用户名: 密码: 验证码:
AZ91D镁合金表面激光改性的组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了达到提高镁合金表面的硬度和耐腐蚀性的目的,本文在AZ91D镁合金表面上,使用最大激光功率为5kW的CO2横流激光器进行了激光熔凝和激光熔覆处理;在试验过程中,分别对激光熔凝处理、激光熔覆纳米Al2O3/WC/Co复合涂层和该复合涂层中添加Al粉三种表面改性工艺进行了研究,并且比较了原始镁合金和表面改性层分别在微观组织、物相组成、显微硬度以及电化学腐蚀等方面的性能。
     首先,对AZ91D镁合金进行了激光熔凝处理,激光熔凝层呈月牙状,晶粒较基体明显减小而且只由α-Mg和β-Mg17Al12两相组成,熔凝层没有裂纹、气孔等缺陷,与基体形成良好的结合。在细晶强化和沉淀强化等的综合作用下,激光熔凝层的显微硬度以及耐腐蚀性都得到明显的提高。
     考虑到作为硬质陶瓷颗粒的Al2O3拥有一系列优良的性质,例如高硬度、高稳定性和低密度,并且在激光熔覆层中的Al2O3是强化相;WC颗粒具有高的硬度和耐腐蚀性,在激光作用下分解为W和C,W碳化物随机均匀析出,起到很好的弥散强化和固溶强化作用;Co能够增强涂层的耐腐蚀性,本文在AZ91D镁合金表面激光熔覆了纳米Al2O3/WC/Co复合涂层,但只能添加少量的Co,因为Co会包裹在WC颗粒的表层,阻碍WC颗粒的分解。激光熔覆层形成了细小的树枝晶,靠近基体处为柱状晶,从熔覆层底部到表面,晶粒尺寸逐渐减小,没有明显的裂纹和气孔等缺陷。熔覆层的物相主要由Mg、Mg17Al12、Al2O3、W2C、WC和Co组成,生成了新物质W2C。与原始AZ91D镁合金相比,激光熔覆层的显微硬度以及耐腐蚀性都得到了很大程度的提高,这是由于晶粒细化,固溶强化以及弥散强化等的综合作用,显微硬度提高了约10倍多,自腐蚀电位比基体提高了约255mV,自腐蚀电流密度下降了约5150μA/cm2。
     本文还对比了压铸镁合金AZ91D和铸造镁合金AZ91D两种基体材料在激光熔覆纳米Al2O3/WC/CO复合涂层后,熔覆层在显微组织、显微硬度以及耐腐蚀性方面的不同,并从激光功率和扫描速度两个影响因素考虑,得出了两种材料适宜的激光工艺参数。
     最后,考虑到Mg与Al的良好冶金结合性能,在上述涂层中添加了Al粉,即在AZ91D镁合金表面激光熔覆了纳米Al2O3/WC/Co-Al复合涂层,得到了与基体结合良好的没有明显裂纹和气孔的熔覆层,物相由Mg、Mg17Al12、Al2O3、W2C、WC、Co和Al3Mg2组成,生成了新物质W2C和镁铝金属间化合物Al3Mg2。激光熔覆层的显微硬度和耐腐蚀性较原始镁合金有了显著改善,这是由于晶粒细化,Al和Al3Mg2的硬度和耐腐蚀性较高。
In order to achieve the purpose to enhance the surface hardness and anti-corrosion ability of Magnesium alloy, this thesis uses CO2 laser with a maximum laser power of 5kw to conduct the laser melting and cladding process on the surface of Magnesium alloy. In the process of experience, the author respectively analyzes three surface modified crafts, that are the laser melting process, laser cladding nano-Al2O3/WC/Co composite coating and the Al powder added in the coating, and compares the original Magnesium alloy and the surface modified layer on the microstructure, phase composition, microhardness, electrochemical corrosion and other performances.
     First, the laser melting is conducted on AZ91D magnesium alloy. The melted layer likes a waned moon, and the grains of melted layer are smaller than those of the matrix, only consisted ofα-Mg and Mg17Al12. There is no crack, pore and other deficiencies in the melted layer, which could combine with the matrix well. Under the comprehensive function of fine-grained intensification and precipitation intensification, both the microhardness and anti-corrosion ability of the melted layer are obviously improved.
