用户名: 密码: 验证码:
核地球物理方法在铀矿勘查中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国的核电建设进入高速发展阶段,对核燃料铀的需求也出现了井喷式的增长。我国目前铀矿探明储量有限,为了解决核燃料供应问题,需要对铀矿勘查方法进行深入研究。在实际勘探活动中,根据测量得到的地球物理异常特征确定矿体位置。传统的扩散对流理论认为氡气的迁移距离只有几十米,无法解释深部铀矿上方出现的氡异常。本论文对国内外有关铀矿地球物理勘探和氡运移的文章进行归纳和总结,研究了铀矿地球物理场特征和氡异常形成机理,最终得出以下结论:
     (1)铀矿主要分布在重力梯度带和低稳磁异常区,砂岩型铀矿对应的重力梯度带较宽缓,花岗岩型铀矿重力异常变化则较为陡急;铀矿的矿化层一般极化率高而电阻率较低,但古河道砂岩型铀矿矿体出现视电阻率偏高值异常,层间氧化带砂岩型铀矿矿体则位于自然电位曲线的拐点处。
     (2)地下水携带、地气等作用使得铀矿床上方可能存在三处铀富集区:分散晕区、潜水面铀富集区和地表地球化学障铀富集区。这三处铀富集区缩短了氡气向地表迁移的距离。氡运移的动力作用也不限于扩散对流作用,在深部还有团簇作用等,因此氡运移的迁移速度比单纯考虑扩散对流作用计算的要快。更短的迁移距离和更快的迁移速度,使得铀矿上方能够形成氡异常。
     (3)花岗岩、火山岩型铀矿有原生晕和次生晕,而砂岩型铀矿上方则不一定存在分散晕;花岗岩、火山岩型铀矿地表氡的高值异常出现在矿体正上方,砂岩型铀矿地表氡的高值异常出现在矿体两侧;与花岗岩、火山岩型铀矿相比较,砂岩型铀矿的地下水携带作用影响较弱,地气等作用的影响则相对较大。
With the high-speed development of nuclear power station construction in China, the demand of uranium fuel also appears a rapid growth. The proven uranium reserves in China are limited. In order to solve the problem of nuclear fuel supply, it is necessary to research uranium exploration methods deeply. People determined the location of ore bodies according to the geophysical anomaly measured. The diffusive convection theory thinks that the migration distance of radon is only a few dozen meters, so it can not explain the radon anomaly above the deep uranium deposits. In this paper, I summarized the articles about uranium geophysical exploration and radon migration, studied on the characteristics of geophysical field in uranium deposits and the formation mechanism of radon anomaly, and ultimately reached the following conclusions:
     (1) Uranium deposits are mainly distributed at the gravity lineament and magnetic anomaly areas with gentle variations. The gravity anomaly varies stably at sandstone-type uranium deposits and varies greatly at granite-type uranium deposits. Uranium deposits usually have high polarizability and low resistivity, but the resistivity at paleochannel sandstone-type uranium deposits appears slightly high value anomaly. Interlayer oxidation zone sandstone-type uranium deposits locate at the inflexion of spontaneous potential curve. The wave impedance at sandstone-type uranium deposits is relatively high.
     (2) Actions of groundwater-carrier and geogas lead to 3 uranium concentration areas: dispersion halo area, groundwater table area,and geochemical barrier near earth surface. These uranium concentration areas shorten the migration distance of radon. The dynamic actions of radon migration are not limited to diffusion and convection. Because actions like clusters effect play a great role in deep subsurface, the real migration velocity of radon is faster than the calculation speed considering diffusion and convection merely.
     (3)There are primary halos and secondary halos in granite-type uranium deposits and volcanics-type uranium deposits, while the primary halos and secondary halos usually not exist in sandstone-type uranium deposits.High value surface anomaly of radon appears on the top of orebody in granite-type uranium deposits and volcanics-type uranium deposits,and appears on the edge of orebody in sandstone-type uranium deposits. Compared with granite-type uranium deposits and volcanics-type uranium deposits, influence of groundwater-carrier effect is relatively weak in sandstone-type uranium deposits.
