用户名: 密码: 验证码:
新型高功率径向速调管振荡器探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对几种新型高功率径向速调管振荡器进行了探索性研究。它们是折叠式谐振腔径向速调管振荡器,高功率虚阴极径向反射速调管振荡器,开放式同轴折叠式谐振腔径向反射速调管振荡器。同时对径向电子束与径向微波电场相互作用的机理进行了深入的分析和研究。
     用径向二极管一维模型分析了电子束在径向二极管内的运动,和几种二极管结构:嵌入式发射面径向二极管结构,两端馈电二极管结构,椎形二极管结构。研究了径向电子束与径向间隙内,径向二极管间隙内,径向反射速调管内的微波电场的相互作用过程。分析了微波电场对径向电子束的线性和非线性调制,谐振腔内微波的增长时间。对于在电流临近空间电荷限制电流和大信号时,径向电子束与径向间隙内微波电场的非线性相互作用过程进行了初步的研究。
     研究了折叠式谐振腔径向速调管振荡器,与单间隙同轴腔相比,它起振电流小。第二个特点是单间隙同轴腔的径向尺寸比折叠式谐振腔径向尺寸大。与双平面间隙腔相比,折叠式谐振腔具有柱面大,空间电荷效应小的特点。它不需要引导磁场。
     用一维模型对折叠式谐振腔径向速调管振荡器进行了理论研究,分析了结构器件参数对束波相互作用的影响。在折叠式谐振腔径向速调管振荡器中电子束与微波相互作用经历了线性段微波增长,非线性段微波增长,当微波电压超过阈值电压时,电子束受到100%深度的调制的几个阶段。由于电子束在同一个腔内受到了100%深度的调制,可以直接加微波提取腔进行微波提取。
     然后用二维半PIC程序对它进行数值模拟研究。典型结果为:当电流为20.5kA,电压为530kV时,饱和时间约为35ns,其输出微波峰值功率为1.8GW,输出微波频率为1.52GHz。通过改进结构和优化,在电压幅度为380kV,电流为38kA。得到微波输出峰值功率约为6GW,微波上升时间为40ns,频率为1.6GHz,微波产生效率得到较大提高,达到41%。
    
    4中国工程物理研究院博士学位论文李少甫
     研究了一种新型的高功率虚阴极径向反射速调管振荡器,它结合了虚阴
    极振荡器容易起振,和速调管微波产生效率较高的特点。利用虚阴极反射电
    子束对调制腔的正反馈,可以减小起振电流和起振时间,而且提高了微波产
    生效率。它是一种结构简单,紧凑,不需要引导磁场的器件。
     建立了虚阴极径向反射速调管振荡器一维理论模型,研究了结构器件参
    数对束波相互作用的影响。分析了电子束在径向反射腔中形成虚阴极的过程
    和虚阴极对电子束的调制作用。然后对这种器件进行了数值模拟研究,得到
    的典型结果为:输入电压620KV,输入直流功率IO.SGW,输出微波峰值功率
    为2.SGW,虚阴极振荡频率被锁定,频率为1.25GHz,微波饱和时间小于sns。
    束波转换效率约为23.8%。
     提出了开放式同轴折叠式谐振腔径向反射速调管振荡器。它的特点是产
    生电子束的二极管和反射速调管的反射腔,调制腔都集成在开放式同轴折叠
    式谐振腔内,结构简单紧凑。径向强流电子束在径向反射场中会形成虚阴极
    振荡,单独的虚阴极振荡产生的微波效率低。利用虚阴极振荡对径向二极管
    中的电流进行调制,构成了一种较高效率的径向虚阴极反射速调管振荡器。
    它的特点是,起振电流小,起振时间短,产生微波效率高.结构简单紧凑,
    不需要引导磁场。
     研究了结构器件参数对束波相互作用的影响。然后对这种器件进行了数
    值模拟研究,得到的典型结果为:输入电压625KV,输入直流功率18GW,输
    出微波峰值功率为2.SGW,虚阴极振荡频率被锁定,微波饱和时间小于sns,
    频率为1.3GHz。
Several new styles of radial klystron oscillators are studied theoretically and numerically. These new members include: the radial klystron oscillator with foldaway-concentric cylindrical cavity, the radial reflex klystron oscillator with virtual cathode and radial reflex klystron with open foldaway-concentric cylindrical cavity. The mechanism of interaction between radial electron beam and electromagnetic wave fields is also analyzed in-depth.