     Second, in consideration of that the A12O3, as a hard ceramic particle, has possessed a series of excellent features such as high hardness, high stability and low density, and Al2O3 is the reinforcement in laser cladding layer; WC grain has the characteristics of high hardness and good anti-corrosion ability, which is decomposed into W and C through laser action. The W carbides, precipitated uniformly random, play an excellent role in dispersion strengthening and solid solution strengthening; Co can intensify the anti-corrosion ability, In this thesis, the nano-Al2O3/WC/Co compound layer is added on the surface of AZ91D magnesium alloy through laser, but only a little Co could be added since it will surround the surface of WC grains and obstacle the decomposition of WC grains. The laser cladding layer forms tiny dendrite and columnar particles near the matrix.The grain size gradually becomes smaller and smaller from the bottom to the surface of the cladding layer without obvious cracks or pores or other deficiencies. The cladding layer is consisted of Mg, Mg17Al12, Al2O3, W2C, WC and Co, generating the new material W2C. Compared with the original magnesium alloy AZ91D, both the microhardness and anti-corrosion ability of the laser cladding layer have been greatly improved, due to the fine-grained, solid solution and dispersion strengthening. The micro hardness has improved by more than ten times, the corrosion potential increases about 255mV, and the current density decreased by about 5150μA/cm2 than the matrix.
     This thesis also compares of two matrix materials die-casting magnesium alloy AZ91D with casting magnesium alloy AZ91D after the laser melting on the mictrostructure, mictrohardness and anti-corrosion ability, also gets the suitable laser power and scanning speed of the two materials from two influential factors of laser power and scanning speed.
     Finally, in consideration of the excellent metallurgy combined performance of Magnesium and Aluminum, Aluminum powder is added into the above-mentioned layer, that is to say laser cladding of nano-Al2O3/WC/Co-Al compound layer is added on the surface of AZ91D magnesium alloy, thus form melted layer without crack or pore based on excellent combination with the matrix. The phase of the cladding layer is consisted of Mg, Mg17Al12, Al2O3, W2C, WC, Co, and Al3Mg2, generating the new material W2C and magnesium aluminum intermetallic compound Al3Mg2. Compared to the original magnesium alloy, the microhardness and anti-corrosion ability of the laser melted layer have been dramatically improved, due to the intensification of grains and the enhancement of the hardness and anti-corrosion ability of Al and Al3Mg2.
引文
[1]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005:11-13.
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002:15-16.
    [3]Kojima Y. Project of platform science and technology for advanced magnesium alloys[J]. Materials Transactions,2001,42(7):1154-1159.
    [4]丁文斌.镁合金表面熔覆层的制备与性能研究[D].上海交通大学,2007.
    [5]左铁钏等.21世纪的先进制造-激光技术与工程[M].北京:科学出版社,2007:16-21.
    [6]冯忠信,何家文,张建中等.ZMI镁合金的滚轧形变强化及机理[J].机械工程学报,1996,32(1):103-108.
    [7]冯忠信,张建中,陈新增.ZM1Mg合金的表面滚压强化[J].金属学报,1994,30(9):422-426.
    [8]Altenberger B, Seholters. Improvement of Fatigue Behaviour of Machanically Surface Treatmented[J]. Materials by AnnealingScripta Materialia,1999,41(8): 873-881.
    [9]叶宏,孙富治,张津等.AZ91D镁合金表面热喷陶瓷涂层研究[J].现代制造工程,2004,11:61-62.
    [10]Akavipat S, Hale E B, Haberrnann C E, etc. Effects of lorn Implantation on the Aqueous Corrosion of Magnesium[J]. Materials Science and Engineering,1985, 69:311-316.
    [11]Nakatsugawa I, Martin R, Knystautas E J. Improving Corrosion Resistance of AZ91D Magnesium Alloy by Nitrogenlon Implantation[J]. Corrosion,1996, 52(12):921-926.
    [12]Makar G L, Kruger J. Corrosion of Magnesium[J]. International Materials Reviews,1993,38(3):138-153.
    [13]刘正,王中光,王越等.压铸镁合金在汽车工业中的应用和发展趋势[J].特 种铸造及有色合金,1999(5):55-58.
    [14]Cantor B. Nanocrystalline materials manufactured by advanced solidification processing methods[J]. Matetable and Nanocrystallines Materials,1999,1: 143-152.
    [15]J.Dutta Majumdar, R.Galun, B.L.Mordike, etc. Effct of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science and Engineering,2003,361:119-129.
    [16]张津,孙智富.AZ91D镁合金表面热喷铝涂层研究[J].中国机械工程,2002,13(23):2054-2058.
    [17]张津,章宗和,邹钢等.镁合金及应用[M].北京:化学工业出版社,2004.225-245.
    [18]马运哲,董世运,徐滨士等.铁基合金激光熔覆技术工艺优化研究[J].中国表面工程,2006(z1).
    [19]Hollstein F, Wiedemann R, Scholz J. Characteristics of PVD coatings on AZ31HP Magnesium Alloys[J]. Surface and Coatings Technology,2003,162: 261-268.
    [20]Kear B H, Kailman Z, Sadangi R K, etc. Plasma sprayed nanostructured powders and coating[J]. Thermal spray Technology,2000,9(4):483-487.
    [21]Wong T T, Liang G Y, HeBL, etc. Wear Resistance of Laser clad Ni2Cr2B2Si Alloy on Aluminum Alloy [J]. Journal of Materials Pro-cessing Technology, 2000,100:142-146.
