradiction is between the numbers patients with lower limb paralysis and the shortageof rehabilitation doctors. China will vigorously strengthen construction of therehabilitation medical services capacity during the”Twelfth Five-Year”. Now the researchabout the upper limb rehabilitation robot already covered every joint of upper limb andhand, while the similar research about lower limb rehabilitation robot is less than it.Aimed to the lack of current research, the author and the other members of the teammanufactured an exoskeleton-type lower limb rehabilitation robot and the patient can sitor lying in the seat. This rehabilitation robot is researched systematically, and the maincontents are summarized as follows:
     The neuron construction, mechanism and the anatomical structure of lower limbskeletal muscle are introduced. The rehabilitation training mode and methods correspondto different muscle force levels are analyzed. The exoskeleton-type lower limbrehabilitation robot is designed based on Ergonomics,and the patients can sit or lying inthe seat. This robot contains two mechanical legs and a seat. The angle of the seat backcan be adjusting. The robot can realized three training modes: passive training mode,assisted training mode and active resistance training mode. The mechanical structure ofthe robot, the hardware of the control system and the protection device are introduced.
     The robot mechanism is simplified into a three-link model, forward solution andinverse solution of the robot kinematics is analyzed based Denavit-Hartenberg Method,then analysis the theory results and simulation results which is made by ADAMSsoftware.
     The working space of the robot which can be varied is analyzed based on geometric method with AutoCAD software. Through force-balance method, the statics forwardsolution and inverse solution of human-machine system is analyzed. It identified therelationship between the force belongs to the back end and every joint of the robot. UsingLagrangian method, the human-machine dynamics model is obtained, and the requireddriving force of every joint is analyzed in the process of movement. When the motiontrajectory with passive training mode is circle, the kinematic and dynamics characteristicsare obtained and verified by simulation method using ADAMS software.
     The circuit principle of SEMG capture board which developed by the authors isintroduced and the composition circuits are simulated and verified using EWB(Electronics Workbench) software. The SEMG signals is collected from lower limbmuscles through experiment, and then obtained the average values after a series ofprocessing. Use it, we can judge the human’s movement intention.
     It states the basic idea and realizing ways of three training modes. The transferfunction of single joint is set up. The traditional PID control is adopted in the passivetraining mode, and then theoretical derivation of its modeling process. The compensationanalysis is done aimed to the gravity and disturbance. The linear decoupling is made to thecontrolled system in the multi-joint passive training mode. Fuzzy adaptive PID controlstrategy is adapted to the power-assisted training mode, and simulated the process.Single-joint active training is simplified into the mass-spring model, and then analysis it.Adaptive impedance control strategy is adapted to the multi-joint resistance training. Itintroduced the force adaptive algorithms. Then analysis the control system by Lyapunovstability theory. Finally, the passive training experiment was completed by the robot, andanalyzed the experimental error.
引文
[1]吴兆苏,姚崇华,赵东.我国人群脑卒中发病率、死亡率的流行病学研究[J].中华流行病学杂志,2003,24(3):236-239.
    [2] Thorsen A M, Holmqvist L W, Pedro-Cuesta J, et al. A Randomized Controlled Trial of EarlySupported Discharge and Continued Rehabilitation at Home after Stroke: Five-Year Follow-Up ofPatient Outcome [J]. Stroke,2005,36(2):297-303.
    [3]张通,李丽林,崔丽英,等.急性脑血管病三级康复治疗的前瞻性多中心随机对照研究[J].中华医学杂志,2004,84(23):1948-1954.
    [4]胡永善.中国脑血管病后三级康复治疗的研究[J].中国临床康复,2002,6:935.
    [5] Maulden S A, Gassaway J, Horn S D, et al. Timing of Initiation of Rehabilitation AgterStroke[J].Arch Phys Med Rehabil,2005,86(12):S34-S40.
    [6] Musicco M, Emberti L, Nappi G, et al. Early and Long-term Outcome of Rehabilitation in StrokePatients: The Role of Patient Characteristics, Time of Initiation, and Duration of Interventions [J].Arch Phys Med Rehabil,2003,84(4):551-558.
    [7] Bernhardt J, Dewey H, Thrift A, et al. A Very Early Rehabilitation Trial for Stroke (Averi): PhaseⅡ Safety and Feasibility [J]. Stroke,2009,(6):390-396.
