用户名: 密码: 验证码:
稠油热采数值模拟自适应网格法计算软件开发研究及实例应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前稠油开发的最主要的手段是蒸汽注采。稠油蒸汽注采是一个带有相变的多孔介质中多相流动问题,流场中存在物理量变化十分剧烈的狭窄相变锋面,对于此类问题的数值模拟,为了保证计算精度,锋面处的计算网格尺寸必须很小,如果整个计算区域都采用均匀网格,那么网格节点就会很多,计算量很大。本文利用自适应网格法动态追踪锋面,在物理量变化剧烈的区域采用细网格,而在物理量变化缓慢的地方采用粗网格,从而大幅度提高稠油热采问题数值模拟的计算速度。
     油藏数值模拟是油田勘探开发生产部门的重要科研手段。本文自主开发了注蒸汽热采稠油油藏数值模拟自适应网格法计算软件,能够对渗透率空间分布不均匀、油藏区域分布不同种类输运性质岩石、裂缝-孔隙双重介质、不规则边界及内部含有断层和人工压裂裂缝油藏等复杂地层注蒸汽热采稠油问题进行数值模拟。软件通过了信息处理产品标准符合性检测中心的测试并获得了国家版权局的软件著作权。通过简单二维裂缝性稠油油藏SAGD开采过程数值模拟和某稠油油藏注热水驱油过程数值模拟两个算例并与国际著名商业油藏数值模拟软件CMG-STARS对比结果显示,软件具有较高的计算精度和稳定性,并且由于采用了自适应网格法,计算速度比CMG-STARS快,可以满足油田的科研生产需求。
     利用自主开发的软件,本文对辅助注入轻质溶剂的SAGD过程进行了数值研究,发现注入不同分子量的轻质溶剂对SAGD开采效率的影响截然不同:辅助注入C2H6可以保持蒸汽腔的压力并减小顶部热损,但是由于生产井过早见气,蒸汽和轻质气堵塞了稠油流通通道,使得油相相对渗透率降低,反而不利于稠油增产;辅助注入的C9H20能够在蒸汽腔壁的蒸汽锋面处凝结并充分溶解到稠油中,大大降低稠油粘度,增强锋面处油相流动能力,从而有效地提高稠油的开采速度,降低了蒸汽使用量,提高了油汽比,有利于节能减排。本文分析了辅助注入C9H20溶剂开采稠油的经济效益,结果表明辅助注入C9H20有一定的经济价值并且特别适用于快采。
     稠油、高含水原油以及低渗透地层中原油均显示出非牛顿流体的特性,三次采油中利用聚合物溶液、胶束溶液、乳状液和压缩系数大的泡沫液等非牛顿流体作为驱油剂,钻井液和水力压裂工艺中的压裂液通常也是非牛顿流体。因此,研究非牛顿流体的渗流规律对于油气田开发具有重要的实际意义。幂律流体是工程上常见的非牛顿流体,其本构方程能够较好地反映稠油的流变特性。本文从幂律流体的基本流动控制方程出发,利用Whitaker的体积平均方法,将多孔介质中幂律流体的细观运动和宏观渗流运动联系起来;采用多尺度分析,使得体积平均意义下的宏观渗流运动方程得到进一步的简化:在将细观的下的流体物理量和宏观下的流体物理量联系起来的封闭性假设的基础上,理论推导得到幂律流体宏观渗流的广义Darcy定律。研究结果显示渗流速度和压力梯度之间存在幂函数关系,但幂律流体表观渗透率仅在一维流动情况下由多孔介质的空间结构以及幂律流体的流变特性所确定,对于二维及以上空间的流动,由于非线性项的存在,其表观渗透率还依赖于宏观渗流速度的具体方向,该渗流特性和牛顿流体完全不同。数值算例显示本文理论推导的表观渗透率对于渗流速度方向的依赖属性和国际上现有的基于直接求解幂律流体流动控制方程的数值模拟结果相符。
     综上,本文的主要工作是开发具有自主知识产权的稠油热采数值模拟自适应网格法计算软件,软件能够对复杂地层的稠油蒸汽注采问题进行快速模拟。软件对裂缝-孔隙双重介质稠油油藏SAGD开采过程和某稠油油藏热水驱采油过程模拟的两个实例表明软件能对复杂地层的稠油热采问题利用自适应网格法进行快速数值模拟;本文利用开发的软件研究不同轻质溶剂对SAGD过程开采效率的影响和作用机理;针对稠油的非牛顿流体特性,本文利用体积平均方法对幂律流体在多孔介质中的渗流规律进行研究并推导其广义Darcy定律。
The numerical reservoir simulation has become an important tool for the petroleum research and exploration. The thermal recovery by steam injection can be thought as the problem of multi-phase flow in porous media with the phase-change. In the processes, there are sharp moving interfaces of temperature and phase saturations in the reservoir. Due to the rapid variations of the physical quantities across the interface, very fine grids are required. As a result, a huge CPU time and memory are needed if applying a uniform grid to the whole calculation area. In this paper, the adaptive mesh refinement (AMR) technique is applied to the numerical simulations for the processes of thermal recovery by steam injection, where the different heterogeneous cases of the reservoir are considered, like the reservoir with the permeability variations, the different rock-types, the heterogeneous fractured porous media, the complex boundary or complex faulted reservoir. In the AMR technique, the front is tracked, in order to have fine grid blocks in the region with steep gradients but coarser grid blocks ahead and behind of the front. The proposed AMR technique is fast and can give good accuracy. On the basis of theoretical research, a software package for the reservoir simulations, where including the AMR technique, is developed. This software package has good precision and numerical stability to meet the demands of scientific research.
