用户名: 密码: 验证码:
火烧油层采油技术基础研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火烧油层采油技术具有适用范围广、物源充足、采收率高及成本低等优势。但由于火驱机理十分复杂,加之对其的理论研究和现场试验工作时断时续不系统,所以至今有关其基础性研究工作仍有很多方面欠缺,影响了火烧油层技术的推广和应用,急需加强。针对这一实际问题,本文在充分调研前人工作成果的基础上,进一步开展了火烧油层采油技术基础理论和应用方法研究。
     本文应用实验数据建立了高温燃烧反应方程式,揭示了火烧油层问题的本质;测定了温度场变化状态;测定了自燃温度、氧气利用率、燃料消耗量、空气需要量、空气油比值及视H/C原子比等火烧油层燃烧基础参数,并提出了计算这些参数的方法;确定了燃烧前缘的推进速率及燃烧过程的稳定性影响因素,其结论可以为现场方案设计提供科学依据。
     本文通过对采出原油进行有机地化分析,对辽河油田不同区块原油的燃烧参数进行对比分析,发现辽河稠油经过火烧油层后生成了高温裂解作用产物—蒽。因原始地层中不存在物质蒽,所以火烧后采出油中如果存在该化合物则可以认为火驱成功。物质蒽是火驱成功与否的重要标记化合物之一。
     本文建立了地下注入氧气浓度是常数及变量两种不同条件下的燃烧区形状方程。研究表明:累计注气量对燃烧区厚度影响严重,空气需要量及油层孔隙度对其影响较轻。
     本文建立了火烧油层地下氧气浓度分布方程式。所建方程为研究油层燃烧动态、确定火烧波及范围和优化注采井距提供了新方法。
     本文建立了火烧油层燃烧区体积方程,对影响燃烧区体积的因素进行了分析。在此基础上建立了火烧油层的体积波及系数计算公式和产油量计算方法。本文这一成果为火烧油层采油工艺设计和技术参数优化提供了新理论和新方法。
     从实用性考虑,本文提出火烧油层采油工艺设计主要内容包括:
     (1)给定井网所需空气总量的计算;
     (2)空气注入速率的确定;
     (3)计算空气注入压力;
     由此(1)~(3)结果可以决定注气设备和施工方案等;
     (4)预测火烧油层采油工艺效果,计算原油产量、空气油比和采收率等,依此判断所设计工艺在技术和经济方面成功与否。
     本文不仅提出了设计方法,而且给出了符合油田实际情况的设计示例。
     本文的研究结论对油田采油生产具有重要的参考价值和指导意义。
In-situ combustion is an oil production method with obvious technological advantagesand great potentials. It is extensively applied to reservoirs, rich in resources, high in oilrecovery and low in cost. But because ISC mechanism is quite complicated, there are stillmany defects in its research which affect its popularization and application and urgently needimproving. Aiming at this practical problem, based on an adequate investigation and analysisof former work and results,The results of this paper provide new theories and new methodsfor the optimization design of ISC technology.
     The one-dimensional model test of ISC adopts test data to set up a reaction equation ofhigh temperature combustion, reveals the nature of ISC, measures the change of thetemperature field, the temperature of self-combustion, the rate of oxygen application, theconsumption and need of air, the value of air and oil ratio and the visual H/C atom ratio andother ISC basic parameters. The method for calculating these parameters is put forward. Themovement velocity of combustion front is determined and the effects on the combustionstability are also verified. Thus, the research results can provide a scientific base for fieldprogram design.
     Through the organic analysis of produced crude and the comparative analysis ofcombustion parameters of the crude in different zones, it is found that anthracene, a productof high temperature cracking, results from ISC heavy oil in Liaohe. As anthracene does notexist in the primitive formation, the success of ISC can be concluded if this chemicalcompound (anthracene) can be found in the produced crude of ISC. The material anthraceneis one of the important signs of successful ISC.
     It is proposed that the oxygen concentration for underground injection is a constant andthe equation of combustion zone shape is also made clear under two different conditions ofvariables. The research shows that the cumulative injected air has a great effect on thethickness of the combustion zones, but neither air demand nor the porosity of formation hassuch a big effect.