    The kinematics of electron beam within the radial diode areas and interaction structures are studied by using one-dimension model, the energy exchange process between electrons and high frequency field is also analyzed. The improved microwave output power and efficiency are obtained.
    (1) The radial klystron oscillator with foldaway-concentric cylindrical resonant cavity is researched firstly. Compared with the traditional TTO, its start-up current is much less, and its larger cylindrical volume allows a higher space charge limit current. Therefore no guiding magnetic field is required. The input electrical power at the given voltage is increased due to the larger emitting surface of the radial structure and the space-charge effects are also relatively small. The start up and linear growth process of the microwave within the foldaway-concentric cylindrical resonant cavity are analyzed based on the one dimensional model firstly, then a 2.5-D PIC code is employed to study the nonlinear interaction. It is shown that a peak output power of 6GW with frequency of 1.6GHz can be extracted from the well-designed radial klystron oscillator with foldaway-concentric cylindrical resonant cavity with the diode voltage 380kV and the electron beam of 38kA.
    (2) Then the radial reflex klystron oscillator with virtual cathode is studied. This is also a high power microwave device with no requirement of a guiding field. The feed-back provided by the reflected electron beams reduce the start-up current and the start-up time in a vircator, while the existence of klystron cavity improves the extracting efficiency, hence the radial reflex klystron oscillator with virtual
    
    
    
    cathode combines the advantages of both devices, becomes a compact, efficient set. This new radial reflex klystron oscillator with virtual cathode is designed and simulated by 2.5-D PIC code. Simulation results show 2.5 GW output power with a frequency of 1.25GHz can be generated with an input of 620kV voltage, DC input power of 10.5GW electron beam.
    (3) The radial reflex klystron with an open foldaway-concentric cylindrical resonant cavity integrates the resonant cavity and reflex cavity within one foldaway coaxial cavity, so it is a very compact high power microwave device. The radial high current forms the virtual cathode in the reflected high frequency field, which further modulates the emitted electron beam. The simulation results of the 2.5-D PIC code for this new structure are presented. A 2.5 GW peak output power with the frequency of l.3GHz is generated with the input of 625kV voltage,
    DC input power of 18GW
引文
[1]. R.Varian,S.Varian,A High Frequency Oscillator and AmplifierJ Appl. Phys.Vol. 10 1939 p.321
    [2].谢家麐,赵永翔 速调管群聚理论 科学出版社 1966
    [3].А.З.哈依柯夫 黄高羊(译) 速调管放大器 国防工业出版社 1974
    [4].吴鸿适 微波电子学原理 科学出版社 1987
    [5].杨祥林 徐淦卿 韦玉 微波电子管原理 国防工业出版社 1980
    [6]. A.Staprans,E.McCune,J,Ruetz,High Power Liner-Beam Tubes, Proc.IEEE,Vol.61,1973,p.299
    [7]. A.Sessler,S.Yu,Relativitisc Klystron Two-Beam Accelerator, Phys.Rev.Lett,Vol.58,1987,p.2439
    [8]. T.D.Lee,G.Konrad,Y.Okaxaki,et al. Design and performance of a 150-MW klystron at S-band,IEEE Trans.Plasma Sci,Vol.13 1985,p.545-552
    [9]. M.A.Allen,R.S.Callin,H.Deruyder,etal. Recent progress in relativistic klystron research. Particle Accelerators, Vol.301990,p.189