     With the use of the software developed by ourselves, a numerical example of SAGD progress in fractured reservoirs and a numerical simulation of the hot water flooding process of block Shan2are carried out, whose results are compared with the one based on CMG-STARS, a well-known commercial reservoir simulation software. The comparison shows that the computing speed of our software is five times of the one of CMG-STARS. The calculated results of day steam injection, day oil production, cumulative water injection and cumulative oil production are in good agreement with those of CMG-STARS. The remaining oil saturation distribution within the reservoir is relatively consistent with the one of CMG-STARS.
     Using our own developed software, we perform a numerical study of Steam and Gas Push (SAGP) and Expanding-Solvent Steam-Assisted Gravity Drainage (ES-SAGD), which are both improvements of SAGD. In the gravity drainage process, the key to heavy oil production is the mobility of the oil phase which is dominated by the viscosity of the oil phase. The objective of this numerical study was to investigate the drainage mechanism of co-injecting light and heavy solvents to improve production performance. The light solvent C2H6, delivered in the vapor phase to the entire fluid interface, keeps the pressure of the steam chamber, and reduces the thermosteresis by building a thick gas blanket on the top of the recovery, but the recovery ratio may become lower due to the lower temperature of the steam chamber. The heavy solvent C9H20owould condense, with condensed steam, at the boundary of the steam chamber. Condensed solvent around the interface of the steam chamber which dilutes the oil, in conjunction with heat, reduces its viscosity and increases its mobility thereby increasing the oil production rate and recovery ratio. The conclusions from this study can be used to design suitable solvent mixtures and co-injection strategies to deliver a higher production rate and recovery ratio.
     Heavy, high water and low permeability formations crude oil show a characteristic of non-Newtonian fluids. Many non-Newton fluids such as polymer solution, micellar solutions, emulsions and foam concentrate of high compression coefficient are used as oil displacing agents in the EOR process. Usually, the drilling fluid and the fracturing fluid in the hydraulic fracturing technology are usually non-Newtonian fluids. Therefore, the study of transport of non-Newtonian fluids in porous media has important practical significance for oil and gas development.
     As a common non-Newtonian fluid, the constitutive equation of power-law fluids is relatively simple and can better reflect the rheological properties of heavy oil. The large-scale continuum models for transport of power-law fluids in porous media is derived from the pore-scale control equations using the volume averaging method. The averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The closure problem for the power-law fluid flow is assumed to be analogous as the Newtonian fluid flow. Then a tensorial form of Darcy-scale filtration equation is obtained and the power-law relation between the averaged velocity and the gradient of the averaged pressure are confirmed. Different from Newtonian fluids, the apparent permeability significantly depends upon the filtration velocity direction for higher dimensional flow (d≥2). Numerical test also validates this conclusion.
     In summary, the object of this paper is to develop an AMR software package for numerical reservoir simulation in thermal recovery of heavy oil by steam injection, based upon the research of the AMR technique for the thermal recovery of heavy oil in complex stratum. With the use of our own developed software, we studied different light solvent extraction efficiency of SAGD process and mechanism. For non-Newtonian behavior of heavy oil, the volume-average method was used to study the transport of power-law fluids flow in porous media and derive its generalized Darcy's law.
引文
常毓文,李秀娈,于立君.2001.中国石油天然气股份有限公司稠油蒸汽驱开发技术发展及现状[C]//中国石油天然气股份有限公司油气田开发技术座谈会论文集2001.北京:中国石油出版社,1018-1028.
    陈焕章.1988.考虑蒸馏作用的注蒸汽开采数值模拟模型[J].石油学报,9(3):69-77.
    陈月明.1996.注蒸汽热力采油[M].山东:石油大学出版社,1-8.
    陈文芳.1983.非牛顿流体的一些本构方程[J].力学学报,19(1):16-26.
    崔荣海.2006.单家寺油田稠油热采技术及方案设计研究[D]:[硕士].东营:中国石油大学大学(华东),1-5.
    高永荣,刘尚奇,肾德煌,等.2003.超稠油氮气、溶剂辅助蒸汽吞吐开采技术研究[J].石油勘探与开发,30(2):73-75.
    高永荣,刘尚奇,肾德煌,等.2009.氮气辅助SAGD开采技术优化研究[J].石油学报,30(5):717-721.
    葛广章,王勇进,王彦玲,等.聚合物驱及相关化学驱进展.油田化学,18(3):282-284.
    韩大匡,陈饮雷,闫存章.1993.油藏数值模拟基础[M].北京:石油工业出版社,1-3.
    郝晶,王为民,李思宁,等.2013.稠油热采技术的发展[J].当代化工,42(10):1434-1436.
    胡文瑞.2008.论老油田实施二次开发工程的必要性与可行性[J].石油勘探与开发,35(1):1-5.
    纪佑军,程林松,刘其成,等.2010.超稠油油藏蒸汽与非凝析气驱油数字化实验[J].石油学报,31(4):602-606.
    孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社,340-341.
    孔祥言,陈峰磊,陈国权.1999.非牛顿流体渗流的特性参数及数学模型[J].中国科学技术大学学报,29(2):141-147.
    李树军.2008.稠油流变性及室内脱水试验研究[J].油气田地面工程.27(11):24-25.
    李献民,李增田,等.1997.单家寺热采稠油油藏[M].山东:石油工业出版社,1-3.
    李阳.2009.陆相高含水油藏提高水驱采收率实践[J].石油学报,30(3):396-399.
    李阳,张凯,王亚洲,等.2007.稠油油井幂律流体流动视黏度模型[J].石油勘探与开发,34(5):616-621.
    李莹莹.2010.中国石油发展现状、问题与前景分析[J].中国能源,32(12):17-20.
    李兆敏,孙茂盛,仵元兵.2006.泡沫压裂液在裂缝内的层流流动[J].广西大学学报:自然科学版,31(3):212-215.
