用户名: 密码: 验证码:
黄骅坳陷孔南地区孔店组三维地质模型及岩性地层气藏预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孔南地区位于黄骅坳陷南段沧东-南皮凹陷中,东西两侧以沧东、徐西断层为界,北至南堤,南至灯明寺,是黄骅坳陷内有利的含油气区带。研究区内潜山及构造油气藏勘探程度已较高,而岩性地层油气藏勘探程度较低。在前人研究的基础上,认识到研究区孔店期盆地结构特点不同于现今残留盆地结构特点,盆地遭受多期叠加,后期构造运动对盆地早期结构改造强烈;同时,孔店期盆地结构类型、物源与沉积体系、古地理格局及盆地演化过程等方面认识存在着很大的问题。上述问题严重制约着对孔南地区油气资源分布的再认识,严重影响着孔南地区岩性地层油气藏勘探进展。
     此次研究从研究区基础地质、构造特征着手,以层序地层学、沉积学、地球物理学等学科为指导,通过对黄骅坳陷孔南地区孔店组钻井岩芯、测井与录井资料、地震资料等资料综合分析,研究了黄骅坳陷孔南地区孔店组的层序地层学特征、沉积体系特征,在此基础上采用三维地质建模技术,建立了研究区三维地质构造模型,分析了研究区孔店组残留盆地结构类型,构造与沉积响应过程,孔南构造隆起带形成过程;并在三维构造模型基础上,采用确定性相建模技术,建立了研究区各层序三维沉积相模型,通过构造恢复、沉积相分析,恢复了研究区的各层序的古地理格局及演化过程。采用测井约束地震反演方法和频谱分析技术,对研究区砂体进行预测分析和储层含油气检测,找出有利砂体发育部位,结合有利的生储盖组合,预测各层序有利岩性地层油气藏,对油气勘探有重要的指导作用。取得了如下几点重要认识:
     (1)采用陆相盆地层序地层三分划分原则,将黄骅坳陷孔南地区孔店组孔一、二段可以划分为3个3级层序、8个4级层序、9个体系域和9个中期基准面旋回和16个半旋回。层序Ⅰ相当于孔二段及枣Ⅴ油组底部。层序Ⅱ相当于孔一段枣Ⅴ油组上部及枣Ⅳ油组底部。层序Ⅲ包括枣Ⅳ油组中上部及枣0油组,识别出了三种类型的中期基准面旋回充填样式,建立了孔店组层序地层模式。
     (2)在测井相、地震相、岩相等沉积相识别标志的基础上,对孔南地区孔店组进行了沉积相和沉积体系研究分析,查明层序Ⅰ为三角洲-滑塌浊积岩-深湖、半深湖沉积相组合;层序Ⅱ主要为冲积扇-辫状河-洪泛平原沉积相组合,层序Ⅲ主要为冲积扇-辫状河-洪泛平原-膏盐湖沉积相组合。
     (3)运用三维地质建模技术,采用基于面建模方法,建立了孔南地区孔店组三维地质模型,分析得出了孔店组残留盆地的两种盆地结构类型。在此基础上分析了沧东断层和徐西断层时间上和空间上对沉积的控制作用,研究认为沧东断层层序Ⅰ时期活动较弱,只有沧东段活动,层序Ⅱ、Ⅲ时期,整段开始活动,并且强度持续增强,层序Ⅲ时期到达最大,成为盆地的控盆断裂;徐西断层在层序Ⅰ时期活动较弱或者未活动,尚未明显控制其西侧上盘沉积物沉积,层序Ⅱ时期,徐西断层徐杨桥段开始有明显的拉张作用,层序Ⅲ时期徐西断层整条断层均有强烈的拉张作用,控制其西侧上盘沉积物沉积,成为盆地的控盆断裂。
     (4)孔店构造隆起带实际上是沧东断层、徐西断层活动派生的产物,是一种地层转折褶皱作用的结果,孔店构造带在层序Ⅱ沉积时期开始发育,层序Ⅲ沉积时期相对隆升,形成凸起。
     (5)三维构造模型基础上,采用确定性相建模技术,建立了研究区各层序三维沉积相模型,通过构造恢复、沉积相分析,恢复了研究区的各层序的古地理格局及演化过程,研究认为孔南地区孔店组湖盆演化经历了坳陷-断坳-断陷三个构造演化阶段,分别与三个层序地层发育时期互相对应。
     (6)孔南地区钻井较多,地震品质较好,开展了基于模型的测井约束反演,通过反演成果分析,揭示了研究区内岩性空间展布特征。在此基础上,结合钻井资料,进行刻画,绘制了各层序的砂体分布图,分析研究了各层序砂体分布规律,指出了砂体发育的有利位置。
     (7)频谱分解技术不仅能预测砂体厚度,在含油气性检测效果较好。谱分解结果显示研究区目标层位内孔一段枣Ⅱ、枣Ⅲ、枣Ⅴ及孔二段油气显示较好,符合实际钻井结果,说明时间-频率连续小波变换(TFCWT)谱分解法在该研究区内是有效的。
     (8)根据层序特征及沉积构型,认为研究区内发育的主要岩性地层圈闭包括上倾尖灭、不整合、三角洲前缘和滑塌浊积岩等6种主要类型,结合有利的生储盖组合,预测了岩性地层油气藏分布规律。
     本文创新点主要有:
     (1)运用三维建模技术,采用基于面建模方法,在构造分析、层序地层划分与对比及沉积相和沉积体系研究的基础上,建立了综合构造—层序地层和沉积的三维地质模型,揭示了构造、地层和沉积体的三维定向关系,得出沉降中心的迁移模式和规律,及盆地古地理格局。识别出孔南地区孔店组盆地演化过程中存在坳陷期、断坳转换期、断陷期三个演化阶段。
     (2)采用井震基准面旋回匹配分析方法,综合利用钻井资料和地震资料,明确了主要地震反射轴的层序地层学意义。
     (3)综合利用地震反演技术和频谱分解技术,对储层进行预测。采用时间-频率连续小波变换(TFCWT)谱分解法进行盆地含油气检测,谱分解结果显示符合实际钻井结果。基于地震沉积学沿层切片,采用分频率地层切片取法,达到了储层含油气性预测目的。
Kongnan area was located in Cangdong and Nanpi Sag of the southern of Huang-hua Depression, The east and west sides is Cangdong fault and Xuxi fault; The northside is NanDi; The south side is DengMingsi. It was the favorable oil and gas zone ofHuanghua Depression. The buried hill and structural reservoir of the study area has hi-gh degree of exploration, but the lithologic and stratigraphic oil and gas has less degr-ee of exploration. On the basis of previous research, We has recognized the structuralfeatures of basin of the study area in Kongdian formation was different from the struct-ural features of the current residual basin, the basin suffered