引文
Ammar Ahmed A,Elserafy Aboulhoda M,Ismail Atef A,et al. Generation and interpretation of ternary images of the aerial gamma-ray spectrometric survey data, Egyptian desert. Arab gulf journal of scientific research, 2002, 20(4):246~254
    Anand.S.P,Mita Rajaram.Aeromagnetic data analysis for the identification of concealed uranium deposits: a case history from Singhbhum uranium province, India.Earth.Planets Space, 2006, 58(8): 1099~1103
    C. Cosma, N. Juhojuntti, C. Juhlin,et al. 3D seismic survey at the Millennium uranium deposit in the Athabasca basin, Canada. 13th International Symposium on“Deep Seismic Profiling of the Continents and Their Margins”, 2008
    Colin G. Farquharsona,James A. Craven.Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada.Journal of Applied Geophysics, 2009,68(4) : 450~458
    Etiope G,Lombardi S.Evidence for radon transport by carrier gas through faulted clays in Italy.Radioanaly, 1995,193 : 291~300.
    Elsayed M. Elkattana, Hassan M. Abdulhadia, Said I. Rabie,et al. Application of ground geophysical data to uranium mineralization in the El-Missikat area, central Eastern Desert, Egypt. Journal of African Earth Sciences, 1996,22(1) : 81~91
    Gold T,Soter S.The deep earthgas hypothesis. Science America ,1980,242: 130~138
    Grant Nimeck,Rodney Koch.A progressive geophysical exploration strategy at the Shea Creek uranium deposit.The Leading Edge,2008,27(1) : 52~63
    J.C. Vogel,A.S. Talma,T.H.E.Heaton.Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer.Journal of Geochemical Exploration,1999, 66(1): 269~276
    Krister Kristiansson,Lennart Malmqvist.Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport.Geophysics,1982,47(10):1444~1452
    Krister Kristiansson,Lennart Malmqvist,Willy Persson.Geogas prospecting: a new tool in the search for concealed mineralizations.Endeavour,1990,14(1): 28~33
    Mwenifumbo C.J.,B. E. Elliott, C. W. Jefferson, et al. Physical rock properties from the Athabasca Group: designing geophysical exploration models for unconformity uranium deposits. Journal of applied geophysics, 2004,55(1): 117~135
    Nanping WANG,Lei XIAO,Canping LI, et al. Level of Radon Exhalation Rate from Soil in Some Sedimentary and Granite Areas in China.Journal of Nuclear Science and Technology, 2009,46(3) : 303~309
    Nanping WANG,Lei XIAO,Canping LI, et al. DISTRIBUTION OF SOIL GAS RADON IN A HIGH RADIATION BACKGROUND CITY IN CHINA.Radioactivity and Radioactive
    Elements in Environment, Proceedings of III International Conference, 2009: 725~728
    Nanping WANG,Lei XIAO,Wenke MEI, et al.The Level of Radon Exhalation Rate from Soil in Some Sedimentary and Granite Areas in China.33rd International Geological Congress,Oslo,Norway, 2008
    Richard S.Smith,Garnet R. Wood, Brian Powell.Detection of alteration at the Millennium uranium deposit in the Athabasca Basin: a comparison of data from two airborne electromagnetic systems with ground resistivity data.Geophysical Prospecting,2010, 58(6) : 1147~1158
    Robert B.K.Shives, Ken L. Ford,Jan M. Peter.Mapping and exploration applications of gamma-ray spectrometry in the Bathurst mining camp, Northeastern New Brunswick. Massive Sulfide Deposits ofthe Bathurst Mining Camp, New Brunswick, and Northern Maine:Economic Geology Monograph 11, Society of Economic Geologists, 2003: 819-840.
    Sokolov V A.Geochemistry of Natural Gas[M].Moscow:Publishing House of Geology and Ore Protection,1971.