    林晶,宋朝辉,罗煜恒,刘灵.2009SAGD水平井钻井技术[J],5(3):56-60.
    凌建军,王明远,王书林,等.1996.水平压裂辅助蒸汽驱开采稠油油藏的研究[J].西南石油,10(3):30-34.
    刘尚奇,王晓春,高永荣,等.2007.超稠油油藏直井与水平井组合SAGD技术研究[J].石油勘探与开发,34(2):234-238.
    刘敏,高孝田,邹剑,等.2013.海上特稠油热采SAGD技术方案设计[J].石油钻采工艺,35(4):94-96.
    刘文岭.2010.高含水油田油藏地球物理技术—中国石油物探的新领域[J].石油学报,31(6):959-965.
    刘文章,.1997.稠油注蒸汽热采工程[M].北京:石油工业出版社,1-10.
    刘志波,程林松,纪佑军等.2011.蒸汽与天然气驱(SAGP)开采特征—与蒸汽辅助重力泄油(SAGD)对比分析[J].石油勘探与开发,38(1):79-83.
    龙运前,朱维耀,刘今子,等.2012.稠油蒸汽泡沫共混体系的流变性能研究[J].西安石油大学学报:自然科学版,27(3):54-58.
    吕开河,高锦屏,孙明波.2000.多元醇钻井液高温流变性研究[J].石油钻探技术,28(6):23-25.
    吕立华,李明华,苏岳丽.2005.稠油开采方法综述[J].内蒙古石油化工,2010(3):110-112.
    罗海山.2009.裂缝性油藏稠油蒸汽注采数值模拟自适应网格法研究[D]:[博士].合肥:中国科学技术大学,1-20.
    罗海山,王晓宏,施安峰.2011.裂缝-孔隙油藏蒸汽辅助重力泄油过程的自适应网格数值计算[J].中国石油大学学报:自然科学版,35(1):140-145.
    马春红,吴晓东.2010.含水超稠油管输流动特性实验研究[J].石油大学学报:自然科学版,29(1):70-74.
    彭占刚.2004.三元复合体系相行为特征实验研究[D]:[硕士].大庆:大庆石油学院,28-30.
    齐林海.2012.数字岩心技术研究现状及发展趋势[J].内蒙古石油化工,2012(19):132-135.
    施安峰.2012.复杂地层油藏蒸汽注采数值模拟自适应网格法的研究[D]:[博士].合肥:中国科学技术大学,9-23.
    施安峰,王晓宏,罗海山.2009.三维蒸汽辅助重力驱油过程的自适应网格法[J].辽宁工程技术大学学报,28(S1):4-7.
    施安峰,王晓宏,贾江涛,等.2012a.复杂断层油藏蒸汽注采过程的自适应网格法[J].华中科学技术大学学报:自然科学版,40(3):118-122.
    施安峰,王晓宏,贾江涛,等.2012b.复杂边界稠油油藏蒸汽注采过程自适应网格法的研究[J].力学季刊,33(4):513-520.
    施安峰,王晓宏,吴斌,贾江涛.2011.非均匀油藏蒸汽辅助重力驱油数值模拟中网格渗透率粗化方法的研究[C]//渗流力学与工程的创新与实践——第十一届全国渗流力学学术大 会论文集.重庆.
    石在虹,杨乃群,刘德铸,等.1999.蒸汽辅助重力驱生产井井筒举升工况分析[J].石油学报,20(6):82-86.
    宋付权,刘慈群.2001.非牛顿流体球形渗流的不定常压力动态[J],特种油气藏,8(3):39-40.
    宋考平,王雷,计秉玉.1996.非牛顿-牛顿复合油藏渗流试井解释方法[J].石油学报,17(1):82-86.
    孙建孟,姜黎明,刘学锋,等.2012.数字岩心技术测井应用与展望[J].测井技术,36(1):1-7.
    唐明云.2012.含轻质组分稠油油藏蒸汽注采数值模拟自适应网格法的研究[D]:[博士].合肥:中国科学技术大学,30-31.
    唐明云,施安峰,贾江涛,等.2011.考虑轻油组分的SAGD过程热采稠油数值研究.渗流力学与工程的创新与实践——第十一届全国渗流力学学术大会论文集.重庆.
    唐明云,施安峰,王晓宏,等.2012.轻质组分挥发对蒸汽热采稠油影响的数值模拟[J].石油学报,33(6):1043-1048.
    唐明云,施安峰,王晓宏.2013.含轻质组分组稠油油藏蒸汽注采过程自适应网格法[J].力学季刊,34(1):24-31.
    陶文铨.1988.数值传热学[M].西安:西安交通大学出版社.
    陶文铨.2005.计算传热学的近代进展[M].北京:科学出版社.
    王大为,周耐强,牟凯.2008.稠油技术及发展趋势[J].西部探矿工程,2008(12):129-131.
    王家禄.2010.油藏物理模拟[M].北京:石油工业出版社.
    王亮.2008.浅谈三次采油[J].科技资讯,2008(11):155.
    王佩虎.2006.蒸汽辅助重力泄油(SAGD)开发超稠油研究[D]:[工程硕士].大庆:大庆石油学院。
    王晓宏,贾江涛,施安峰,等.2010.蒸汽辅助重力驱油油藏数值模拟自适应网格法计算软件v1.0[CP].软件著作权登记号:2010SR001806.
    王晓宏,贾江涛,施安峰,等.2012.注蒸汽热采稠油油藏数值模拟自适应网法计算软件的设计开发,计算机应用与软件,29(8):17-20.
    王学忠.2010.稠油开采技术进展[J].当代石油石化,181:26-30.
    吴清松.2009.计算热物理引论[M].合肥:中国科学技术大学出版社.