     An equation is established for ISC concentration distribution of underground oxygen. Itprovides a new method for the research of reservoir combustion, determination of combustionsweep and the optimization of injection wells and production wells.
     The volume equation for ISC zones is established and the factors that affect the volumeof the combustion zone are analyzed. On the basis of that, the formula for calculating the coefficient of ISC volume sweep and for calculating the oil production is established, whichprovides a new theoretical method for ISC technological design and the optimization oftechnological parameters.
     From a practical perspective, this paper mainly covers the following about ISCtechnology:
     (1) Calculation of the total need of air of well pattern
     (2) Determination of the speed of injected air;
     (3) Calculation of the pressure of the injected air.
     Hence (1)-(3) decide the injection equipment and operation plan.
     (4) Prediction the effect of ISC technology. Calculation of the produced crude, the ratioof air and oil, the oil recovery, etc. Hence the judgment of the success in terms of technologyand economy. Not only does the paper proposes a design method, but also gives some designexamples which conform with the specific situation of the oilfields.
引文
[1]张敬华,杨双虎,王庆林.火烧油层采油[M].北京:石油工业出版社,2000.
    [2]张锐.稠油热采技术[M].北京:石油工业出版社,1999.
    [3]刘喜林.难动用储量开发稠油开采技术[M].北京:石油工业出版社,2005.
    [4]张方礼,刘其成,刘宝良,等.稠油开发实验技术与应用[M].北京:石油工业出版社,2007.
    [5]刘其成,张勇,张鹰.多功能高温高压三维比例物理模拟试验装置[J].石油仪器,2006,20(1):17~20.
    [6]张方礼.火烧油层技术综述[J].特种油气藏,2011,18(6):1~5.
    [7] Zhang Fangli,Ma Desheng,Liu Qicheng,Zhang Yong. Physical Simulation test Study ofSteam-Assisted Gravity Drainage with Combination of Straight Well and Horizontal Well(2006-647). The Proceedings of the Technical Sessions of the First World Heavy OilConference,200612-15th.Nov.2006Beijing, China. China Modern Economic PublishingHouse.
    [8] Liu Qicheng, Ma Desheng, Liu Baoliang,Experiment study of formation variationin heavy oil thermal recovery(2006-649). The Proceedings of the Technical Sessions of theFirst World Heavy Oil Conference,200612-15th.Nov.2006Beijing, China. China ModernEconomic Publishing House.
    [9][美] P.D.怀特,J.T.莫斯.热采方法[M].北京:石油工业出版社,1988.
    [10][法] J.布尔热,P.苏赫尤,M.贡巴努尔.热力法提高石油采收率[M].北京:石油工业出版社,1991.
    [11]赵法军,刘喜林,刘永建.稠油井下改质降粘技术原理与应用[M].北京:石油工业出版社,2009.
    [12]张方礼,刘其成,等.火烧油层燃烧反应数学模型研究[J].特种油气藏,2012,19(5):55~59.
    [13]王弥康,张毅,黄善波,等.火烧油层热力采油[M].东营:石油大学出版社,1998.
    [14]关文龙,马德胜,梁金中,等.火驱储层区带特征实验研究[J].石油学报,2010,31(1):100~104.
    [15]牛嘉玉,刘尚奇,门存贵,等.稠油资源地质与开发利用[M].北京:科学出版社,2002:284~1289.
    [16]崔玉峰,杨德伟,陈玉丽,等.火烧油层热力采油过程的数值模拟[J].石油学报,2004,25(5):99~110.
    [17]王世虎.水敏性稠油油藏火烧驱油机理研究[D].东营:中国石油大学(华东),2007.
    [18]关文龙,蔡文斌,王世虎,等.郑408块火烧油层物理模拟研究[J].石油大学学报(自然科学版),2005,29(5):58~61.
    [19]关文龙,王世虎,蔡文斌等.新型火烧油层物理模型的研制与应用[J].石油仪器,2005,19(4):5~7.