multiple stacking. Postte-ctonic movement was strong structural transformation of the early basin. At the sametime the the Kongdian basin structure type, source and depositional system, palaeogeo-graphy and basin evolution of the process, recognize the existence of a big problem.These problems have seriously restricted the reunderstanding of distribution of oil andgas resources of Kongnan area, and serious impact on the progress of explora-tion ofthe lithologic and stratigraphic reservoir.
     This study is to proceed from the basic geology of the study area, structural featu-res, and sequence stratigraphy, sedimentology, geophysics and other disciplines as aguide, Comprehensive analysis of the drilling cores, logs and logging data, seismic da-ta and other information on Kongnan area in Huanghua Depression, we studied the c-haracteristics of sequence stratigraphy and sedimentary system of Kongdian formati-on eriod of Kongnan area in Huanghua Depression. On this basis by three-dimension-al geological modeling techniques, we established three-dimensional geological struc-ture model of the research area, analyzed the residual basin structure type of Kongdia-n formation of the reserch area, and sedimentary response process, formation processof Kongnan tectonic uplift zone; And on the basis of three-dimensional structural mod-el, by faces deterministic modeling techniques, we established each sequence of three-dimensional deposition model of the research area, and by recoverying constructe an-d analyzing sedimentary facies, we restored paleogeographic framework and evoluti -on of each sequence in the research area. By well log constrained seismic inversionmethods and spectral analysis techniques, we was predictive analysis of the sand bodyand detection containing the oil and gas of reservoir of the research area, to identify fa-vorable development site of sand body, combined with a favorable combination of re-servoir, predicting each sequence of favorable stratigraphic reservoir, these were imp-ortant guiding role in oil and gas exploration. We have made an impotant understand-ing of the following points:
     (1) Utilizing sequence stratigraphy of continental basins third of the classificati-on principles, we divided Kongyi formation and Konger formation of Kongnan areaof Huanghua Depression into3third-order sequences and8fourth-order sequences,9system tracts,9medium-term base-level cycles and16half cycle. The sequence I is e-quivalent to Konger formation and the bottom of ZaoⅤ oil group. The sequence Ⅱisequivalent to the upper part of ZaoⅤ oil group of Kongyi formation and the bottom ofZaoⅣ oil group. The sequence Ⅲ is equivalent to the upper part of ZaoⅣ oil group a-nd Zao0oil group. We identified three types of filling pattern of medium-term base-l-evel cycles, and established the sequence stratigraphic model of Kongdian formation.