    杨元亮,宋文芳,刁刚田.2002.单2块稠油油藏高含水后期提高采收率对策[J].特种油气藏,9(4):50-52.
    姚军,赵秀才,衣艳静,等.2005.数字岩心技术现状及展望[J].油气地质与采收率,12(6):52-54.
    岳湘安,刘中春,侯吉瑞,等.2003.一类驱油剂在油藏孔隙中的流变与流变特性[J].石 油钻采工艺,23(5):85-89.
    张方礼,张丽萍,鲍君刚,等.2007.蒸汽辅助重力泄油技术在超稠油开发中的应用[J].特种油气藏,35(2):3-7.
    章根德,刘曰武.2000.多孔介质中流体流动的细观-宏观模拟[J].岩石力学与工程学报,19(增):1006-1013.
    张建军,贾永禄,张鹏.2007.非牛顿幂律流体有界双重介质渗流模型实空间解析解与样版曲线[J].高校应用数学学报,22(4):397-404.
    张凯,李阳,王琳娜,等.2007.稠油流变特性实验研究[J],油气地质与采收率,14(5):91-94.
    张锐.1999.稠油热采技术[M].北京:石油工业出版社.
    张小波,郑学男,邰德军,等.2010.SAGD添加非凝析气技术研究[J].西南石油大学学报:自然科学版,32(2):113-117.
    张义堂,等.2006.热力采油提高采收率技术[M].北京:石油工业出版社.
    赵秀才.2009.数字岩心及孔隙网络模型重构方法研究[D]:[博士].东营:中国石油大学(华东),1-2.
    赵玉龙,张烈辉,青胜兰.2010.三重介质油藏非牛顿幂律流体试井模型与典型曲线分析[J].水动力学研究与进展A辑,25(2):254-261.
    中华人民共和国国家质量监督检验检疫总局.2010.TSG G0002-2010.锅炉节能技术监督管理规程[S].北京:特种设备安全监察局.
    钟文新,陈明霜.2008.世界重油资源状况分析[J].石油科技论坛,13(5):18-23.
    Acs G, Deleschall S, Farkas E.1985. General purpose compositional model[J]. Society of Petroleum Engineers Journal,25(4):543-553.
    Al-Roomi Y, George R, Elgibaly A, et al.2004. Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils[J]. Journal of Petroleum Science and Engineering,42(2):235-243.
    Allain H, Quintard M, Prat M, et al.2010. Upscaling of superfluid helium flow in porous media[J]. Int. J. Heat & Mass Transfer,53(21-22):4852-4864.
    Allen A M B, Ewing R E, Koebbe J V.1985. Mixed finite-element methods for computing groundwater velocities [J]. Numerical Methods for Partial Differential Equations,1(3): 195-207.
    Anderson TB, Jackson RA.1967.fluid mechanical description of fluidized beds[J]. Ind. Eng. Chem. Fundamem,6(4):527-539.
    Appleyard J R.1983. Nested factorization[C]//SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.
    Appleyard J R, Cheshire I M, Pollard R K.1981. Special techniques for fully implicit simulators[C]//Proceedings of the European Symposium on Enhanced Oil Recovery. England: Bournemouth,395-408.
    Ardali M, Mamora D, Barrufet M A.2011. Experimental study of co-injection of potential solvents with steam to enhance SAGD process[C]//SPE Western North American Region Meeting. Society of Petroleum Engineers.
    Arns C H.2002. The influence of morphology on physical properties of reservoir rocks[D]: [Ph.D.]. Sydney:The University of New South Wales.
    Auriault JL.1991. Heterogeneous medium is an equivalent description possible? [J]. Int. J. Eng. Sci.,29(7):785-951.
    Auriault JL, Royer P, Geindreau C.2002. Filtration law for power-law fluids in anisotropic porous media[J]. Int. J. Eng. Sci.,40(10):1151-1163.
    Aziz K, Ramesh AB, Woo PT.1987. Fourth SPE comparative solution project:comparison of steam injection simulators[J]. Journal of Petroleum Technology,39(12):1576-1584.
    Aziz K, Settari A.1979. Petroleum Reservoir Simulation [M], Applied Science Publishers Ltd., London.
    Bastian P, Helmig R.1999. Efficient fully-coupled solution techniques for two phase flow in porous media. Parallel multigrid solution and large scale computations[J]. Adv. Water Resour., 23:199-216.
    Berger MJ, Colella P.1989. Local adaptive mesh refinement for shock hydrodynamics[J]. J. Comput. Phys.,82:64-84.
    Berger MJ, Oliger J.1984. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J. Comput. Phys.,53:484-512.
    Bird RB, Stewart WE, Lightfoot EN.1960. Transport Phenomena[M].New York:Wiley,196-198.
    Boone TT, Wattenbarger CC, Clingman S, et al.2011. An integrated technology development plan for solvent-based recovery of heavy oil[C]//SPE Heavy Oil Conference and Exhibition. Society of Petroleum Engineers.
    Brandt A.1977. Multi-level adaptive solution to boundary-value problems[J]. Math. Comput,31: 333-396.
    Breitenbach EA, Thurnau, D., van Poolen, HK.1968. Immiscible Fluid Flow Simulator[C]//Numerical Simulation Symposium. Dallas:Society of Petroleum Engineers.
    Bruce GH, Peaceman DW, Rachford HH, et al.1953. Calculations of unsteady-state gas flow through porous media[J]. Journal of Petroleum Technology,5(3):79-92.
    Bryant S, Blunt M.1992. Prediction of relative permeability in simple porous media[J]. Physical Review A,46(4):2004.
    Butler RM.1991. Thermal Recovery of Oil and Bitumem[M]. Prentice Hall, Englewood Cliffs, N.J.
    Butler RM.1994. Steam-assister gravity drainage:concept, development, performance and future [J]. Journal of Canadian Petroleum Technology,33(2):44-50.