    [20] Binder G. G.Scaler-Model Test of In-situ Combustion in Massive UnconsolidatedSands. Proc. Seventh World Pet. Cong. Mexico City,1967:477~485.
    [21] Guan Wenlong, Wu Shuhong, Wang Shihu, et al. Physical simulation of in-situcombustion of sensitive heavy oil reservoir [R]. SPE110374,2007.
    [22]雷占祥,蒋海岩,张琪,等.火烧油层传热特性室内实验研究[J].油气地质与采收率,2006,13(6):86~88.
    [23]李少池,沈燮泉,王艳辉.火烧油层物理模拟的研究[J].石油勘探与开发,1997,22(2):73~79.
    [24]张毅,谢志勤,王弥康,等.预测火烧油层开发参数的工程计算法[J].油气地质与采收率,2001,8(1):48~50.
    [25]李迎春,邱国清,袁明琦,等.乐安油田南区火烧驱油提高采收率试验[J].油气地质与采收率,2002,9(4):72~74.
    [26]关文龙,王世虎,曹钧合,等.郑408块火驱物理模拟结果与模型解析解差异分析[J].油气地质与采收率,2006,13(1):87~89.
    [27]赵东伟,蒋海岩,张琪.火烧油层干式燃烧物理模拟研究[J].石油钻采工艺,2005,27(1):36~39.
    [28] White P. D. In-situ combustion appraisal and states.J. P. T. Nov,1985.
    [29]刘岩.砂砾油层的引燃与燃烧特性的实验研究[D].南京:东南大学,2003.
    [30]杨德伟,王世虎,王弥康,等.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):51~54.
    [31] Burger J. G. Laboratory research on wet combustion[J]. Journal of PetroleumTechnology,1993,25(10):1130~1136.
    [32]蒋海岩,张琪,袁士宝,等.火烧油层干式燃烧数值模拟及参数敏感性分析[J].石油大学学报(自然科学版),2005,29(5):67~70.
    [33] Dietz D. N. Wet Underground Combustion State of theArt. J. P. T. May,1970.
    [34]周校平,张晓男.燃烧理论基础[M].上海:上海交通大学出版社,2001.
    [35] Chu. C. Astudy of fireflood field prophets. J. P. T. Feb,1977.
    [36] Lapene A.&Castanier L. M. Effects of Water on Kinetics of Wet In-situ Combustion.SPE121180.
    [37] Coats, R, et. al. Experimental and Numerical Simulations of a Novel Top Down In-SituCombustion Process. SPE30295,1995.
    [38]杜殿发,姚军.乐安油田注汽后火烧油层开发参数敏感性研究[J].石油大学学报(自然科学版),2003,27(2):47~50.
    [39]蔡文斌,李友平,李淑兰.火烧油层技术在胜利油田的应用[J].石油钻探技术,2004,32(2):53~55.
    [40]陈军斌,肖述琴,周芳德,等.火烧油层驱油特征的参数敏感性分析[J].应用力学学报,2003,20(1):18~23.
    [41] Xiaomeng Yang&Ian D. Gates. Design of Hybrid Steam-In Situ Combustion BitumenRecovery Processes. Natural Resources Research, Vol18, No.3, Sep,2009.
    [42]张崇甫.国外火烧油层采油概述[J].采油工艺情报,1988,(4):1~35.
    [43]何祖荣.火烧油层专题调研[J].石油勘探开发情报,1992,(4):80~89.
    [44]王艳辉,陈亚平,李少池.火烧驱油特征的实验研究[J].石油勘探与开发,2000,27(1):69~71.
    [45] GaronA. M. ALaboratory Investigation of Sweep during Oxygen and Air Fireflooding.SPERE,1986,11.
    [46] Taber J.J.&Martin F.D.Technical Screening Guides for the Enhanced Recovery of Oil.SPE12069,1983.
    [47] Greaves M. Horizontal Producer wells in In-situ Combustion Processes. J. C. P. T. April,1993.
    [48] Poettmann F. H. In-situ combustion: a current appraisal, World Oil. Apr.&May1964:124~128&95~98.
    [49] Wilson L.A&Root P. J. Cost Comparison of Reservoir Heating Using Steam and Air.J.P. T. Feb,1966:233~239.