    Volkan Tuncer, Martyn J. Unsworth, Weerachai Siripunvaraporn, et al. Exploration for unconformity-type uranium deposits with audiomagnetotelluric data:A case study from the McArthur River mine, Saskatchewan, Canada.GEOPHYSICS, 2006,71(6) : 201~209
    Wang Nanping,Ma Jinguo, Liu,Huanggen.A test of nuclear geophysical methods for detecting deep volcanic-hosted uranium deposit in Xiangshan area,southeast China.
    GAC-MAC-SEG-SGA annual meeting Quebec City,Canada, 2008,(33): 181~182
    Z. Hajnal, D. J. White, E. Takacs, et al. Application of modern 2-D and 3-D seismic-reflection techniques for uranium exploration in the Athabasca Basin. Canadian Journal of Earth Sciences, 2010,47(5): 761~782
    白雪源.土壤天然热释光测量方法在相山铀矿的应用:[硕士学位论文].北京:中国地质大学(北京),2007
    白云生,林玉飞,常桂兰,等.铀矿找矿中氡的迁移机制探讨.铀矿地质, 1995,11(4):224~230
    白云生,林玉飞,常桂兰,等.铀矿找矿中氧的迁移机制和测量的影响因素.中国核科技报告, 1996
    曹晓满.~(210)Po法在铀矿勘探中的应用效果.铀矿地质,2006,22(3):177~181
    陈迪云,章邦桐,孙大中,等.武夷山高溪和富城花岗岩体地球化学及其与铀成矿的关系.岩石学报,1997,13(1) :71~84
    陈载林,黄临平,张国峰.中国在新世纪的铀矿战略.科技广场,2007,(6) :36~38
    杜乐天.地球的五个气圈与氢、烃资源——兼论气体地球动力学.铀矿地质.1993,9(5):257~265
    程业勋,王南萍,侯胜利.核辐射场与放射性勘查.北京:地质出版社, 2005
    崔焕敏,姜义生,杨贤进,等.沽源-宝昌盆地若干铀矿床(点)的地球物理场特征及综合物探方法的应用.铀矿地质,1990,6(4): 236~242
    邓小卫,王国庆,李洪璧,等.液体闪烁计数技术测氡在铀矿勘查中的应用研究.铀矿地质,2007,23(1) :43~48
    方锡珩.中国火山岩型铀矿的主要地质特征.铀矿地质,2009,25(2) :98~104
    冯必达.相山铀矿田地球物理场特征浅析及其找矿意义.铀矿地质,1991,7(1):41~48
    冯必达.赣杭构造火山岩铀成矿带区域地球物理场分布特征及找矿意义.铀矿地质,1992,8(2) :106~113
    傅良魁.电法勘探教程.北京:地质出版社, 1990
    高立.氡-222在土壤和沉积物中的扩散距离.国外核新闻, 1988, (3):21
    高庆柱,彭朝晖,肖金平.河北省S型与I型花岗岩体上的航磁异常特征及找矿作用.物探与化探,2010,34(2): 158~162
    韩绍阳,侯惠群,腰善丛,等.我国可地浸砂岩型铀矿勘查方法技术研究.铀矿地质,2004,20(2) :306~314
    韩绍阳,宋志艳,翟玉贵,等.GR-660车载γ能谱测量系统在砂岩型铀矿勘查中的应用研究.铀矿地质,2007,23(4) :226~233
    贺建国,梁陕明,赵翠萍.瞬变电磁测深法在砂岩型铀矿找矿选区中的应用效果.铀矿地质,2006,22(2):121~124