    Butler RM.1997. The steam and gas push (SAGP) [C]//The 48th Annual Technical Meeting of the Petroleum S ociety in Calgray. Alberta:Petroleum Society of Canada.
    Butler RM, McNab G.S, Lo HY.1981. Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating[J], Canadian J. of Chem. Engineering,59:455-460.
    Butler RM, Stephens DJ.1981. The gravity drainage of steam heated to parallel horizontal wells[J]. Journal of Canadian Petroleum Technology,20(2):90-96.
    Chen W H, Durlofsky L J.1993. Minimization of grid orientation effects through use of higher order finite difference methods [J]. SPE Advanced Technology Series,1(2):43-52.
    Chow L, Butler RM.1996. Numerical Simulation of the Steam-assisted Gravity Drainage Process (SAGD)[J]. Journal of Canadian Petroleum Technology,35:55-62.
    Christopher RS, Middleman S.1965. Power-law flow through a packed tube[J]. Ind. Eng. Chem. Fundamen,4(4):422-426.
    Coats KH, Nielsen RL, TERHUNE MH, et al.1967. Simulation of three-dimensional two-phase flow, in oil and gas reservoirs[J]. SPE Journal,7(4):377-388.
    Coats KH, George WD, Marcum BE.1974. Three-dimensional simulation of steamfiooding[J]. Trans. SPE of AIME,257:573-592.
    Coats KH, Modine AD.1983. A consistent method for calculating transmissibilities in nine-point difference equations[R]. SPE12248
    Cook RE, Jacoby RH, Ramesh AB.1974. A beta-type reservoir simulator for approximating compositional effects during gas injection[J]. Soc. Pet. Eng. J.;(United States),14(5):471-481.
    Dagan G..1989. Flow and Transport in Porous Formations[M]. New York:Springer-Verlag.
    Deng X, Huang H, Zhao L, et al.2010. Simulating the ES-SAGD process with solvent mixture in Athabasca reservoirs[J]. Journal of Canadian Petroleum Technology,49(1):38-46.
    Dimitrakopoulos R, Desbarats A J.1993. Geostatistical modeling of gridblock permeabilities for 3D reservoir simulators[J]. SPE reservoir engineering,8(1):13-18.
    Donald LK, Ladd AJ.1997. Moderate Reynolds number flows through periodic and random arrays of aligned cylinders[J]. J. Fluid Mech.,349:31-66.
    Douglas Jr J, Blair PM, Wagner RJ.1958. Calculation of linear waterflood behavior including the effects of capillary pressure[J].
    Douglas Jr J, Peaceman D W, Rachford Jr H H.1959. A method for calculating multi-dimensional immiscible displacement[J]. Trans. Aime.,216:297-308.
    Durlofsky LJ.1991. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media[J]. Water Resources Research,27:699-708.
    Edwards M G.2002. Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids[J]. Computational Geosciences,6(3-4):433-452.
    Edwards M G, Rogers C.F.1994. A Flux Continuous Scheme for the Full Tensor Pressure Equation[C]//Proceeding of the 4th European Conference on the Mathematics of Oil Recovery. Roros, Norway.
    Evazi M, Mahani H.2009. Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations [J]. Transport in Porous Media,83(3):541-572.
    Fadili A, Tardy PM.J, Anthony Pearson JRA.2002. A 3D filtration law for power-law fluid in heterogeneous porous media[J]. J. Non-Newtonian Fluid Mech.,106(2):121-146.
    Fanchi JR.2007. Principles of Applied Reservoir Simulation[M].Third Edition. Burlington: Elsevier Science Ltd.
    Fredrich J T, Menendez B, Wong T F.1995. Imaging the pore structure of geomaterials[J]. Science, 268(5208):276-279.
    Friedel H, Grauer R, Marliani C.1997. Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows[J]. J. Comput. Phys.,134:190-198.
    Gates ID.2007. Oil phase viscosity behaviour in expanding-solvent steam-assisted gravity drainage[J]. Journal of Petroleum Science and Engineering,59(1):123-134.
    Gates ID, Chakrabarty N.2008. Design of the steam and solvent injection strategy in expanding solvent steam-assisted gravity drainage[J]. Journal of Canadian Petroleum Technology, 47(9):12-20.
    Gautier Y, Noetinger B.1997. Preferential Flow-Paths Detection for Heterogeneous Reservoirs Using a New Renormalization Technique[J], Trans. Porous Media,26:1-23.
    Getachew D, Minkowycz WJ, Poulikakos D.1998. Macroscopic equations of non-Newtonian fluid flow and heat transfer in a porous matrix[J]. J. Porous Media, (3):273-283.
    Gerritsen M, Kovscek A, Castanier L, et al.2004. Experimental Investigation and High Resolution Simulator of in-situ Combustion Processes:1. Simulator Design and Improved Combustion with Metallic Additives[R]. SPE 86962.
    Golfier F, Quintard M, Whitaker S.2002. Heat and mass transfer in tubes:An analysis using the method of volume averaging[J]. Journal of Porous Media,5(3):169-185.
    Gottfried Jr B S.1965. A mathematical model of thermal oil recovery in linear systems[R]. American Institute of Mechanical Engineers. New York, NY..
    Govier GW, Aziz K.1972. The Flow of Complex Mixtures In Pipes[M]. New York:Van Nosrand reinhold Company,503-526.
    Govind PA, Das S K, Srinivasan S, et al.2008. Expanding solvent SAGD in heavy oil reservoirs[C]//International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers.
    Gray WG.1975. A derivation of the equations for multi-phase transport[J]. Chem. Eng. Sci., 30(2):229-233.
    Haldenwang P, Pignol D.2002. Dynamically adapted mesh refinement for combustio-n front tracking[J]. Computers and Fluids,31:589-606.