    [50] Alexander, J. et. al. FactorsAffecting FuelAvailability and Composition During In SituCombustion, J. P. T.(October1962), P.1154
    [51] Showalter W. E. Combustion-drive Tests. S. P. E. J March,1963:53~58.
    [52] Chu C. Two-dimensional Analysis of a Radial Heat Wave. J. P. T.Oct,1963:1137~1144.
    [53] Chu, C.“The Vaporization-Condensation Phenomena in a Linear Heat Wave.”Trans.AIME,231,2~85(1964).
    [54] Chu C. State-of-the-art Review of Fireflood Field Projects. J. P. T. Jan,1982:19~36.
    [55] Thomas G. W. AStudy of Forward Combustion in a Radial System Bounded byPermeable Media. J. P. T. Oct,1963:1145~1149.
    [56] Burger, J.C. and sahaguet, R.E. et. al.“Chemical Aspects of In-situ Combustion Heat ofCombustion and Kinetics,”Sos. Pet. Eng. J., Oct.1972.AIME,253.
    [57a] Gottfried B. S. AMathematical Model of Thermal Oil Recovery in Linear Systems. SPE.J. Vol5,1965:196~210.
    [57b] Kuo C.H. AConvective Heat Transfer Model for Underground Combustion. SPE. J.Dec,1968.
    [58] Penberthy, W. L., Ramey, H. J. Design and Operation of Laboratory CombustionTubes[R], SPE1290,1966.
    [59] Parrish D.R et al. Laboratory Study of a Combination of Forward Combustion and WaterFlooding the COFCAW Process. J. P. T. June,1969:753~761.
    [60] Smith J.T.&Farouq Ali S. M. Simulation of In-situ Combustion in a Two-dimensionalSystem.SPE3594Oct,1971.
    [61] Tadema H. J.&Weijdema J.Spontaneous ignition of oil sands. O. G. J. Dec,14,1970.
    [62] Smith F. W. Experimental and Numerical Simulation Studies of the Wet CombustionRecovery Process. J. C. P. T. July&Sept1973:44~54.
    [63] Nelson T.W.&McNeil J.s. How to Engineer an in-situ combustion Project. O.G. J. June5,1966, PP.58~65.
    [64] Burger J. Spontaneous Ignition in an Oil Reservoir. SPE. J.Apr,1976:73~81.
    [65] Crookston R. B, et al. A Numerical Simulation Model for Thermal RecoveryProcess. SPE. J. Vol19,1979:37~58.
    [66] Grabowski J. W, et al. AFully Implicit General Purpose Finite Difference ThermalModel for In-situ Combustion and Steam. SPE8396, Sept,1979.
    [67] Coats K. H. In-situ Combustion Model. SPE. J. Dec,1980:533~544.
    [68] Youngren G. K. Development and Appellation of an In-situ Combustion reservoirSimulator. SPE. J. Vol20,1980:39~51.
    [69] Gates C. F.&Ramey H. J. A Method for Engineering in-situ Combustion Oil RecoveryProjects. J. P. T. Feb,1980:285~294.
    [70] Huffman G. A. Pressure Maintenance by In-situ Combustion West Heidelberg Unit.Jasper County. Mississippi. J. P. T. Oct,1983:1877~1883.
    [71] Moss J. T.&Cady G. V. Laboratory investigation of the Oxygen Combustion Process forHeavy Oil Recovery. SPE10706.
    [72] Meldau R. F. Gas-steam Injection in Heavy Oil Wells.SPE8911.
    [73] Simm C.N. Improved Firefloods May Cut Steam Advantages. World Oil. March,1972:59~62.
    [74] Gohmed, K. A. Fundamentals of Thermal Stimulation of Oil Reservoirs. Nedra Press.Moscow,1967.
    [75] Farouq Ali S.M.A Current Appraisal of In-situ Combustion Field Tests.J.P.T. Apr,1972:477~786.
    [76] Farouq Ali S. M. Multiphase, Multidimensional simulation of In-situ Combustion. SPE.6898.