    [8] Reding M J, Potes E. Rehabilitation Outcome Following Initial Unilateral Hemispheric Stroke.Life Table Analysis Approach [J]. Stroke,1998,19(11):1354-1358.
    [9]黄海灵,吴洪涛,陈柏.基于柔索驱动的踝关节康复机器人的研究[J].中国制造业信息化.2012,41(3):27-29.`
    [10]刘建菊.人工耳蜗植入儿童听觉康复效果评估标准的修订及应用研究[D].上海:华东师范大学神经康复学科博士学位论文,2012:3-4.
    [11]闫伟.残疾儿童抢救性康复政策发展及完善研究[D].北京:首都经济贸易大学康复工程学科硕士学位论文,2012:2-3.
    [12]任宇鹏,王广志,高小榕,季林红.机器人辅助运动功能康复中的控制和评估策略[J].机器人技术与应用,2003,(4):40-44.
    [13] Preising B, Hsia T C, Mittelstadt B. A Literature Review: Robots in Medicine[J]. IEEEEngineering in Medicine and Biology,1991,10(2):13-22.
    [14]张付祥,付宜利,王树国.康复机器人的研究进展.河北工业科技,2005,22(2):100-105.
    [15]张通.中国脑卒中康复治疗指南(2011完全版)[J].中国康复理论与实践,2012,4(6):55-76.
    [16]杜宁.基于3-RRC并联机构的上肢康复机器人设计[D].秦皇岛:燕山大学机械电子学科硕士学位论文,2012:1-2.
    [17]杜志江,孙传杰,陈艳宁.康复机器人研究现状[J].中国康复医学杂志,2003,18(5):293-294.
    [18] Krebs H, Dipietro L, Levy-Tzedek S, et al. A Paradigm Shift for Rehabilitation Robotics[J].Engineering in Medicine and Biology Magazine,2008,27(4):61-70.
    [19] Hillman M. Rehabilitation Robotics from Past to Present:a Historical Perspective [J]. Advances inRehabilitation Robotics,2004,306:25-44.
    [20] Krebs H I, Volpe B T, Aisen M L, et al. Increasing Productivity and Quality of Care: Robot-AidedNeuro-Rehabilitation[J]. Rehabilitation Research and Development,2000,37(6):30-35.
    [21]孙立宁,何富君,杜志江,等.辅助型康复机器人技术的研究与发展[J].机器人,2006,28(3):355-359.
    [22] Huttenrauch H, Eklundh K S. Fetch and Carry with CERO: Observations from a Long Term UserStudy with a Service Robot[C]//11th IEEE Inter-National Workshop on Robot and HumanInteractive Communication. Washington:IEEE Computer Society,2002:158-163.
    [23]胡宇川,季林红.从医学角度探讨偏瘫上肢康复训练机器人的设计[J].中国临床康复,2004,8(34):7754-7756.
    [24]张蕊,张佳帆,张文蔚.可穿戴式柔性外骨骼人机智能系统安全性涉及评价[J].机电工程,2008,25(12):85-88.
    [25]张蕊,张佳帆,江灝.可穿戴式柔性外骨骼人机智能系统可靠性及应用伦理问题研究[J].机电产品开发与创新,2008,21(5):19-21.
    [26] Schmidt H, Hesse S, Bernhardt R. Safety Concept for Robotic Gait Trainers[J]. Engineering inMedicine and Biology Society,2004:2703-2706.
    [27]刘洪涛.截瘫患者下肢康复机器人设计与实验研究[D].秦皇岛:燕山大学机械电子学科硕士学位论文,2010:3.
    [28]日本松下机器人[EB/OL].(2010-8-17)[2014-2-15]. http://discovery.0756.1a/viewnews-13341-page-1.html.
    [29] Hermano K, Bruce T, Volpe, et al. Robot Aided Neuro Rehabilitation-a Robot for WristRehabilitation[J]. Neural Systems and Rehabilitation Engineering,2007,15(3):327-335.
    [30] Riener R, Frey M, Bernhardt M, et al. Human-Centered Rehabilitation Robotics[C]//9thIEEETransaction International Conference on Rehabilitation Robotics. Chicago:IEEE ComputerSociety,2005:12-16.