    Hasan SW, Ghannam MT, Esmail N.2010. Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel,89(5):1095-1100.
    Hazlett R D.1997. Statistical characterization and stochastic modeling of pore networks in relation to fluid flow[J]. Mathematical Geology,29(6):801-822.
    Heinemann ZE, Brand CW, Munka M, et al.1991. Modeling reservoir geometry with irregular grids[J]. SPE Reservoir Engineering,6(2):225-232.
    Hornung RD, Trangenstein JA.1997. Adaptive mesh refinement and multilevel iterat-ion for flow in porous media [J]. J. Comput. Phys.,136:522-545.
    Hou TY, Wu XH.1997. A multiscale finite element method for elliptic problems in composite materials and porous media [J]. Journal of computational physics,134(1):169-189.
    Howes FA, Whitaker S.1985. The spatial averaging theorem revisited[J]. Chem. Eng. Sci.,40(8):1387-1392.
    Huber R, Helmig R.1999. Multiphase flow in heterogeneous porous media:A classical finite element method versus an implicit pressure-explicit saturation-based mixed finite element-finite volume approach [J]. International Journal for Numerical Methods in Fluids,29(8):899-920.
    Ikoku CU, Ramey Jr H J.1980. Wellbore storage and skin effects during the transient flow of non-Newtonian power-law fluids in porous media[J]. SPE J.,20(2):25-38.
    Idris Z, Orgeas L, Geindreau C, et al.2004. Microstructural effects on the flow law of power-law fluids through fibrous media[J]. Modelling Simul. Mater. Sci. Eng.,12(5):995-1015.
    Ivory JJ, Zheng R, Nasr TN, et al.2008. Investigation of low pressure ES-SAGD[C]//International Thermal Operations and Heavy Oil Symposium. Society of Petroleum Engineers.
    Jasak H, Gosman AD.2000. Automatic Resolution Control for the Finite-Volume Method, Part 3: Turbulent Flow Applications[J], Numer. Heat Transfer B,38:273-290.
    Joshi MY.1974. A class of stochastic models for porous media[D]:[Ph.D.]. Lawrence:University of Kansas.
    Khaledi R, Beckman M, Pustanyk K, et al.2012. Physical modeling of Solvent-Assisted SAGD[C]//SPE Heavy Oil Conference Canada.
    King PR.1989. The Use of Renormalization for Calculating Effective Permeability[J], Trans. Porous Media,4:37-58.
    Le Loc'h G 1987. Etude de la composition des permeabilites par des methodes variationnelles[D]: [phd]. Pairs:Paris School of Mines.
    Li W, Mamora DD.2010. Experimental Investigation of Solvent Co-Injection in Vapor and Liquid Phase to Enhance SAGD Performance[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
    Li W, Mamora DD, Li Y.2011. Solvent-Type and-Ratio Impacts on Solvent-Aided SAGD Process[J]. SPE Reservoir Evaluation & Engineering,14(3):320-331.
    Li W, Mamora DD, Li Y.2011. Light-and heavy-solvent impacts on Solvent-Aided-SAGD process: a low-pressure experimental study[J]. Journal of Canadian Petroleum Technology,50(4):19-30.
    Luo HS, Wang XH, Quintard M.2008. Adaptive Mesh Refinement for One Dimensional Three-Phase Flows in Heterogeneous Fractured Porous Media[J]. Numerical Heat Transfer B, Fundamentals,54(6):476-498.
    Luo HS, Wang XH.2009a. Oil Displacement for One-Dimensional Three-Phase Flow with Phase Change in Fractured Media[J]. Transport in Porous Media,79(3):377-392.
    Luo HS, Wang XH, Shi AF.2009b. The AMR Technique For SAGD Process in Highly Heterogenous Fractured Reservoirs[C]//Proceedings of 6th ICCHMT, May 18-21, Guangzhou, CHINA.
    Marle C.1967. Ecoulements monophasiques en milieu poreux Rev[J]. Revue De L'institut Francais Du Petrole Et Annales Des Combustibles Liquides,22(10):1471-1509.
    Mandl G, Volek CW.1967. Heat and mass transport in steam-drive processes[C]//42. annual SPE of AIME fall meeting. Houston, TX, USA.
    Meijerink J A, van der Vorst H A.1977. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix[J]. Mathematics of computation, 31(137):48-162.
    Mohammadzadeh O, Rezaei N, Chatzis I.2010. Pore-Level Investigation of Heavy Oil and Bitumen Recovery Using Solvent-Aided Steam Assisted Gravity Drainage (SA-SAGD) Process[J]. Energy & Fuels,24(12):6327-6345.
    Mohammadzadeh O, Rezaei N, Chatzis I.2010. Pore-Level Investigation of Heavy Oil and Bitumen Recovery Using Hybrid SAGD Process[C]//SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.
    Mukhopadhyay S, Sahimi M.1992. Heat Transfer and Two-Phase Flow in Flow in Fractured Reservoirs[R].SPE 24043.
    Myhill N A, Stegemeier G L.1975. Steam drive correlation and prediction[R]. Shell Oil Co.
    Nasr TN, Ayodele O.2005. Thermal techniques for the recovery of heavy oil and bitumen[C]//SPE International Improved Oil Recovery Conference in Asia Pacific. SPE97488.
    Nasr TN, Ayodele OR.2006. New hybrid steam-solvent processes for the recovery of heavy oil and bitumen[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.
    Nasr TN, Beaulieu G, Golbeck H, et al.2003. Novel Expanding Solvent-SAGD Process" ES-SAGD"[J]. Journal of Canadian Petroleum Technology,42(1):13-16.
    Nilsson J, Gerritsen M, Younis R.2005. Towards An Adaptive, High-Resolution Simulator for Steam Injection Processes[R]. SPE 93881.