    [10]. M.Friedman,etc. Relativistic klystron amplifier Ⅰ:High power operation intense microwave and particle beams Ⅱ,proceeding SPIE, Vol.1407,1991,1407
    [11]. M.Friedman,etc., Auto acceleration of IREBs. Phys.Rev.Lett. 1973,31:1107-1109
    [12]. M.Friedman, etc., Auto modulation of an IREBs. Phys.Rev.Lett. 1974,32:92-94
    [13]. M.Friedman,etc., Self-modulation of an intense relativisticelectron beam,J.Appl.Phys.,1984,56(9):2459-2474
    [14]. M.Friedman,etc. Modulation of intense relativistic electron beams by an external microwave source.,Phys. Rev. Lett. 1985,55(26),2860-2863
    [15]. M.Friedman etc.,High-power modulated IRE sources with application to RF generation and control 1ed thermonuclear fusion,IEEE Trans. Plas. Sci. 1986,14(3),201-214
    [16]. M.Friedman, etal., Externally modulated IREBs. J.Appl. Phys. 1988,55(26):3353-3379
    [17]. M. Friedman, Efficient generation of multigigawatt RF power by a RKA,Rev.Sci.Instrum.1990,61(1):171-181
    [18]. M.Friedman,etal.,Present and future developments of high power RKA., Intense microwave and particle beams Ⅱ,proceeding SPIE, Vol.1629,1992,
    [19]. V.Serlin,M.Friedman,etal.Development and optimization of the
    
    RKA. , IEEE. Trans. Plas.Sci. , 1994, 22 (5) : 692-700
    [20] . M.Friedman, etal. , Intense electron beams modulation by inductively loaded wide gaps for RKA. Phys. Rev. Lett. 1995, 74(2) , 322-325
    [21] . M.Friedman, etal., Efficient conversion of the energy of IREBs into rf waves. , Phys. Rev. Lett. 1995, 75 (6) : 1214-1217
    [22] . M.Friedman, etal., Modulation electron beams for an X-band channel. Appl. Phys. Lett. 1997, 71 : 3724
    [23] . R. Palmer, W. Herrmannsfeldt, K. Eppley, An Emerged field cluster klystron , Particle Accelerators , Vol. 30, 1990, p. 197
    [24] . M. Boyd, R. Dehn, J. Hickey, T. Mihrin, The multiple beam klystron IRE Trans. Electron Dev. , Vol. ED-9, 1962, p. 247
    [25] . J. Pasour, T. Hughes, K. Thomason, Development of the Collective Interaction Klystron, Particle Accelerator Conference, Cat. No. Ch2699-0, 1989, p. 109
    [26] . M.Wilson , P. Tallerico, U. S. Patent 43134 313072, 1982.
    [27] . P. McIntyre, S. Elliott, H. Gray, B. lee, etal. Gigatron: a new technology for microwave power devices, Microwave and particle beam sources and directed energy concepts, ed. H. Brandt, SPIE, Vol. 1061, 1989, p. 125
    [28] . Marcum Jess. Interchange of energy between an electron beam and an oscillating electric field. J. Appl. Phys. , Vol. 17, 1946, 4-11
    [29] . Barry M. Marder, etc. The split-cavity oscillator:a high power E-beam modulator and microwave source. IEEE Trans. On Plas. Sci. , Vol. 20, No. 3, 1992, 312-331
    [30] . Raymond W. lemke, Dispersion analysis of symmetric transverse magnetic modes in a split cavity oscillator. J. Appl. Phys. Vol. 72 ( () , 1992, 4422-4428
    [31] . R. Bruce. Miller, etc. Super-Reltron theory and experiments. IEEE Trans. On Plas. , Vol. 20, No. 3, 1992,332-343
    [32] . R. Bruce. Miller. etc. Advances in Super-Reltron source development. SPIE proceedings, Vol.2557, San Diego, USA, 1995
    [33] . R. Bruce. Miller, etc. Super-Reltron Progress. IEEE Trans. On Plas. Sci. , Vol. 22, No. 5, 1994, 701-705
    [34] . L. Bacon. J. Hoffman, R. Gallegos, P. Coleman, Phase Locking Results for an array of split cavity oscillators, 18th Int. Conf . on Plas. Sci. , Williamsburg, Va. , 1991.