     (2) On the basis of sedimentary facies, seismic facies, lithofacies sedimentary offacies identification mark, we analyzed sedimentary facies and depositional systems o-n Kongdian formation of Kongnan area. We identified the sequence Ⅰ that it was co-mbination of slump turbidite delta-deep lake, semi-deep lake sedimentary facies, ident-ified the sequence Ⅱ that it was combination of alluvial fan-braided river–floodp-lain sedimentary facies, and identified the sequence Ⅲ that it was alluvial fan-braid-ed river-floodplain-cream Salt Lake sedimentary facies.
     (3) By three-dimensional geological modeling techniques, utilizing modeling me-thod based on surface, we established3D geological model of Kongnan area of Kong-dian formation, and analyzed and obtained of two basin structure type of residual bas-in of Kongdian formation. On the basis, we analyzed Cangdong fault and Xuxi faultcontrol of the deposition at time and space, the studies suggested that the activity of C-angdong fault was weak at the Sequence Ⅰperiod, and only the eastern section of Ca-ngdong fault was activity, the whole of Cangdong fault started activities at the Seque-nce Ⅱ and Sequence Ⅲ period, and the strength continued to improve, which reache-d the maximum at the Sequence Ⅲ period, becomed the controlling faults of the basi-n. The activity of Xuxi fault was weak or inactive at the sequence Ⅰ period, not yetobvious control on the west side of the plate sediment deposition, Xuyang section of Xuxi fault began to the role of the tensile at the sequence II period, the whole of Xuxifault had a strong the role of the tension at the sequence Ⅲ period, which controled onits west side of the plate sediment deposition, becomed the controlling faults of the ba-sin.
     (4) In fact, Kongdian uplift belt was a derived product of activity of Cangdong fa-ult and Xuxi fault, which was the result of a bend fold role formation. Kongdian upli-ft belt began to develop during the deposition of sequence II, and continued to upliftduring the deposition of sequence III, to form a bulge.
     (5) On the basis of three-dimensional structural model, utilizing the deterministicmodeling techniques, we established3D sedimentary facies model for the study area o-f each sequence, by constructing a recovery and the sedimentary facies analysis, andrestored paleogeographic framework and evolution of each sequence in the research ar-ea. The study thought that the evolution of lake basin of Kongdian formation at the K-ongdian period experienced a depression-fault sag-faulted three tectonic stages, co-rrespond, respectively with the developmental stages of three sequence stratigraphy.
     (6) There were more drilling and quality of seismic was better at the Kongnan ar-ea, we carried out model-based logging constrained inversion. Through the inversionresults of analysis, it revealed the spatial distribution characteristics of the lithology ofthe research area. On this basis, we combined with drilling data, and conducted charac-terization, drawing the maps of each sequence of the sand body. We analyzed the lawof the sand body of each sequence, and pointed out that the favorable position of the d-evelopment of the sand body.
     (7) Spectrum decomposition technique not only predicted the thickness of the sa-nd body, but also had better prediction of hydrocarbon potential. The results of the sp-ectral decomposition showed better of Oil and gas of ZaoⅡ, and ZaoⅢ, and ZaoⅤ o-f Kongyi formation, and Konger formation, that conformed to the actual drilling resu-lts.The result showed that time-frequency continuous wavelet transform (TFCWT) sp-ectral decomposition was an effective method in the research area.
     (8) According to sequence characteristics and sedimentary configuration, we tho-ught that the development of the mainly stratigraphic traps in the research area inclu-ded updip pinchout, unconformities, the delta front and slump turbidite and other mai-n types. Combined with the favorable combination of reservoir, we predicted the distr-ibution law of stratigraphic reservoir.
     The main innovation of this article:
     (1) Using three-dimensional modeling techniques, with modeling method based o-n surface, we bulided three-dimensional geological structure model of Kongnan area,analyzed the relationship between tectonic and sedimentary response, migration patter-ns and patterns of settlement center, and restored the basin palaeogeography. We divi-ded into three evolutionary process, that was the depression period, fault-depressiontransform period, faulting period.