    [31] Deaconescu T, Deaconescu A. Pneumatic Muscle Actuated Isokinetic Equipment for TheRehabilitation of Patients with Disabilities of The Bearing Joints [C]//InternationalMulti-Conference of Engineers and Computer Scientists. Hongkong: published by IAENG,2009,(2):1823-1827.
    [32] Perkins T A, Donaldson N N, Hatcher N A, et al. Control of Leg-Powered Paraplegic CyclingUsing Stimulation of The Lumbo-Sacral Anterior Spinal Nerve Roots [J]. IEEE Transaction onNeural Systems and Rehabilitation Engineering,2002,10(3):158-164.
    [33] Hidenori T. Development of Portab.Le Therapeutic Exercise Machine TEMLX2Influences ofPassive Motion for Lower Extremities on Regional Celebral Blood Volume[J]. Proceedings of theSymposium on Biological and Physiological Engineering,2006,(21):29-31.
    [34] Noboru, Okuyama, Satoshi, et al. Development of a Biofeedback-Based Robotic Manipulator forSupporting Human Lower Limb Rehabilitation[C]//International Symposium on Robotics. japan:Mie university,2005,(36):93.
    [35] Crowninshield R D, Brand R A. A Physiologically Based Criterion of Muscle Force Prediction inLocomotion[J]. Journal of Biomechanics,1981,14(11):793-801.
    [36] Hase K, Yamazaki N, Development of Three-Dimensional Musculoskeletal Model for VariousMotion Analyses[J], Journal of JSME, Series C, Dynamics, Control, Robotics, Design andManufacturing.1997,40(1):25-32.
    [37] Yano H, Kasai K. Sharing sense of Walking with Locomotion Interfaces [J]. International Journalof Human Computer Interaction,2005,17(4):447-462.
    [38] Naditz A. Medical Connectivity-New Frontiers: Telehealth Innovations of2010[J]. Telemedicineand e-Health,2010,6(10):986–992.
    [39] Cudby K. Liberty Autonomy Independence [J]. Engineering Insight,2011,12(1):8-14.
    [40] Pietrusinski M, Cajigas I, Mizikacioglu Y, et al. Gait Rehabilitation Therapy Using RobotGenerated Force Fields[C]//2010IEEE Haptics Symposium. Waltham, USA: Cagatay Basodogan,2010:401-407.
    [41] Hidler J, Wisman W, Neckel N. Kinematic Trajectories while Walking within The LokomatRobotic Gait-Orthosis [J]. Clinical Biomechanics,2008,23(10):1251-1259.
    [42] Colomab G, Joerg M, Schreier R, et al. Treadmill Training of Paraplegic Patients Using A RoboticOrthosis[J]. Journal of Rehabilitation Research and development,2003,37(6):693-700.
    [43] Robert R, Dr I, Lars L, et al. Human-Centered Robotics Applied to Gait Training andAssessment[J]. Journal of Rehabilitation Research&Development,2006,43(5):679-694.
    [44] Jezernik S, Gery C, Thierry K, et al. Robotic Orthosis Lokomat: A Rehabilitation and ResearchTool [J]. Neuromodulation,2003,6(2):108-115.
    [45] Freivogel S, Schmalohr D, Mehrholz J. Improved Walking Ability and Reduced Therapeutic Stresswith an Electromechanical Gait Device[J]. Journal of Rehabilitation Medicine,2009,41(9):734-439.
    [46] Roy A, Krebs H I, Williams H I. Robot-Aided Neurorehabilitation: a Novel Robot for AnkleRehabilitation [J]. IEEE Transactions on robotics,2009,25(3):569-582.
    [47] Sisto S A, Forrest G F, Faghri P D. Technology for Mobility and Quality of Life in Spinal CordInjury [J]. IEEE Engineering in Medicine and Biology Magazine,2008,27(2):56-68.
    [48] Metrailler P, Blanchard V, Perrin I, et al. Improvement of Rehabilitation Possibilities with theMotionMaker [C]//The First IEEE/RAS-EMBS International Conference on Biomedical Roboticsand Biomechatronics. Pisa, Italy: IEEE/RAS-EMBS,2006:359–364.