    [35] . James Benford .John Swegle. High power microwaves. Artech House, Norwood, MA, 1991
    [36] , R. Smith, J. Benford, N. Cooksey, N. Aiello, etal. , Operation of an L-band relativistic Magnetron at 100Hz, Intense Microwave & Particle Beams Ⅱ , ed. H. Brandt, SPIE, Vol. 1407, 1991, p. 83
    [37] . J. Levine, N. Aiello, J. Benford, B. Harteneck, Design and operation of a module of phase-locked relativistic
    
    magnetron,J.Appl.Phys.,Vol.70,1991,p.2838
    [38]. R.L.Lemke,G.E.DeMuth,A.W.Biggs,Theoretical and experimental investigation of axial power extraction from a magnetically insulated transmission line Oscillator, ed.H. Brandt, SPIE Proc.,Vol.1226,1990,p.199
    [39]. M.J.Arman,etal., Initial study of a low-impedance high power radial klystron amplifier. Proceeding of the seventh national conference on HPM technology. Monterey CA:Nov.1994
    [40]. M.J.Arman High power radial klystron oscillator., Proc of SPIE,1995,2557,1-31
    [41]. M.J.Arman. Radial Acceletron, anew low-impedance HPM source. IEEE Trans.on Plas.Sci.,Vol.24,No.3,1996,964-969
    [42]. M.J.Arman., Plasma-filled radial acceletron., IEEE Trans.on Plas. Sci.,Vol.28,No.3,2000,767-771
    [43]. M.J.Arman., High power radial klystron oscillator. SPIE proceeding,Vol.2557,San Diego,USA,1995,21-31
    [44]. M.J.Arman.,Loading of phase-locking radial klystron oscillators. Division of Plasma Physics38TH Annual Meeting,Denver,Colorado,USA,Nov.,1996
    [45]. C.K.Chong,etc., Bragg reflector. IEEE Trans.on Plas. Sci.,Vol.20,No.3,1992,393
    [46]. J.W.Luginsland,M.J.Arman,and Y.Y.Lau.High power transit-time oscillator:onset of oscillation and saturation.SPIE,Vol.3158,San Diego,USA,1996,153-163
    [47]. R.L.Wright and E.Schamiloglu. Experimental evaluation of a radial svmmetric transit-time oscillator. the 29th. ICOPS,Banff,Alberta,Canada,2002
    [48].吴中发 王玉芝 径向速调管振荡器的理论分析和数值模拟[J] 强激光与粒子束 2000,12(2):211-214
    [49].贾云峰 径向渡越时间振荡器的数值模拟[J] 强激光与粒子束 2002,14(1):95-98
    [50].贾云峰 径向渡越时间振荡器的研究[D] 2002博士论文
    [51]. C.D.Child,Discharge from hot CaO,Phys.Rev.,Vol.32,p.492 1911
    [52]. I.langmuir, The effect of space charge and initial velocities on the Dotential distribution and thermionic current between parallel plane electrodes Phys.Rev.,Vol.21,p.419,1923
    [53]. R.A.Mahaffey,P.Sprangle,J.Golden,and C.A.Kapetanakos,High power microwaves from a nonisochronic reflexing system,Phys.Rev.Lett.,Vol.39,1977,p.843
    [54]. A.N.Didenko, A.G.Zherlitsyn,A.S.Sulakshin, The generation of high power microwave radiation in a triode system by a heavy-current beam of microsecond duration,Sov.Tech.Phys.Lett.,Vol.4,1978,p.3
    [55]. H.E.Brandt, the Turbutron IEEE Trans.Plas.Sci.,Vol.S13,1985,p.513
    
    