     (2) Using well seismic base-level cycles matching analysis method, and compre-hensive utilization of drilling data and seismic data, we explicited specific seismic re-flection axes significance in sequence stratigraphy.
     (3) Using the Seismic inversion technology and spectrum decomposition techniq-ue, we predicted the reservoir. We conducted petroleum detection of basin, The resul-ts of spectral decomposition conformed to the actual drilling results. Based on seism-ic sedimentology along the layer slice, with sub-frequency stratigraphic slices emula-ted, we achieved the purpose of the prediction of hydrocarbon potential of reservoir.
引文
[1]姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社,1996.
    [2]王嗣敏,刘招君,董清水,等.陆相盆地层序地层形成机制分析—以松辽盆地为例[J].长春科技大学学报,2000,30(2):139-144.
    [3]王继纲,刘丰,穆鹏飞等.层序地层学在岩性油气藏预测中应用—以柴西南七个泉地区下干柴沟组下段为例[J].长江大学学报(自然科学版),2010,7(2):216-219.
    [4]张显文.储层地震预测技术与储层地球物理参数反演[D].吉林大学,2010.
    [5]姜秀清.储层地震属性优化及属性体解释[J].油气地球物理,2003,2(1):25-29.
    [6]阳飞舟,崔永福,李青.地震属性分类及其应用[J].内蒙古石油化工,2009,(2):94-97.
    [7]张延章.黄骅坳陷马东东地区井约束地震储层预测与综合评价[D].成都理工大学,2001.
    [8]Cross T A. High-resolution stratigraphic correlation from the perspective ofbase-level cycles and sediment accommodation [A]. in: Proceedings of NorthwesternEuropean Sequence Stratigraphy Congress [C].1994,105-123.
    [9]Posamentier H W, Vail P R. Sea-level changes-An integrated approach [C]. SocEcon Paleontol Mineral Spec Publ,1988,42:125-154.
    [10]Van Wagoner J C. Sequence stratigraphy of foreland basin deposits: outcrop andsubsurface examples from the Cretaceous of North America [C]. AAPG Memoir,1995,64:137-223.
    [11]Shanley K W, McCabe P J. Perspectives on the sequence stratigraphy ofcontinental strata [J]. AAPG Bull,1994,78(4):544-568.
    [12]倪凤田.基于地震属性分析的储层预测方法研究[D].中国石油大学,2008.
    [13]刘淑华、张宗和、刘建武等.声波曲线重构反演技术在储层预测中的应用[J].天然气工业,2007,394-395.
    [14] Wu Jian, Li Fanhua. Prediction of oil-bearing single sandbody by3D geologicalmodeling combined with seismic inversion[J].Petroleum exploration and development,2009,36(5).
    [15]陈建阳、于兴河、李胜利等.多地震属性同位协同储集层地质建模方法[J].新疆石油地质,2008,29(1):106-108.
    [16] Qiang Wua, HuaXu, Xukai Zou. An effective method for3D geologicalmodeling with multi-source data integration[J]. Computers and Geosciences,2005,(31):35-43.
    [17] Shao Yanlina, Zheng Ailing, He Youbin.3D Geological Modeling and itsApplication under Complex Geological Conditions[C]. CEMS (2011).
    [18] Liu Da’an, Zhang Juming, Wang Sijing. Constrained fitting of faulted beddingplanes for three-dimensional geological modeling[J]. Advances in EngineeringSoftware,2002,(33):817-824.
    [19] Olivier Kaufmann, Thierry Martin.3D geological modelling from boreholes,cross-sections and geological maps, application over former natural gas storages incoal mines[J].Computers and Geosciences,2008,(34):278-290.
    [20] Johannes de Beer, Simon J. Price, Jonathan R. Ford.3D modelling ofgeological and anthropogenic deposits at the World Heritage Site of Bryggen inBergen, Norway.[J]. Quaternary international,2011:1-11.
    [21] Souvik Mukherjee1, Mark E. Everett.3D controlled-source electromagneticedge-based finite element modeling of conductive and permeableheterogeneities[J].Geophysics,76(4):215-226.
    [22] F.Chapuisa, H.Bauera, S. Grataloupa. Geological investigations for CO2storage:from seismic and well data to3D modeling[J]. Energy Procedia,2011,(4):4591-4598.