    [49]姜洪源,马长波,陆念力,等.功能性电刺激脚踏车训练系统建模及仿真分析[J].系统仿真学报,2010,22(10):2459-2463.
    [50]程方,王人成,贾晓红,等.减重步行康复训练机器人研究进展[J].中国康复医学杂志,2008,23(4):366-368.
    [51] Zhang Y B, Wang Z X, Ji L H, et al. The Clinical Application of the Upper Extremity CompoundMovements Rehabilitation Training Robot[C]//IEEE International Conference on RehabilitationRobotics.Chicago:IEEE ICORR,2005:91-93.
    [52]张秀峰,季林红,王景新.辅助上肢运动康复机器人技术研究[J].清华大学学报,2006,46(11):1864-1867.
    [53]方彬,沈林勇,李荫湘,等.步行康复训练机器人协调控制的研究[J].机电工程,2010,27(5):106-110.
    [54] Yang C J, Niu B, Zhang J F, et al. Adaptive Neuro-Fuzzy Control based Development of aWearable Exoskeleton Leg for Human Walking Power Augmentation [C]//IEEE ASME,International Conference on Advanced Intelligent Mechatronics. Monterey: IEEE ASME,2005:467-472.
    [55]孙建,余永,葛运建,等.基于接触力信息的可穿戴型下肢助力机器人传感系统研究[J].中国科学技术大学学报,2008,38(12):432-1438.
    [56]孙洪颖,张立勋,王岚.卧式下肢康复机器人动力学建模及控制研究[J].高技术通讯,2010,20(7):733-738.
    [57]边辉,刘艳辉,梁志成,等.并联2-RRR/UPRR踝关节康复机器人机构及其运动学[J].机器人,2010,32(1):6-12.
    [58]边辉,赵铁石,田行斌,等.生物融合式康复机构及其应用[J].机器人,2010,32(4):470-476.
    [59] Wang H B, Shi X H, Liu H T, et al. Design, Kinematics, Simulation, and Experiment for aLower-Limb Rehabilitation Robot [J]. Journal of Systems and Control Engineering,2011,255:860-872.
    [60]丁敏,李建民,吴庆文,沈海涛.下肢步态康复机器人研究进展及临床应用[J].中国组织工程研究与临床康复.2010,14(35):6604-6607.
    [61] Liepert J, Bauder H, Wolfgang HR, et al. Treatment-Induced Cortical Reorganization after Strokein Humans[J]. Stroke,2000,31:1210-1216.
    [62] Bien Z Z, Stefan D. Advances in Rehabilitation Robotics: Human-Friendly Technologies onMovement Assistance and Restoration for People with Disabilities[C]//Berlin(Germany), Springer,2004,27:442.
    [63]任宇鹏,王广志,高小榕,等.机器人辅助运动功能康复中的控制和评估策略[J].机器人技术与应用.2003,(4):40-44.
    [64]谢欲晓,白伟,张羽.下肢康复训练机器人的研究现状与趋势[J].中国医疗器械信息.2010:02:5-9.
    [65] Krebs H I, Hogan N, Aisen ML, et al. Robot-Aided Neurorehabilitation[J]. IEEE Trans RehabilEng.1998;6(1):75-87.
    [66] Bernhardt M, Frey M, Colombo M, et al. Hybrid Force-Position Controlyields CooperativeBehaviour of the Rehabilitation Robot Lokomat[C]//9thIEEE International Conference onRehabilitation Robotics. Chicago:IEEE Computer Society,2005:536-539.
    [67] Takahashi Y, Kobayashi T. Upper Limb Motion Assist Robot Using Wiredriven ControlSystem[C]//IEEE IROS. Kyongju:IEEE Computer Society,1999:1598-1603.
    [68] Wege A, Kondak K, Hommel, et al. Force Control Strategy for a Hand Exoskeleton Based onSliding Mode Position Control[C]//IEEE/RSJ IROS.Beijing: IEEE Computer Society,2006:4615-4620.
    [69] Ju M S, Lin C C, Lin D H, et al. A Rehabilitation Robot with Force-Position Hybrid FuzzyController: Hybrid Fuzzy Control of Rehabilitation Robot[J]. IEEE Trans Neural Syst Rehabil Eng.2005,13(3):349-358.