    [56] . J. Benford, D. Price, H. Sze, and D.Bromley, Interaction of a Vircator microwave generator with an enclosing resonant cavity , J. Appl. Phys. , vol. 61 1987, p. 2098
    [57] . H. Sze, D. Price,and B. Harteneck, Phase locking of two strongly coupled vircators, J. Appl. Phys., Vol. 678, 67. 1990, p. 2278
    [58] . D. Price, H. Sze, and D. Fittinghoff, Phase and frequency locking of a cavity vircator driven by a relativistic magnetron, J. Appl. Phys., Vol. 65, 1985, p. 5185
    [59] . D. Price and H. Sze, Phase-Stability analysis of the magnetron driven vircator experiment , IEEE Trans. Plas. Sci. ,Vol. 18, 1990, p. 580
    [60] . B. V. Alyokhin, A. E.Dubinov, V. D. Selemir, Theoretical and experimental studies of virtual cathode microwave devices,IEEE Trans. On Plas. Sci. Vol. 22, No. 5 1994, p. 945
    [61] . Xie WenKai, Xiao Sunlu, Liu Shenggang , Theory and conceptual Design of high power coaxial vircator , Intense Microwave Pulses VI ,SPIE Vol. 3702, 1999
    [62] . A. G. Zherlitzyn, Microwave radiation generation in the triode of coaxial type with virtual cathode, Pis ' ma v ZHTF, vol. 16, No. 22, p78, 1990
    [63] . K. Woolverton, M. Kristiansen, L. L. Hatf ield, Computer simulations of coaxial vircator,SPIE,Vol. 3158, 145-152 1996
    [64] . Guozhi liu, Shi Qiu, Hongjun Wang, etal. Study on coaxial diode and vircator,SPIE, Vol.3158,230-237, 1996
    [65] . Weihua Jiang,Kevin Woolverton, James Dickens, High power microwave generation by a coaxial virtual cathode oscillator , IEEE Trans, on Plas. Sci. Vol. 27, No. 5 ,1999
    [66] . W. Jiang, K. Masugata, and K.Yatsui, Mechanism of microwave generation by virtual cathode oscillation, Phys. Plas. , Vol. 2, No. 3, pp. 982-986, 1995
    [67] . 邵浩,刘国志。向外发射同轴型虚阴极振荡器研究 物理学报 Vol.50,No.12,2001
    [68] . Ronald C. Davidson, An introduction to the physics of nonneutral plasmas, Allan M.Wylde 1990
    [69] . R.B. Miller, W.F.McCullough, K.T.Lancaster, IEEE Trans. Plas. Sci. 20. 332 1992
    [70] . R.B. Miller, Mechanism of explosive electron emission for dielectric fiber(velvet) cathode,J. Appl. Phys. Vol.84, No. 7, 1998,3880
    [71] . W. A. Barletta, D. Birx, J. K. Boyd, etal. Emhancing brightness of high current electron guns, Nucl. Instr. and Meth., Vol. A250,1986 p. 80
    [72] . R. J. Adler, G. F. Kiuttu, B. E. Simpkins, etal. Improved electron emission by use of a cathode , Rev. Sci. Instrum. , Vol.56,1985, p. 766
    
    
    [73].张克潜,李德杰,微波与光电子学中的电磁理论,北京:电子工业出版社,1994
    [74].刘盛纲,相对论电子学,北京:科学出版社,1987
    [75].R.B.Mill,强流带电离子物理学导论,北京:原子能出版社,1990
    [76].王中和,张光寅,光子物理学基础,北京:国防工业出版社,1998
    [77]. Weihua Jiang,Magne Kristiansen, Theory study of the virtual cathode oscillator,Physics of Plasmas,Vol.8,No.9,2001,3781
    [78].Clayborne D.Taylor,D.V.Giri,杨得秀,周传明译 高功率微波系统和效应,四川:中物院科技信息中心,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700