    [23] G. Martelet, P. Calcagno, C. Gumiaux et al. Integrated3D geophysical andgeological modelling of the Hercynian Suture Zone in the Champtoceaux area (southBrittany, France)[J]. Tectonophysics,2004(382):117–128.
    [24] Mehdi Rezvandehy, H. Aghababaei, S.H. Tabatabaee Raissi. integrating seismicattributes in the accurate modeling of geological structures and determining thestorage of the gas reservoir in Gorgan Plain (North of iran)[J]. Journal of AppliedGeophysics,2011,(73):187-195.
    [25] Christoph Butscher, Peter Huggenberger. Implications for karst hydrology from3D geological modeling using the aquifer base gradient approach[J]. Journal ofHydrology,2007,(342):184-198.
    [26] Wang Gongwen, Zhang Shouting, ChanghaiYan et al. Mineral potential targetingand resource assessment based on3D geological modeling in Luanchuan region,China[J]. Computers and Geosciences,2011:1-13.
    [27] Wu Qiang, Xu Hua. On three-dimensional geological modeling andvisualization[J]. Science in China Ser.D Earth Sciences,2004,47(8):739-748.
    [28] Olivier Kaufmann, Thierry Martin. Reprint of “3D geological modelling fromboreholes, cross-sections and geological maps, application over former natural gasstorages in coal mines [Comput. Geosci.34(2008)278–290][J]. Computers andGeosciences,2009,(35):70-82.
    [29] Sandrine Vidal-Gilbert, Jean-Francois Nauroy, Etienne Brosse.3Dgeomechanical modelling for CO2geologic storage in the Dogger carbonates of theParis Basin[J]. Greenhouse Gas Control,2009,(3),288-299.
    [30]崔周旗.渤海湾盆地冀中坳陷古近系沉积体系与隐蔽油气藏勘探.西北大学[D]
    [31]王波.测井约束地震反演技术分析及其应用[J].断块油气田,2006,13(5):23-25.
    [32]杨贵祥,黄捍东,高锐等.地震反演成果的沉积学解释[J].石油实验地质,2009,31(4):415-419.
    [33]谭明友,张建宁.地震反演结果的评价方法[J].石油物探,2004,43(6):551-555.
    [34]吴满生,王志章,沈云龙.井震结合地震属性反演方法及应用[J].油气地球物理,2009,7(2):22-28.
    [35]王强.储层随机建模在油藏描述中的应用[D].辽宁工程技术大学,2007.
    [36]马富强,郭宁,李小茹等.三维地质建模在油田基础研究中的应用[J].青海石油,2007,25(3):12-15.
    [37]印兴耀,刘永壮.储层建模中地质统计学整合地震数据的方法及研究进展[J].石油地球物理勘探,2002,37(4):423-430
    [38]周丽清,赵丽敏,赵国梁等.高分辨率地震约束相建模[J].石油勘探与开发2002,29(3):56-58.
    [39]李江森.安塞油田塞152区延长组长2储层三维地质建模研究[D].西北大学,2010.
    [40]郭超.马家山—堡子湾长61油藏三维地质建模研究[D].长安大学,2008.
    [41]王向荣.洪积扇储层油藏描述及地质建模研究—以克拉玛依油田五2东区为例[D].中国地质大学(北京),2006.
    [42]张爱印,邱兆泰,鲍五堂等.三维可视化技术在地震资料解释中的研究与应用[J].中国煤田地质,2006,18(4):53-55.
    [43]邹潋滟.三维可视化技术在隐蔽油气藏储层描述中的应用[J].大庆石油地质与开发,2008,27(2):127-130.
    [44]潘忠英.三维地震地质模型构建方法研究[D].西安科技大学,2007.
    [45]张婷,徐守余.储层地质建模技术研究与展望[J].长春理工大学学报(高教版),2009,4(4):191-192.
    [46]申本科.陆相砂砾岩油藏精细描述—以新疆克拉玛依油田八区下乌尔禾组油藏为例[D].中国地质大学(北京),2005.
    [47]Zhang Tuanfeng. incorporating Geological Conceptual Models and interpretationsinto Reservoir Modeling Using Multiple-Point Geostatistics[J]. Earth ScienceFrontiers,2008,15(1):26–35.