    Nolen JS.1973. Numerical simulation of compositional phenomena in petroleum reservoirs[C]//SPE Symposium on Numerical Simulation of Reservoir Performance,11-12 January 1973, Houston, Texas:Society of Petroleum Engineers.
    Okabe H, Blunt M J.2004. Prediction of permeability for porous media reconstructed using multiple-point statistics[J]. Physical Review E,70(6):066135.
    Orgeas L, Idris Z, Geindreau C, et al.2006 Modelling the flow of power-law fluids through anisotropic porous media at low-pore Reynolds number[J]. Chem. Eng. Sci.,61(14): 4490-4502.
    Orr B.2009. ES-SAGD; Past, Present and Future[C]//SPE Annual Technical Conference and Exhibitionl. New Orleans:Society of Petroleum Engineers.
    Palagi C L, Aziz K.1994. Use of Voronoi grid in reservoir simulation[J]. SPE Advanced Technology Series,2(02):69-77.
    Paredes R, Alvarado V.1998. Scaling of heterogeneous distribution of conductances: Renormalization Versus Exact results [J]. Physic Review E,58(1):771-778.
    Pascal H, Pascal F.1985. Flow of non-Newtonian fluid through porous media[J]. Int. J. Engng. Sci.,23(5):571-585.
    Peaceman DW, Rachford HH.1955. The numerical solution of parabolic and elliptic differential equations[J]. Journal of the Society for Industrial and Applied Mathematics.3(1):28-41.
    Peaceman DW.1978. Interpretation of well-block pressures in numerical reservoir simulation[J]. SPE Journal,18(3):183-194.
    Peaceman DW.1983. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability [J]. SPE Journal,22(3):531-543.
    Pember RB, Bell JB, Colella P.1995. An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regions[J], J. Comput. Phys.,120:278-304.
    Ponting DK.1989. Corner point geometry in reservoir simulation[C]//King PR. Proceedings of the First ECMOR Conference. Oxford:Clarendon Press,45-65.
    Price H S, Coats K H.1974. Direct methods in reservoir simulation[J]. Society of Petroleum Engineers Journal,14(03):295-308.
    Puiroux N, Prat M, Quintard M.2004. Non-equilibrium theories for macroscale heat transfer: ablative composite layer systems[J]. Int. J. Thermal Sciences,43(6):541-554.
    Quintard M, Whitaker S.1987. Ecoulement monophasique en milieu poreux:effet des heterogeneites locales[J]. J. Meca. Theorique et Appliquee,6(5):691-726.
    Quintard M, Whitaker S.1988. Two phase flow in heterogeneous porous media:the method of large-scale averaging[J]. Transport in Porous Media,3(4):357-413.
    Quintard M, Whitaker S.1994. Convection, dispersion, and interfacial transport of contaminants: Homogeneous media[J]. Adv. Water Res.,17(4):221-239.
    Quintard M, Whitaker S.1996. Transport in chemically and mechanically heterogeneous porous media Ⅱ:comparison with numerical experiments for slightly compressible single-phase flow[J]. Adv. Water Res.,19(1):49-60.
    Redford DA, Flocd DL, Peters E et al..1976. Laboratory model flow test systems in situ recovery from Alberta oil sands[C]//Proeedings of 26th Can.Chem.Eng.conf.,Symposium on Tar Sands. Toronto.
    Renard P, Le Loc'h G, Ledoux E, et al.1997. Simplified renormalization:A new quick upscaling technique[M]//geoENV I-Geostatistics for Environmental Applications. Springer Netherlands,: 89-100.
    Renard P, Loc'h L, Ledoux E, et al.2000. A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media[J]. Water Resources Research,36(12): 3567-3580.
    Richardson JH, Stone HL.1973. A quarter century of progress in application of reservoir engineering. journal of petroleum technology,25(12):1371-1379.
    Rosenberg E, Lynch J, Gueroult P, et al.1999. High resolution 3D reconstructions of rocks and composites[J]. Oil & Gas Science and Technology,54(4):497-511.
    Sabri NE, Comiti J.1995. Pressure drop in non-Newtonian purely viscous fluid flow through porous media[J]. Chem. Eng. Sci.,50(7):1193-1201.
    Salama A.2011. On the Brinkman equation and the concept of viscous dissipation in porous media[J]. Special Topics & Reviews in Porous Media-An International Journal,2(2):83-89.
    Sandler SI.1999. Chemical and Engineering Thermodynamics[M].3rd Edition. New York:John Wiley and Sons, Inc.
    Sheldon J W, Harris C D, Bavly D.1960. A method for general reservoir behavior simulation on digital computers[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers.
    Shi AF, Jia, JT, Wang XH, Luo HS.2009. Adaptive mesh refinement for 2D and 3D numerical simulations of steam-assisted gravity drainage process, Proceedings of 6th ICCHMT. May 18-21. Guangzhou, China.
    Shutler ND.1969. Numerical three-phase simulation of the linear steamflood process[J]. SPE Journal,232-246
    Shutler ND.1970. Numerical three-phase model of the two-dimensional steamflood process[J]. SPE Journal,10(4):405-417.
    Slattery JC.1967. Flow of viscoelastic fluids through porous media[J]. AIChE Journal, 13(6):1066-1071.
    Spillette A G, Nielsen R L.1968. Two-dimensional method for predicting hot waterflood recovery behavior[J]. Journal of Petroleum Technology,20(06):627-638.
    Spillette A G, Hillestad J G, Stone H L.1973. A high-stability sequential solution approach to reservoir simulation[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. Society of Petroleum Engineers.
    Stone H L, Garder Jr A O.1961. Analysis of gas-cap or dissolved-gas drive reservoirs[J]. SPE Journal,1(02):92-104.