    何胜飞,钱建平.浅议花岗岩型铀矿床一般特征及找矿方法.第五届中国矿山地质学术会议暨
    振兴东北生产矿山资源高层论坛论文集.中国黑龙江黑河:中国有色金属工业协会,2005.256~259
    洪锦泉,乐仁昌,何志杰.对理想条件下Rn及其子体垂直运移实验数据的再分析.物理学报,2009,58(8): 5350~5354
    黄国夫,叶树林,万骏.地面放射性氡法在寻找层间氧化带型砂岩铀矿中的应用.物探与化探, 2000,24(1):12~16
    黄宏坤,凌连英,陈允森.下庄矿田墩头地区新铀矿化类型研究.西部探矿工程,2010,(5):131~133
    贾文懿,方方,周蓉生,等.氡及其子体向上运移的内因与团簇现象.成都理工学院学报,1999,26(2): 171~175
    江民忠.地浸砂岩型铀矿床微磁异常研究及其找矿意义.地质科技情报,2003,22(3) :49~54
    金和海.鲍家火山盆地电法找铀矿效果与找矿前景分析.铀矿地质, 2006, 22(6) :361~367
    柯丹,韩绍阳,侯惠群.花岗岩型铀矿勘查中航放信息的提取与综合.铀矿地质, 2009, 25(6) :349~354
    李必红,刘庆成,邓居智,等.~(210)Po法在东胜地区砂岩型铀矿探测中的应用.东华理工学院学报(自然科学版) ,2006,29(1):49~51
    李建飞,付锦,范洪海,等.硬岩铀矿放射性物化探综合勘查技术.南华大学学报(自然科学版) ,2007,21(4):42~47
    李金铭.地电场与电法勘探.北京:地质出版社, 2005
    李茂.CSAMT法在内蒙古某古河道砂岩型铀矿勘查中的试验应用.铀矿地质, 2009, 25(3):173~178
    李田港,童航寿,冯明月.花岗岩型铀矿富矿地质特征及形成条件.中国核科技报告,1993,(00):1~9
    李义求.闽南铀矿勘查的物化探方法系列.铀矿地质,1993, 9(3):46~49
    乐仁昌,贾文懿,吴允平.氡运移实验研究与氡团簇运移机理.辐射防护,2002,22(3): 175~181
    刘祜,刘章月,柯丹,等.层间氧化带砂岩型铀矿床的高精度磁测定位技术研究.铀矿地质,2009,25(5): 296~302
    刘红涛,杨秀瑛,于昌明,等.用VLF、EH4和CSAMT方法寻找隐伏矿——以赤峰柴胡栏子金矿床为例.地球物理学进展,2004,19(2):276~285
    刘庆成,程业勋,章晔,等.介质中氡运移的模拟.华东地质学院学报,1995,18(4): 366~370
    刘庆成,杨亚新,万骏.土壤天然热释光测量在可地浸砂岩型铀矿找矿中的应用研究.铀矿地质,2002,18(2):118~128
    刘庆成.铀矿地面物化探的发展与应用.世界核地质科学,2004,21(1):38~45
    刘泰峰,安海忠,亢俊健,等.陷落柱地表氡气场成因的探讨.煤矿设计,2002,(12):41~44
    刘兴忠.我国铀矿床类型和地质矿化特征.核科学与工程, 1982,2(1):81~85
    刘艳阳,刘庆成,张志勇.砂岩型铀矿氡及其子体测量异常特征.东华理工学院学报,2006,29(4):314~318
    刘英,姜文龙,陶飞.不同电法勘探方法在探测采空区等地质体中的比较.山东煤炭科技,2009,(5):80~82
    刘应汉,汪明启,赵恒川,等.寻找隐伏矿的“地气”测量方法原理及应用前景.青海国土经略,2006,3: 41~42
    龙期华.江西主要铀矿田地球物理场特征及成矿环境.华东地质学院学报,2000,23(2): 157~162
    马锦国.火山岩型隐伏铀矿物化探方法找矿效果研究:[硕士学位论文].北京:中国地质大学(北京),2007
    闵光裕.滇西铀矿地质特征与成矿规律.云南地质,1995,14(2): 109~118
    牛之琏.瞬变电磁测深的理论与应用.长沙:中南工业大学出版社, 1992