    [77] Sat manA. et al.In-situ Combustion Models for the Steam Plateau and for Field wide Oilrecovery.DOE/ET/12056.
    [78]刘其成.火烧油层室内实验及驱油机理研究[D].大庆.东北石油大学,2011.
    [79] Bagci S, Kok M V. In-situ combust ion laboratory studies of Turkish heavy oilreservoirs[J]. Fuel Processing Technology,2001,74(2):65~79.
    [80] Onyeonw, M. O., Pande, k. and Ramey, H. J. et al. Experimental and simulation studiesof laboratory in-situ combustion recovery[R]. SPE15090,1986.
    [81] Lincy, C. W,Culham, W, E. New kinetic models for thermal cracking of crude oils inin-situ combustion processes[R]. SPE13074,1987.
    [82]蔡文斌,谢志勤.胜利王庄油田火烧驱油试验研究[J].石油天然气学报(江汉石油学院学报),2005,27(2):397~398.
    [83]谢志勤,贾庆升,蔡文斌,等.火烧驱油物理模型的研究及应用[J].石油机械,2002,30(8).
    [84]刘慧卿,范玉平,赵东伟等.热力采油技术原理与方法[M].东营:石油大学出版社,2000.
    [85]杨玉梅.套保稠油油田火烧油层可行性分析[J].特种油气藏,2006,13(2):53~55.
    [86]董晓玲,钟显彪,谷武,等.套保稠油油藏出砂冷采实践与认识[J].特种油气藏,2004,11(增刊):84~86.
    [87] M. Greaves.高益桁,张冰,马雁编译.开采稠油并原地提高原油品位的新技术[J].特种油气藏,2002,9(1):75~77.
    [88] Poettma, F. H.,Schilson, R. E. and Surkalo, H.:“Philosophy and Technology of In-SituCombuston in light Oil Reservoirs,”Proc., Seventh World Pet. Cong., Mexico City(1967)3,487.
    [89]Warren, J.E., Reed, Ronald L. and Price, H.S.:“Theoretical Consideration of ReverseCombustion in Tar Sands”, Trans., AIME(1960)219,109.
    [90]Reed, Ronald L., Weber, Leon and Gottfvied, Byron S.:“Differential Thermal Analysisand Reaction Kinetics”, Paper Presented at144thNational Meeting, Am. Chem. Soc., LosAngeles, calif.(March31-April5,1963).
    [91]高倩蕾,等编著,《化学》,湖南科学技术出版社出版,长沙,1986年.
    [92]Semenov, N. N.: Z. Physik Chem.(1928)48,571.
    [93] Tadema, H. J. and Weijdema, J.:“Spontaneous Ignition of Oil Sands”, Oil and Gas J.(Dec.14,1970)77-80.
    [94]帕拉茨(美).热力采油[M].北京:石油工业出版社,1989.
    [95] Dabbous, M. K. and Fulton, P. F.:“Low-Temperature Oxidation Reaction Kinetics andEffects on the In-Situ Combustion Process”, Soc. Pet. Eng. J.(June,1974)253-262.
    [96] Burger, J. and Sahuquet, B.: Les Methodes Thermiques de Production des Hydrocarbures,Revue IFP (March-April,1977) Chap.5,141-188.
    [97] Gottfried,B.S.“:Some TheoreticalAspects of Underground Combustion in Segregeted OilReservoirs”, Soc. Pet. Eng. J.(Sept,1966)281-291.
    [98] Prats,M.and Jone, R. F.“:In situ CombustionAway from Thin, Horigontal Gas Channels”,Soc. Pet. Eng. J.(March,1968)18-32.
    [99] Gates, C. F. and Ramey, H. J. Jr.:“Frield Results of South Belgrade Thermal RecoveryExperiment”, Trans., AIME (1958) Vol.213,236-244.
    [100] Binder, G. G., et al,:” Scaled-Model Tests of In-situ Combustion In MassiveUnconsolidated Sands”,7th World Pet. Cong, Mexico City(1967)
    [101]刘喜林,范英才,刘永建.蒸汽驱动态预测方法和优化技术[M].北京:石油工业出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700