    [48]Kevin Purvis、Jim Kao、Kevin Flanagan et al.Complex reservoir geometries in adeep water clastic sequence, Gryphon Field, UKCS: injection structures, geologicalmodeling and reservoir simulation[J]. Marine and PetroleumGeology,2002,19:161-179.
    [49]杨卫国.包界地区须家河组储层建模及综合评价[D].成都理工大学,2008.
    [50]马学萍.韦2断块精细油藏描述[D].中国海洋大学,2010.
    [51]张学芳,董月昌,慎国强等.曲线重构技术在测井约束反演中应用[J].石油勘探与开发,2005,32(3):70-72.
    [52]贺懿,刘怀山,毛传龙等.多曲线声波重构技术在储层预测中的应用研究[J].石油地球物理勘探,2008,43(5):549-558.
    [53]桂仲喜.声波重构曲线反演技术的研究与应用[J].中国地质大学(北京),2010.
    [54]刘淑华,张宗和.储层特征曲线重构反演技术—以冀东油田南堡凹陷为例[J].勘探地球物理进展,2008,31(1):53-58.
    [55]付志方.地震储层预测技术及应用研究—以西湖凹陷孔雀亭地区为例[D].中国地质大学(北京),2007.
    [56]姚逢昌,甘利灯.地震反演的应用与限制[J].石油勘探与开发,2000,27(3):53-56.
    [57]于兴河.油气储层表征与随机建模的发展历程及展望[J].地学前缘,2008,15(1):1-15.
    [58] David L. Moreno, Sigurd i. Aanonsen. Continuous Facies Updating Using theEnsemble Kalman Filter and the Level Set Method[J]. international Association forMathematical Geosciences,2011,1004-011-9347-4.
    [59] Lin Y. Hu. Gradual Deformation and iterative Calibration of Gaussian-RelatedStochastic Models[J]. Mathematical Geology,2000,32(1):87-108.
    [60] Yao Tingting. Integrating Seismic Data for Lithofacies Modeling:A Comparisonof Sequential indicator Simulation Algorithms[J]. MathematicalGeology,2002,34(4):387-403.
    [61]孙晶.黄骅坳陷孔南地区沙河街期层序地层的构造—沉积响应模型[D].吉林大学,2010.
    [62]许辉群,桂志先.利用测井约束地震反演预测砂体展布[J].石油天然气学报,2006,28(3):258-260.
    [63]陈海清.柴达木盆地柴西南三维区岩性地层圈闭识别技术研究[D].中国海洋大学,2010.
    [64]刘振峰,郝天珧,杨长春.沉积模型和储层随机建模[J].地球物理学进展,2003,18(3):519-523.
    [65]吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质,2007,12(3):53-60.
    [66]潘少伟.储层四维建模与剩余油仿真研究[D].中国石油大学,2009.
    [67]花卫华.多约束下复杂地质模型快速构建与定量分析[D].中国地质大学,2010.
    [68]李彬.鄂尔多斯盆地超低渗透率储层地质建模研究[D].中国地质大学(北京),2007.
    [69]李振华.复杂断块油藏储层地质建模研究[D].中国石油大学(北京),2010.
    [70]武强,徐华.三维地质建模与可视化方法研究[J].中国科学D辑(地球科学),2004,34(1):54-60.
    [71]周立宏,李勇,王振升,等.陆相断陷盆地缓坡带沉积体系与成藏动力学——以黄骅坳陷为例[M].北京:科学出版社,2009.
    [72]池英柳,赵文智.渤海湾盆地新生代走滑构造与油气聚集[J].石油学报,2000,21(2):14-20.
    [73]渠芳,陈清华,连承波,等.黄骅坳陷南区油气分布规律及其成藏机制[J].石油勘探与开发,2008,35(3):294-300.
    [74]李明刚,漆家福,杨桥,等.渤海湾盆地黄骅坳陷新生代结构特征及构造动力学模式[J].地球学报,2009,30(2):201-209.
    [75]渠芳,陈清华,连承波,等.黄骅坳陷新生代断裂构造系统研究[J].油气地质与采收率,2006,13(5):7-10.
    [76]漆家福,陆克政,张一伟,等.黄骅盆地孔店凸起的形成与演化[J].石油学报,1994,15(增刊):27-33.
    [77]杨桥,漆家福,常德双,等.渤海湾盆地黄骅坳陷南部古近系孔店组沉积时期构造古地理演化[J].古地理学报,2009,11(3):306-313.