    秦明宽,李月湘,赵瑞全,等.内蒙古阿尔塔拉盆地砂岩型铀矿成矿地质条件及找矿方向初探.世界核地质科学,2004,21(3):132~140
    石昆法.可控源音频大地电磁法.北京:科学出版社, 1999
    舒孝敬.重力、航磁资料在花岗岩型铀矿成矿研究中的应用.铀矿地质, 2004, 20(2) :99~109
    王南萍,程业勋,章晔.核技术应用现状及展望.铀矿地质,1996,12(2):111~115
    王南萍,侯胜利,刘海生,等.二连盆地第四系沉积物天然热释光特征及其找矿意义.物探与化探, 2002, 26(4):258~263
    王平,李舟波,戴丽君.油田放射性异常成因研究.地球物理学报,1995,38(4): 528~538 王学求.深穿透勘查地球化学.物探与化探,1998,22(3): 165~169
    王永茂.物化探方法在砂岩型铀矿勘探中的应用.河南理工大学学报(自然科学版), 2010,29:48~53
    王志宏,山科社.综合物探在层间氧化带砂岩型铀矿勘查中的应用研究.铀矿地质, 2006,22(1):50~54
    文雪琴.荒漠戈壁区深穿透地球化学的理论方法及应用研究:[博士学位论文].西安:长安大学,2008
    谢学锦,王学求.深穿透地球化学新进展.地学前缘,2003,10(1): 225~238
    许军才,黄临平.天然热释光法在典型铀矿床中的对比研究及相关问题.铀矿冶, 2006, 25(1) :39~42
    严建民,翟彩兰,陈昌礼.电法勘探在金属矿勘查中的应用实例.石油仪器,2008, (5):80~82
    杨红英,崔明达.东乡南部火山岩地区地球物理、地球化学异常特征.中国西部科技,2005,10: 28~31
    杨树锋,陈汉林,陈芙蓉.广东省不同成因类型花岗岩的磁性特征及地质意义.科学通报,1994,39(17):1784~1787
    杨亚新,刘庆成,龙期华,等.核探测技术在粤北下庄铀矿田找矿中的应用研究.地质地球化学,2003,31(3):93~96
    杨亚新,吴雅梅,吴信民,等.应用氡气测量和土壤天然热释光测量推断花岗岩型铀矿含矿部位——以下庄花岗岩型铀矿田为例.铀矿地质,2007,23(3):177~181
    叶良佐,刘茂忠,彭光涛,等.三一零五地区壤中氡气测量影响因素的研究及其找矿意义,1989
    叶庆森,杨尚海,杨建新.元素活动态测量法在鄂尔多斯盆地砂岩型铀矿勘查中的应用.地质通报,2005,24(10): 1007~1012
    易清平,杨庆华,狄家亮.EH4电导率成像系统在桃山铀矿田中的应用研究.上海地质,2010, (31):271~274
    张金带.中国铀资源的潜力与前景.中国核工业,2008, (2):18~21
    张万良,席振珠,冯必达,等.双频激电在银坑山铀矿点潜力评价中的应用.物探与化探,2005, 29(1):25~27
    张振奋.华南花岗岩型富大铀矿区域成矿规律分析.西部探矿工程,2007,(2):117~118
    赵希刚.综合物化探方法勘探层间氧化带砂岩型铀矿.物探与化探,2001,25(1):14~21
    赵希刚,贺建国,赵翠萍.坑内伽马能谱测量在红山地区铀矿找矿中的应用.物探与化探,2009,33(3):261~265
    钟延秋,徐庆霞,谷社峰.航空放射性测量资料在成矿远景预测中的应用——以海拉尔盆地砂岩型铀矿为例.地质与资源,2010,19(4):319~324
    周明海,唐国益,杨青.可控源音频大地电磁法(简称CSAMT)在铀金地质中的应用.铀矿地质,1994, 10(2):106~112
    周智生.浅谈电法勘探在3105地区铀矿勘查中的应用效果.中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第1册):北京.中国核学会,2009
    邹家衡,张在作,常桂兰,等.活性炭吸附氡(HXT)寻找深部铀矿技术.铀矿地质, 1986,(6): 353~359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700