    [70] Erol D, Sarkar N. Intelligent Control Framework for Robotic Rehabilitation afterStroke[C]//2007IEEE ICRA. Roma: IEEE Computer Society,2007:1238-1243.
    [71] Ahn K K, Anh P H. Design&Implementation an Adaptive Takagi-Sugeno Fuzzy NeuralNetworks Controller for the2-Links Pneumatic Artificial Muscle (Pam) Manipulator Using inElbow Rehabilitation[J]. IEEE ICCE.2006,356-361.
    [72]胡宇川,季林红.一种偏瘫上肢复合运动的康复训练机器人[J].机械设计与制造,2004(6):47-49.
    [73] Patton J L, Mussa F A. Robot-Assisted Adaptive Training: Custom Force Fields for TeachingMovement Patterns [J]. IEEE Trans Biomed Eng.2004,51(4):636-646.
    [74]任宇鹏,王广志,高小榕,等.机器人辅助运动功能康复中的控制和评估策略[J].机器人技术与应用,2003(4):39-44.
    [75] Peter K. The ABC of EMG. A Practical Introduction to Kinesiological Electromyography[M].USA, Noraxon,2005:23-73.
    [76] Englehart K, Hudgins B, Parker P A, et al. Classification of the Myoelectric Signal UsingTime-Frequency Based Representations[J]. Medical Engineering&Physics,1999,(21):431-438.
    [77] Shenoy P, Miller K J, Crawford B, et al. Online Electromyographic Control of a RoboticProsthesis[J]. IEEE Transactions on Biomedical Engineering,2008(55):1128-1135.
    [78] Kang W J, Shiu J R, Cheng C K, et al. The Application of Cepstral Coefficients and MaximumLikelihood Method in EMG Pattern Recognition[J]. IEEE Transactions on BiomedicalEngineering,1995(42):777-785.
    [79] Kang W J, Cheng C K, Lai J S, et al. A Comparative Analysis of Various EMG PatternRecognition Methods[J], Medical Engineering&Physics,1996(18):390-395.
    [80] Graupe D, Cline W K. Functional Separation of EMG Signals Via ARMA Identification Methodsfor Prosthesis Control Purposes[J]. IEEE Transactions on Systems, Man, and Cybernetics.1975(5):252-259.
    [81] Englehart K, Hudgins B. A Robust Real-Time Control Scheme for Multifunction MyoelectricControl [J], IEEE Transactions on Biomedical Engineering,2003(50):848-854.
    [82] Hu X, Nenov V. Multivariate AR Modeling of Electromyography for the Classification of UpperArm Movements[J]. Clinical Neurophysiology,2004(115):1276-1287.
    [83] Akay M, Mello C. Wavelets for Biomedical Signal Processing[C]//Engineering in Medicine andBiology Society, Proceedings of the19th Annual International Conference of theIEEE.Chicago:IEEE EMBS,1997:2688–2691.
    [84] Mallat S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989(11):674-693.
    [85] Jiang M W, Wang R C, Wang J Z, et al. A Method of Recognizing Finger Motion Using WaveletTransform of Surface EMG Signal [J]. IEEE-EMBS2005:2672-2674.
    [86] Chen W T, Wang Z Z, Xie H B, et al. Characterization of Surface EMG Signal Based on FuzzyEntropy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007(15):266-272.
    [87] Lei M, Wang Z Z, Feng Z J. Detecting Nonlinearity of Action Surface EMG Signal[J]. PhysicsLetter A,2001(290):297-303.
    [88] Clancy E A, Morin E L, Merletti R. Sampling, Noise-Reduction and Amplitude Estimation Issuesin Surface Electromyography[J]. Journal of Electromyography and Kinesiology,2002(12):1-16.
    [89] Merletti R, Loconte L R. Advances in Processing of Surface Myoelectric Signals PartⅠ[J].Medical and Biological Engineering and Computing.1995(33):362-372.
    [90] Loconte L R, Merletti R. Advances in Processing of Surface Myoelectric Signals PartⅡ [J].Medical and Biological Engineering and Computing,1995(33):371-384.
    [91] Hudgins B, Parker P, Scott R N. A New Strategy for Multifunction Myoelectric Control[J]. IEEETransactions on Biomedical Engineering,1993(40):82-94.