    [22]关振中.激光加工工艺手册[M].北京:中国计量出版社,1998:236-243.
    [23]杨胶溪,左铁钏,王喜兵等.激光熔覆WC/Ni基硬质合金组织结构及耐磨性能研究[J].应用激光,2008,28(6):450-454.
    [24]Yamamoto A, Watanabce A, Sugahara K, etc. Improvement of Corrosion Resistance of Magnesium Alloys by Vapor Deposition[J]. Scipta Material,2001, 44:1039-1042.
    [25]A.Bakkar, R.Galun, V.Neubert. Microst ructural characterisation and corrosion behaviour of laser cladded Al2I2Si alloy onto magnesium AS41/carbon fibre composite[J]. Materials Science and Technology,2006,22(3):353-362.
    [26]Gao Bo, Hao Shengzhi, Zou Jianxin, etc. High Current Pulsed Electron Treatment of AZ31 Mg Alloy[J]. Journal of Vacuum Science and Technology, 2004,10(1):225-249.
    [27]高亚丽,王存山,刘红宾等.AZ91HP镁合金真空激光熔凝晶粒细化[J],材料热处理学报,2006,27(1):92-96.
    [28]刘红宾,王存山,高亚丽等.镁合金表面激光熔覆Cu2Zr2Al非晶复合涂层[J].中国激光,2006,33(5):709-713.
    [29]T M Yue, Q W Hu, Z Mei, etc. Laser Cladding of Stainless Steel on Magnesium ZK60/SiC Composite[J]. Materials Letters,2001,47:165-170.
    [30]A H Wang, T M Yue. YAG Laser Cladding of an A12Si Alloy onto an Mg/SiC Composite for the Improvement of Corrosion Resistance[J]. Composites Science and Technology,2001,61:1549-1554.
    [31]YueT M, Wang A H, Man H C. Corrosion resistance anhancement of magnesium ZK60/SiC composite by Nd:YAG lase cladding[J]. ScriptaMaterialia,1999, 40(3):303-311.
    [32]胡乾午,杨泰平,李志远等.镁基金属复合材料表面激光熔覆铜合金研究[J].应用激光,2001,21(4):247-250.
    [33]张殉.镁合金产业的现状与发展[M].北京:中国有色金属工业协会,2002:10-13.
    [34]T M Yue, A H Wang, H C Man. Corrosion Resistance Anhancemnet of Magnesium ZK60/SiC Composite by Nd:YAG Laser Cladding[J]. Scripta Materialia,1999,40(3):303-311.
    [35]Koutsomichalis A, L Saettas, H B adekas. Laser Treatment of Magnesium[J]. Journal of Materials Science,1994,29:6543-6547.
    [36]姚军,孙广平,林文光.AZ91D镁合金激光熔覆Al+Al2O3涂层的界面特征[J].热加工工艺,2006,35(19):32-34.
    [37]Vilarigues M, Alves L C, Nogueira I D, etc. Characterisation of Corrosion Products in Cr Implanted Mg surfaces[J]. Surface and Coatings Technology, 2002,158(159):328-333.
    [38]A B akkar, R Galun, V Neubert. Microstructural characterization and corrosion behaviour of laser cladding A-12Si alloy onto magnesium AS41 carbon fibre composite[J]. Materials Science and Technology,2006,22(3):353-362.
    [39]Ghazanfar Abbas, Lin Li, Uzma Ghazanfar, etc. Effect of high power diode laser surface melting on wear resistance of magnesium alloys[J]. Wear,2006, 260(122):175-180.
    [40]Benmalek M, Gimenez P, Regazzoni G. Protective Coatings on Magnesium Alloys Using PVD Techniques[J]. International Magnesium Association,1990, 32:117-123.
    [41]杨晓飞,林文光,毛广雷.AZ91D镁合金表面激光熔覆Al+Al2O3涂层研究[J].兵器材料科学工程,2007,30(4):20-21.
    [42]Josephs, Holmbom Larsen, Larsson. Nanostructed WC-Co coating[J]. Project for the course "Introduction to Nanotechnology",2005.
    [43]陈长军,王东生,郭文渊等.镁合金成品件的激光多层涂敷[J].应用激光,2002,(2):76-79.
    [44]刘黎明,迟鸣声等.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):83-85.
    [45]武万良,李学伟,刘万辉等.TiC增强钛基复合材料激光熔覆层显微组织及形成机理[J].稀有金属材料与工程,2006,35(9):1364-1366.
    [46]黄伟容,肖泽辉.AZ91D镁合金表面激光熔覆Ni基+WC合金涂层[J].中国激光,2009,36(12):3268-3271.
    [47]马幼平,陆旭忠,徐可为.镁合金ZM5高频感应表面合金化改性层的腐蚀行为[J].稀有金属材料与工程,2003,32(3):191-193.
    [48]陈岁元,刘常升.材料的激光制备与处理技术[M].北京:冶金工业出版社,2006:35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700