    [78]王战,孟庆任,谢建民,等.黄骅坳陷地区地质构造演化与油气分布[M].北京:科学技术出版社,1999.
    [79]于志海,杨池银.黄骅坳陷天然气地质[M].北京:石油工业出版社,1997.
    [80]陆克政,漆家福,戴俊生,等.渤海湾新生代含油气盆地构造模式[M].北京:地质出版社,1997.
    [81]卢占武,韩立过.波阻抗反演技术研究进展[J].世界地质,2002,21(4):372-377.
    [82]张云银.济阳坳陷第三系储层预测技术研究[D].中国海洋大学,2010.
    [83]毛宁波.陆相地层隐蔽油气藏研究—以黄骅坳陷岐口凹陷第三系为例[D].成都理工大学,2002.
    [84]王威,李臻,田敏等.岩性-地层油气藏勘探方法技术研究现状及进展[J].岩性油气藏,2009,21(2):121-125.
    [85]岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272.
    [86] A. Bose, V. Singh, A.K.Tandon, B.S. Josyulu et al. A case study of stratigraphicand lithologic interpretation of thin reservoirs through an integrated approach[J].Interpreter’s Corner,2004:966-972.
    [86] Zhao Bangliu. Application of multi-component seismic exploration in theexploration and production of lithologic gas reservoirs [J].Petroleum exploration anddevelopment,2008,35(4):397-409,423.
    [87] Fu Jinhua,Wei Xinshan, Ren Junfeng. Distribution and genesis of large-scaleUpper Paleozoic lithologic gas reservoirs on Yi-Shaan Slope[J]. Petroleumexploration and development,2008,35(6):664-667,691.
    [88]汲生珍,刘震.波阻抗反演技术在层序地层与沉积分析中应用[J].石油勘探与开发,2005,32(6):66-68.
    [89]史文娟.储层预测技术早辽河地区的应用[D].中国地质大学(北京),2009.
    [90]李延平.大庆油田州201区块扶余油层精细地层格架与沉积微相研究[D].中国海洋大学,2007.
    [91]吴键,李凡华.三维地质建模与地震反演结合预测含油单砂体[J].石油勘探与开发,2009,36(5):623-627.
    [92]陈晓亮,袁清秋.曙四区杜家台油层储层三维地质建模[J].特种油气藏,2006,13(3):38-41.
    [93]吴胜和,刘英,范峥等.应用地质和地震信息进行三维沉积微相随机建模[J].古地理学报,2003,5(4):339-447.
    [94]徐文世.大型坳陷湖盆层序地层学研究及岩性地层圈闭识别—以准噶尔盆地陆西-达巴松地区为例[D].中国地质大学,2007.
    [95]马立桥.二连盆地阿南-阿北凹陷下白垩统层序发育特征与岩性地层油气藏预测[D].浙江大学,2005.
    [96]吴满生,王志章,沈云发.井震结合地震属性反演方法及应用[J].油气地球物理,2009,7(2):22-24,28.
    [97]梁富康,于兴河,王淑丽.隐蔽油气藏的分类特点及勘探技术研究[J].重庆科技学院学报(自然科学版),2011,13(1):13-16.
    [98] Shenghong Tai, Charles Puryear, John P. Castagna, University of Houston. Localfrequency as a direct hydrocarbon indicator. SEG Houston2009InternationalExposition and Annual Meeting(C).2009:2159-2163.
    [99]周安.时频分析在地震资料处理中的应用[D].中南大学,2010.
    [100]杨桥,漆家福,常德双等.渤海湾盆地黄骅坳陷南部古近系孔店组沉积时期构造古地理演化[J].古地理学报.2009,11(3):304-313.
    [101]陈勇.川东北礁滩储层地震检测与流体识别研究——以SYB地区为例[D].成都理工大学,2009.
    [102]张玺华.川东北碳酸盐岩鲕粒滩储层预测研究——以HCL地区飞仙关组二段为例[J].成都理工大学,2010.
    [103]岳保静.单道地震资料处理方法及应用[D].中国科学院海洋研究所,2010.伊陈.地震波衰减与流体预测研究[D].成都理工大学,2008.
    [104] He Zhenhua,Xiong Xiaojun,and Bian Lien.Numerical simulation of seismiclow-frequency shadows and its application[J].Applied Geophysics,5(4),2008,10,301-306.