    [92] Englehart K, Hudgins B, Parker P A, et al. Classification of the Myoelectric Signal UsingTime-Frequency Based Representations [J]. Medical Engineering&Physics,1999(21):431-438.
    [93] Duda R O, Hart P E, Stork D G. Pattern Classification [M]. USA: Wiley-Interscience,2000:33-34.
    [94] Huang H, Zhou P, Li G, et al. An Analysis of EMG Electrode ConFig.uration for Targeted MuscleReinnervation Based Neural Machine Interface[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering,2008(16):37-45.
    [95] Peleg D, Braiman E, Yom-Tov E, et al. Classification of Finger Activation for Use in a RoboticProsthesis Arm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002(10):290-293.
    [96] Hussein S E, Granat M H. Intention Detection Using a Neuro-Fuzzy EMG Classifier[J]. IEEEEngineering in Medicine and Biology,2002(21):123-129.
    [97] Chu J U, Moon I, Mun M S. A Real-Time EMG Pattern Recognition System Based onLinear-Nonlinear Feature Projection for a Multifunction Myoelectric Hand[J]. IEEE Transactionson Biomedical Engineering,2006(53):2232-2239.
    [98] Raymond K Y, Tong. Interactive Robot-Assisted Training System Using Continuous EMG Signalsfor Stroke Rehabilitation Electromyogr[J]. Clinic Neurophysiol,1973(13):547-558.
    [99] Vorgelegt V, Christian F. Controlling Exoskeletons with EMG Signals and a Biomechanical BodyModel [D]. Berlin Information Industry University Doctoral Thesis,2007:7-24.
    [100]Kurt M, Roger V, Gonzalezb, et al. A Real-Time EMG-Driven Virtual Arm[J]. Computers inBiology and Medicine,2002,(32):25-36.
    [101]Zhang Q, Jonasson J, Styf C. Simultaneous Intramuscular Pressure and SurfaceElectromyography Measurement in Diagnosing the Chronic Compartment Syndrome[J].Scandinavian Journal of Medicine&Science in Sports,2009,(19):473-478.
    [102]陈玲玲.基于支持向量机的下肢肌电信号模式识别的研究[D].河北工业大学自动控制学科硕士学位论文,2006:5-7.
    [103]Hudgins B, Parker P, Scott R. A New Strategy for Multifunction Myoelectric Control[J]. IEEETrans Biomed Eng.1993,(40):82-94.
    [104]Liberson W T. Stimulation Therapy Psychological and Clinical Observations[J]. Amer. J.Psychiatry,1948(105):28-39.
    [105]Kantrowitz A. Electronic Physiological Aids [M]. Proc IBM Symp,1960:89-90.
    [106]Kameyama J, Sakurai M, et al. Control of Shoulder Movement by FES-EMGAnalysis[C]//Annual International Conference of the IEEE EMBS. San Diego: IEEE ComputerSociety,1991,13(2):871-872.
    [107]Chify, Komiyama, Eiichi S, et al. Hybrid FES Orthosis for Standing up in Paraplegia[C]//IEEEIMTC’94. Hamamatsu: IEEE Computer Society,1994,(2):575-578.
    [108]Nikhil S. Walk Soft: Nerve Rewiring Restores Most Movement Post-Spinal Injury[EB/OL].(2008-6-12)[2014-2-14]. http://www.sciam.com/article.cfm?id=nervous-system-restores-Movement/
    [109]Adams M, Carlstedt T, Cavanagh J, et al. International Spinal Research Trust Research StrategyIII: a Discussion Document [J]. Spinal Cord,2007,45(1):2-14.
    [110]周柳,王英华,刘强,等.虚拟现实技术在运动康复中的应用[J].中国组织工程研究与临床康复,2007,(5):957-960.
    [111]王玉珏.表面肌电信号分析与实时系统构建[D].上海:华东理工大学信息工程学科硕士学位论文,2011:29-30.
    [112]陈歆普.基于肌电信号的多模式人机接口研究[D].上海:上海交通大学机械与动力学科博士学位论文,2011:77-78.