    Stone HL.1968. Lerative Solution of Implicit Approximations of multidimensional partial differential equations[J]. SIAM J. Numer. Anal.,5(3):530-558.
    Stone HL.1970. Probability model for estimating three-phase relative permeability[J]. Journal of Petroleum Technology,22(2):214-218.
    Stone HL.1973. Estimation of three-phase relative permeability and residual oil data [J]. Journal of Canadian Petroleum Technology,12(4):52-61.
    Sullivan SP, Gladden LF, Johns ML.2006. Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques[J]. J. Non-Newtonian Fluid mech.,133(2):91-98.
    Teeuw D, Hesselink FT.1980. Power-law flow and hydrodynamic behavior of biopolymer solutions in porous media[C].//Society of Petroleum Engineers of AIME.1980 SPE International Symposium on Oilfield and Geothermal Chemistry. Dallas, Tex:Society of Petroleum Engineers, AIME,73-86.
    Todd M R, O'dell P M, Hirasaki G J.1972. Methods for increased accuracy in numerical reservoir simulators [J]. SPE Journal,12(6):515-530.
    Tomutsa L, Silin DB, Radmilovic V.2007. Analysis of chalk petrophysical properties by means of submicron-scale pore imaging and modeling [J]. SPE Reservoir Evaluation & Engineering, 10(03):285-293.
    Towson D E.1997. Canada's heavy oil industry:A technological revolution[C]//1997 SPE international thermal operations and heavy oil symposium,513-523.
    Trangenstein JA.2002. Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media[J]. Adv. in Water Resources,25:1175-1213.
    Tsakiroglou CD.2002. A methodology for the derivation of non-Darcian models for the flow of generalized Newtonian fluids in porous media[J]. J. Non-Newtonian Fluid mech., 105(2):79-1102.
    Udell.1983. Heat transfer in porous media heated from above with evaporation, condensation, and capillary effects[J]. Journal of Heat Transfer,105(3):485-492.
    Vakilha M, Manzari MT.2008. Modelling of power-law fluid flow through porous media using smoothed particle hydrodynamics[J]. Transp. Porous Med.,74(3):331-346.
    Van Poollen HK, Jargon J R.1969. Steady-state and unsteady-state flow of non-Newtonian fluids through porous media[J]. SPE Journal,9(1):80-88.
    Venuturumilli R, Chen LD.2004. Numerical Simulation Using Adaptive Mesh Refin-ement for Laminar Jet Diffusion Flames[J]. Numer. Heat Transfer B,46:101-120.
    Vinsome P K W.1976. Orthomin an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations[C]//SPE Symposium on Numerical Simulation of Reservoir Performance. Society of Petroleum Engineers.
    Vittorio DF, Marco P, Rita U.2010. Estimates of effective permeability for non-Newtonian fluid flow in randomly heterogeneous porous media[J]. Stoch. Environ. Res. Assess.,24(7): 1067-1076.
    Vongvuthipomchai S, Raghavan R.1987. Well test analysis of data dominated by storage and skin:non-Newtonian power-law fluids [J]. SPE Formation Evaluation,2(4):618-628.
    Wang XH, Quintard M, Darche G. 2006. Adaptive mesh refinement for one dimensional three-phase flow with phase change in porous media[J]. Numerical. Heat Transfer, 50(3):231-268.
    Wang X H, Shi A F, Wu B.2010. Upscaling permeability for multi-level grids in numerical simulations of steam-assisted gravity drainage process [C]//Proceedings of 3nd International Conference on Porous Media. Montecatini, Italy.
    Wang XH, Liu ZF, Lu XX.2011. Derivation of a second-order model for the Reynolds stress using the renormalization group analysis and the two-scale expansion technique[J]. Acta Mechanica Sinica,27(5):649-659.
    Watts JW.1983. A compositional formulation of the pressure and saturation equations[R]. Exxon Production Research Co..
    Weinstein H G 1972. A Semi-Analytic Method for Thermal Coupling of Reservoir and Overburden[J]. Society of Petroleum Engineers Journal,12(05):439-447.
    West WJ, Garvin WW, Sheldon JW.1954. Solution of the equations of unsteady state two-phase flow in oil reservoirs[J]. SPE-340-G
    Whitaker S.1967. Diffusion and dispersion in porous media[J]. AIChE Journal,13(3):420-427.
    Whitaker S.1986. Flow in porous media Ⅰ:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1(1):3-25.
    Wood BD.2009. The role of scaling laws in upscaling[J]. Adv. Water Res.,32(5):723-736.
    Woods JK, Spelt PDM, Lee PD, Selerland T, et al.2003. Creeping flows of power-law fluids through periodic arrays of elliptical cylinders[J]. J. Non-Newtonian Fluid mech.,111(2): 211-228.
    Wu B, Luo HS, Wang XH, Shi AF.2009. Renormalization methods for upscaling three-dimensional permeability [C]//Fourth International Conference on Applications of Porous Media. Istanbul, Turkey.
    Wu B, Liu ZF, Wang XH.2013. Statistical behaviors for renormalization of correlated permeability field[J]. PhysicaA:Statistical Mechanics and its Applications,392(15):3115-3121.
    Yanosik J L, McCracken T A.1979. A nine-point finite-difference reservoir simulator for realistic prediction of adverse mobility ratio displacements[J]. Society of Petroleum Engineers Journal, 19(04):253-262.
    Yoshizawa A.1984. Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation[J]. Phys. Fluids,27(6):1377-1387.
    Young LC, Stephenson RE.1983.A generalized compositional approach for reservoir simulation[J]. SPE J.,23(5).
    Yun MJ, Yu BM, Xu P, et al.2008. Fractal analysis of power-law fluid in a single capillary[J]. Chinese Physics Letters,25(2):616-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700