    [105]金兴.地震多属性分析及其在塔中地区奥陶系储层预测中的研究与应用[D].山东科技大学,2010.
    [106]杨金政.地震相干分析技术及其在断层解释中应用[D].成都理工大学,2010.
    [107]凌云研究组.叠前相对保持振幅、频率、相位和波形地震数据处理与评价研究[J].石油地球物理勘探,2004,10,39(5):543-552.
    [108]董建华.分数谱与高阶谱估计技术在地震储层预测中的应用研究[D].中国地质大学,2008.
    [109]宋维琪,徐文会.含气储层预测方法及应用[J].天然气工业,2008,28(2):60-63.
    [110]张志伟,賀振华,黄德济.基于时频分析和波阻抗反演的M地区礁滩相储集层预测[J].新疆石油地质,2011,32(1):32-34.
    [111]赵力民,彭素萍,康洪全,张超文.利用地震频谱比进行河道砂体预测[J].2003,25(3):244-251.
    [112]陈斌.时频分析及在地震信号分析中的应用研究[D].成都理工大学,2007.
    [113]徐丽英,徐鸣洁,陈振岩.利用谱分解技术进行薄储层预测[J].石油地球物理勘探,2006,41(3):299-302.
    [114]张红贞,孟恩.测井曲线重构和频谱分析技术在塔里木盆地塔河油田卡拉沙依组储层预测中的应用[J].现代地质,2009,23(5):947-951.
    [115]王栋,賀振华,黄德济.时频谱分析在油气储层预测中应用[J].天然气工业,2009,29(4):36-38.
    [116]吴小羊.基于频谱分析技术的频散AVO反演研究[D].中国地质大学,2010.
    [117]蒋龙聪.薄互层储层地震响应时频分析研究[D].中国地质大学,2008.
    [118]张炳.陵3-2构造烃类直接指示及沉积相分析[J].石油地球物理勘探,1994,29(增刊2):115-123.
    [119]毕俊风,刘书会,陈学国等.分频解释技术在桩106地区馆上段河道砂体描述中应用[J].油气地质与采收率,2003,10(5):37-40.
    [120]姚忠瑞,乔玉雷,毕俊风.谱分解技术及其井间储层解释中应用[J].油气地球物理,3(1):32-35.
    [121]胡太平,吉云刚,潘杨勇等.傅立叶频谱分解技术在塔中45井区油气勘探中的应用[J].新疆石油地质,2011,32(3):308-310.
    [123]黄中玉,王于静,孙显义等.分频技术在气层识别中应用[J].勘探地球物理进展,2008,31(1):73-80.
    [124]余鹏,李振春.分频技术在表征牛9井区储层中应用[J].内蒙古石油化工,2010,(3):113-115.
    [125]徐胜峰,刘春园,季玉新等.分频技术在塔河油田石炭系薄储层预测中应用[J].石油天然气学报,2011,33(2):65-69.
    [126]张延章,尹寿鹏,张巧玲等.地震分频技术的地质内涵及其效果分析.石油勘探与开发,2006,33(1):64-67.
    [127]高建虎,雍学善,刘洪.频率域储层预测技术研究[J].天然气地球科学,2007,18(6):808-812.
    [128]路鹏飞,杨长春,郭爱华.频谱成像技术研究进展[J].地球物理学进展,2007,22(5):1517-1521.
    [129]袁志云,孔令洪,王成林.频谱分解技术在储层预测中应用[J].石油地球物理勘探,2006,41:11-15.
    [130]王鹏,钟建华,张宏伟等.频谱分解技术在复杂断块区的应用研究[J].石油天然气学报,2010,32(1):248-251.
    [131]史忠生,王天琦,王建功等.频谱分解技术在松辽盆地月亮泡地区岩性油藏勘探中应用[J].大庆石油学院学报,2011,35(5):11-15.
    [132]胡水清,韩大匡,刘文岭等.频谱分解技术在岩相建模中应用[J].大庆石油学院学报,2008,32(3):1-4.
    [133]蔡刚,吕锡敏,苏明军等.频谱分解技术在准噶尔盆地油气勘探中的应用[J].天然气工业,2006,26(4):34-37.
    [134]胥良君,李录明,党录瑞等.频谱分解在生物礁储层油气检测中的应用[J].物探化探计算技术,2011,31(5):544-548.
    [135]黎华.地形与地质体三维可视化的研究与应用[D].中国科学院研究生院(广州地球化学研究所),2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700