    [113]神经元.百度百科[EB/OL].(2014-1-15)[2014-2-15]. http://baike.baidu.com/link?ur1=l3gZuwOER0DjCa6b6ScrFetQKM8PL-o5QEWK4z9Tv2UZwIzSbzhFNEpo4IThLRMA
    [114]何卫华.人体行为识别关键技术研究[D].重庆:重庆大学控制理论与控制工程学科博士学位论文,2012:23-24.
    [115]刘程.下肢表面肌电信号采集与处理系统设计与实现[D].武汉:武汉理工大学控制理论与控制工程学科硕士学位论文,2012:31-32.
    [116]Jing L, Li Z, Ren S Y. Control System of Robot Arm Based on sEMG [C]//6thInternationalConference on Natural Computation. Yantai: IEEE Computer Society,2010:3489-3491.
    [117]Ceseracciu E, Reggiani M, Sawacha Z, et al. SVM Classification of Locomotion Modes UsingSurface Electromyography for Applications in Rehabilitation Robotics [C]//19th IEEEInternational Symposium on Robot and Human Interactive Communication. Singapore:IEEEComputer Society,2010(12):165-170.
    [118]李庆玲.基于SEMG信号的外骨骼式上肢康复系统研究[D].哈尔滨:哈尔滨工业大学机械电子学科博士学位论文,2009:63-64.
    [119]冷雪,周九飞,付金宝,等.基于DSP的生化分析仪温控系统设计[J].电子测量与仪器学报,2011,25(4):360-365.
    [120]李丕丁,周翔宇.掌上多功能监护呼救定位系统的研制[J].微计算机信息,2011,27(1):9-11.
    [121]廖明栋,范缜煜,董福庆.基于DSP的直流伺服电机驱动电路研究与分析[J].国外电子测量技术,2013,32(8):77-80.
    [122]张晶,曹欣荣,唐劲天,等.压电薄膜式心冲击图信号采集系统的设计与实现[J].生命科学与仪器,2013,11(5):57-62.
    [123]陈海英.全方向M型心动图像量化效应的一种消除方法[J].漳州师范学院学报(自然科学版),2013,26(3):77-80.
    [124]成清清.实时心电采集及分析系统的研究与实现[D].南京:南京邮电大学自动控制学科硕士学位论文.2013:27-28.
    [125]张化凯.基于视觉的中医按摩机器人穴位定位与跟踪系统[D].济南:山东建筑大学机械学科硕士学位论文,2012:21-22.
    [126]张建军.基于最优力矩的四自由度机械臂轨迹规划[D].大连:大连理工大学机械学科硕士学位论文,2012:15-16.
    [127]管志光.足尺路面加速加载试验系统的研究[D].济南:山东大学机械学科博士学位论文,2012:32-33.
    [128]魏修亭,李刚,杜强,等.6-PTRT型齿顶倒角机器人运动学及工作空间分析[J].中国机械工程,2013,24(6):750-754.
    [129]Hogan N. Impedance Control: an Approach to Manipulation: Part Ⅰ-Theory. Part Ⅱ-Implementation. Part Ⅲ-Applications[J]. J D yn sys meas cont,1985:1-24.
    [130]Slotine J E, Li W. Adaptive Strategies in Constrained Manipulation[C]//Proc. IEEE Conf.Robotics And Automation. Washington:IEEE Computer Society,1987(4):595-601.
    [131]江帆,冯祖仁,施仁.机器人自适应阻抗控制方法的研究[D].西安:西安交通大学自动控制学科硕士学位论文,1989:67-74.
    [132]李杰,韦庆,常文森,等.基于阻抗控制的自适应力跟踪方法[J].机器人,1999,21(1):23-29.
    [133]赵章琰.表面肌电信号检测和处理中若干关键技术研究[D].合肥:中国科学技术大学控制理论与控制工程学科博士学位论文,2010:23-24.
    [134]尚小晶.肌电-运动关系建模与运动模式识别研究[D].吉林:吉林大学控制理论与控制工程学科硕士学位论文,2012:33-34.
    [135]席旭刚,朱海港,罗志增,等.基于熵的肌电信号跌倒识别[J].华中科技大学学报(自然科学版),2013,41(S1):211-214
    [136]李金铭.基于表面肌电信号的下肢康复机器人控制方法研究[D].哈尔滨:哈尔滨工业大学机械学科硕士学位论文,2013:51-52.……

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700